343 lines
10 KiB
Python
343 lines
10 KiB
Python
import json
|
|
import random
|
|
import numpy as np
|
|
from string import digits
|
|
import pathlib
|
|
import logging
|
|
|
|
|
|
def get_database(lang: str = "en") -> dict:
|
|
if lang not in get_database._dbs:
|
|
current_folder = pathlib.Path(__file__).parents[0]
|
|
db_file = str(current_folder / f"{lang}.json")
|
|
|
|
logging.info("loading database: %s", lang)
|
|
|
|
with open(db_file, "r") as f:
|
|
db = json.load(f)
|
|
get_database._dbs[lang] = db
|
|
|
|
logging.info("database loaded")
|
|
|
|
return get_database._dbs[lang]
|
|
|
|
|
|
get_database._dbs = {}
|
|
|
|
|
|
class NoDataException(Exception):
|
|
pass
|
|
|
|
|
|
class WordInfo(object):
|
|
def __init__(self, word: str, y: int, x: int, is_vertical: bool, database: dict, opposite_prefix: str = "opposite of", synonym_prefix: str = "other word for"):
|
|
self._dictionary_database = database
|
|
self._y = y
|
|
self._x = x
|
|
self._word = word
|
|
self._hint = None
|
|
self._is_vertical = is_vertical
|
|
|
|
self.opposite_prefix = opposite_prefix
|
|
self.synonym_prefix = synonym_prefix
|
|
|
|
self.choose_info()
|
|
|
|
def get_attribute(self, attr: str):
|
|
attr = self._dictionary_database[self._word][attr]
|
|
if attr is None or len(attr) == 0:
|
|
raise NoDataException
|
|
return attr
|
|
|
|
def get_best_antonym(self) -> str:
|
|
antonyms = self.get_attribute("antonyms")
|
|
return random.choice(antonyms)
|
|
|
|
def get_best_synonym(self) -> str:
|
|
synonyms = self.get_attribute("synonyms")
|
|
return random.choice(synonyms)
|
|
|
|
def get_best_sense(self) -> str:
|
|
senses = self.get_attribute("senses")
|
|
return random.choice(senses)
|
|
|
|
def choose_info(self, n: int = 1):
|
|
assert n <= 4
|
|
# first choose antonyms, then synonyms, then senses
|
|
|
|
hints = []
|
|
|
|
try:
|
|
antonyms = self.get_attribute("antonyms")
|
|
antonyms = [f"{self.opposite_prefix} {w}" for w in antonyms]
|
|
hints = hints + antonyms
|
|
except NoDataException:
|
|
pass
|
|
|
|
try:
|
|
synonyms = self.get_attribute("synonyms")
|
|
synonyms = [f"{self.synonym_prefix} {w}" for w in synonyms]
|
|
|
|
hints = hints + synonyms
|
|
except NoDataException:
|
|
pass
|
|
|
|
try:
|
|
senses = self.get_attribute("senses")
|
|
hints = hints + senses
|
|
except NoDataException:
|
|
pass
|
|
|
|
final_hints = []
|
|
for i in range(n):
|
|
choice = random.choice(hints)
|
|
hints.remove(choice)
|
|
final_hints.append(choice)
|
|
|
|
if n == 1:
|
|
self._hint = final_hints[0]
|
|
return
|
|
|
|
hint_symbols = ['a)', 'b)', 'c)', 'd)']
|
|
|
|
self._hint = ""
|
|
for i in range(n):
|
|
self._hint += hint_symbols[i] + " " + final_hints[i] + ". "
|
|
|
|
def get_hint(self) -> str:
|
|
return self._hint
|
|
|
|
def get_hint_location(self):
|
|
x = self._x if self._is_vertical else self._x - 1
|
|
y = self._y - 1 if self._is_vertical else self._y
|
|
return (y, x)
|
|
|
|
def is_vertical(self):
|
|
return self._is_vertical
|
|
|
|
|
|
def create_word_grid(w: int, h: int, lang_code: str = "en", target_density=0.5):
|
|
logging.info("generate new crossword")
|
|
|
|
database = get_database(lang=lang_code)
|
|
list_words = list(database.keys())
|
|
|
|
grid = np.full(shape=(h, w), dtype=np.unicode, fill_value=' ')
|
|
|
|
locations = {}
|
|
|
|
word_hints = {}
|
|
|
|
def store_location(char: str, y: int, x: int):
|
|
assert len(char) == 1
|
|
|
|
if char not in locations:
|
|
locations[char] = []
|
|
|
|
locations[char].append([y, x])
|
|
|
|
remove_digits = str.maketrans('', '', digits)
|
|
n_words = len(list_words)
|
|
|
|
def get_word(max_length: int, min_length=0):
|
|
assert max_length > 1
|
|
|
|
index = random.randint(0, n_words-1)
|
|
word = list_words[index][:]
|
|
|
|
while len(word) >= max_length or not word.isalnum() or len(word) <= min_length:
|
|
index = random.randint(0, n_words-1)
|
|
word = list_words[index][:]
|
|
|
|
return word
|
|
|
|
def normalize_word(word: str):
|
|
word = word.translate(remove_digits)
|
|
return word.lower()
|
|
|
|
opposite_prefix = "opposite of" if lang_code == "en" else "Gegenteil von"
|
|
synonym_prefix = "other word for" if lang_code == "en" else "anderes Wort für"
|
|
|
|
def place_word(word: str, y: int, x: int, vertical: bool = False):
|
|
normalized_word = normalize_word(word)
|
|
n = len(normalized_word)
|
|
if vertical:
|
|
assert grid.shape[0] - n >= y
|
|
for i, char in enumerate(normalized_word):
|
|
grid[y + i, x] = char
|
|
store_location(char, y+i, x)
|
|
else:
|
|
assert grid.shape[1] - n >= x
|
|
for i, char in enumerate(normalized_word):
|
|
grid[y, x + i] = char
|
|
store_location(char, y, x+i)
|
|
|
|
word_hints[normalized_word] = WordInfo(
|
|
word, y, x, vertical, database, opposite_prefix, synonym_prefix)
|
|
|
|
def density():
|
|
return 1 - (grid == " ").sum() / (w * h)
|
|
|
|
def check_if_fits(word: str, y: int, x: int, vertical: bool):
|
|
n = len(word)
|
|
if vertical:
|
|
|
|
# check if there is space before and after
|
|
if y - 1 >= 0 and grid[y - 1, x] != " ":
|
|
return False
|
|
if y + n < grid.shape[0] and grid[y+n, x] != " ":
|
|
return False
|
|
|
|
if grid.shape[0] - n < y or y < 0:
|
|
# print("over board")
|
|
return False
|
|
|
|
for i, char in enumerate(word):
|
|
char_x = x
|
|
char_y = y + i
|
|
|
|
if not (grid[char_y, char_x] == " " or grid[char_y, char_x] == char):
|
|
# print("not matching")
|
|
return False
|
|
|
|
if grid[char_y, char_x] == " ":
|
|
# check for horizonatal neighbors:
|
|
if char_x - 1 >= 0 and grid[char_y, char_x - 1] != " ":
|
|
# print("3")
|
|
return False
|
|
if char_x + 1 < grid.shape[1] and grid[char_y, char_x + 1] != " ":
|
|
# print("4")
|
|
return False
|
|
|
|
else:
|
|
|
|
# check if there is space before and after
|
|
if x - 1 >= 0 and grid[y, x - 1] != " ":
|
|
return False
|
|
if x + n < grid.shape[1] and grid[y, x + n] != " ":
|
|
return False
|
|
|
|
if grid.shape[1] - n < x or x < 0:
|
|
# print("over board")
|
|
return False
|
|
|
|
for i, char in enumerate(word):
|
|
char_x = x + i
|
|
char_y = y
|
|
|
|
if not (grid[char_y, char_x] == " " or grid[char_y, char_x] == char):
|
|
# print("not matching")
|
|
return False
|
|
|
|
if grid[char_y, char_x] == " ":
|
|
# check for vertical neighbors:
|
|
if char_y - 1 >= 0 and grid[char_y - 1, char_x] != " ":
|
|
# print("1")
|
|
return False
|
|
if char_y + 1 < grid.shape[0] and grid[char_y + 1, char_x] != " ":
|
|
# print("2")
|
|
return False
|
|
|
|
return True
|
|
|
|
def get_crossover(word: str):
|
|
# returns Tuple of: (y,x, is_vertical?) or None
|
|
|
|
shuffled_order = list(range(len(word)))
|
|
random.shuffle(shuffled_order)
|
|
|
|
for index in shuffled_order:
|
|
# check for existing locations
|
|
char = word[index]
|
|
if char in locations:
|
|
char_locations = locations[char]
|
|
|
|
for char_loc in char_locations:
|
|
# test vertical
|
|
y = char_loc[0] - index
|
|
x = char_loc[1]
|
|
|
|
if check_if_fits(word, y, x, vertical=True):
|
|
return (y, x, True)
|
|
|
|
# test horizontal
|
|
y = char_loc[0]
|
|
x = char_loc[1] - index
|
|
|
|
if check_if_fits(word, y, x, vertical=False):
|
|
return (y, x, False)
|
|
|
|
return None
|
|
|
|
def get_solution_word(min_length=8, max_length=100):
|
|
word = get_word(min_length=min_length, max_length=max_length)
|
|
|
|
# search for matching characters in locations
|
|
locations_cpy = dict(locations)
|
|
solution_locations = []
|
|
|
|
for char in word:
|
|
if char not in locations_cpy or len(locations_cpy[char]) == 0:
|
|
# next try:
|
|
return get_solution_word(min_length=min_length, max_length=max_length)
|
|
|
|
location_candidates = locations_cpy[char]
|
|
|
|
n = len(location_candidates)
|
|
|
|
i = random.randint(0, n-1)
|
|
|
|
solution_locations.append(location_candidates[i])
|
|
del(location_candidates[i])
|
|
|
|
return solution_locations
|
|
|
|
min_shape = min(w, h, 30)
|
|
|
|
# place first word:
|
|
first_word = get_word(max_length=min_shape,
|
|
min_length=min(10, grid.shape[1] - 2))
|
|
|
|
# find random place:
|
|
x = random.randint(0, grid.shape[1] - len(first_word) - 1)
|
|
y = random.randint(0, grid.shape[0] - 1)
|
|
|
|
place_word(first_word, y, x, vertical=False)
|
|
|
|
i = 0
|
|
|
|
current_density = density()
|
|
|
|
while current_density < target_density:
|
|
word = get_word(max_length=(1 - current_density ** 0.4) * min_shape,
|
|
min_length=max(min(10, 0.5 * (1 - current_density ** 0.3) * min_shape), 2))
|
|
|
|
normalized_word = normalize_word(word)
|
|
|
|
if normalized_word in word_hints:
|
|
continue
|
|
|
|
# check if matching characters exist:
|
|
crossover = get_crossover(normalized_word)
|
|
|
|
i += 1
|
|
if i % 1000 == 0:
|
|
print(i)
|
|
if i > 1200:
|
|
break
|
|
|
|
if crossover == None:
|
|
current_density = density()
|
|
continue
|
|
|
|
y, x, is_vertical = crossover
|
|
|
|
place_word(word, y, x, is_vertical)
|
|
|
|
current_density = density()
|
|
|
|
solution_word_locations = get_solution_word()
|
|
|
|
logging.info("crossword generation done after %s iterations", str(i))
|
|
return grid, word_hints, solution_word_locations
|