{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Evolutionary Algorithm" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "the Evolutionary Algorithm that is supposed to create new recipes based on the Recipe Matrices that are created during the *Recipe Analysis* step.\n", "\n", "The Population of the Evolutional Algorithm consists of a set of recipe trees. Each Recipe Tree consists of several Nodes where each node is of one of the following Types:\n", "\n", "* **Ingredient Node:**\n", " these are the leaf nodes. Containing an ingredient. The score is determined by the actions, that are applied if you follow up the path. At the Moment it measures how many duplicate actions are applied.\n", "* **Action Node:**\n", " An Action that is applied on it's child and this child's subtree. Score indicates the average likelihood that this action is applied on the ingredients inside the subtree\n", "* **Mix Node:**\n", " Mixing ingredients together. This is also the only Node that can have more than one child. The score is the average of all pairwise likelihoods that two ingredients are mixed togethter" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import sys\n", "sys.path.append(\"../\")\n", "sys.path.append(\"../RecipeAnalysis/\")" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "/home/jonas/.local/lib/python3.7/site-packages/ipykernel_launcher.py:39: TqdmExperimentalWarning:\n", "\n", "Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console)\n", "\n" ] } ], "source": [ "import settings\n", "\n", "import pycrfsuite\n", "\n", "import json\n", "\n", "import db.db_settings as db_settings\n", "from db.database_connection import DatabaseConnection\n", "\n", "from Tagging.conllu_generator import ConlluGenerator\n", "from Tagging.crf_data_generator import *\n", "\n", "from RecipeAnalysis.Recipe import Ingredient\n", "\n", "import ea_tools\n", "\n", "from difflib import SequenceMatcher\n", "\n", "import numpy as np\n", "\n", "import ActionGroups as AG\n", "\n", "import plotly.graph_objs as go\n", "from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot\n", "from plotly.subplots import make_subplots\n", "init_notebook_mode(connected=True)\n", "\n", "from graphviz import Digraph\n", "\n", "import itertools\n", "\n", "import random\n", "\n", "import plotly.io as pio\n", "pio.renderers.default = \"jupyterlab\"\n", "\n", "from IPython.display import Markdown, HTML, display\n", "\n", "from tqdm.autonotebook import tqdm\n", "\n", "from copy import deepcopy" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def gaussian(x, mu, sig):\n", " return 1./(np.sqrt(2.*np.pi)*sig)*np.exp(-np.power((x - mu)/sig, 2.)/2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## load adjacency matrices" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "import dill\n", "m_act = dill.load(open(\"../RecipeAnalysis/m_act.dill\", \"rb\"))\n", "m_mix = dill.load(open(\"../RecipeAnalysis/m_mix.dill\", \"rb\"))\n", "m_base_act = dill.load(open(\"../RecipeAnalysis/m_base_act.dill\", \"rb\"))\n", "m_base_mix = dill.load(open(\"../RecipeAnalysis/m_base_mix.dill\", \"rb\"))\n", "\n", "\n", "m_grouped_mix = dill.load(open(\"../RecipeAnalysis/m_grouped_mix_raw.dill\", \"rb\"))\n", "m_grouped_act = dill.load(open(\"../RecipeAnalysis/m_grouped_act_raw.dill\", \"rb\"))\n", "m_grouped_base_act = dill.load(open(\"../RecipeAnalysis/m_grouped_base_act_raw.dill\", \"rb\"))\n", "\n", "\n", "#m_act.apply_threshold(3)\n", "#m_mix.apply_threshold(3)\n", "#m_base_act.apply_threshold(5)\n", "#m_base_mix.apply_threshold(5)\n", "\n", "\n", "#c_act = m_act.get_csr()\n", "#c_mix = m_mix.get_csr()\n", "#c_base_act = m_base_act.get_csr()\n", "#c_base_mix = m_base_mix.get_csr()\n", "\n", "m_act.compile()\n", "m_mix.compile()\n", "m_base_act.compile()\n", "m_base_mix.compile()\n", "\n", "m_grouped_mix.compile()\n", "m_grouped_act.compile()\n", "m_grouped_base_act.compile()\n", "\n", "c_act = m_act._csr\n", "c_mix = m_mix._csr\n", "c_base_act = m_base_act._csr\n", "c_base_mix = m_base_mix._csr" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "c_grouped_mix = m_grouped_mix._csr\n", "c_grouped_act = m_grouped_act._csr\n", "c_grouped_base_act = m_grouped_base_act._csr" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "actions = m_act.get_labels()[0]" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "base_ingredients = m_base_mix.get_labels()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "sym_label_buffer = {}\n", "fw_label_buffer = {}\n", "bw_label_buffer = {}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### helper functions for adjacency matrices" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "def get_sym_adjacent(key, m, c):\n", " index = m._label_index[key]\n", " i1 = c[index,:].nonzero()[1]\n", " i2 = c[:,index].nonzero()[0]\n", " \n", " i = np.concatenate((i1,i2))\n", " \n", " if m in sym_label_buffer:\n", " names = sym_label_buffer[m][i]\n", " else:\n", " names = np.array(m.get_labels())\n", " sym_label_buffer[m] = names\n", " names = names[i]\n", " \n", " counts = np.concatenate((c[index, i1].toarray().flatten(), c[i2, index].toarray().flatten()))\n", " \n", " s = np.argsort(-counts)\n", " \n", " return names[s], counts[s]" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "def get_forward_adjacent(key, m, c):\n", " index = m._x_label_index[key]\n", " i = c[index,:].nonzero()[1]\n", " \n", " if m in fw_label_buffer:\n", " names = fw_label_buffer[m][i]\n", " else:\n", " names = np.array(m._y_labels)\n", " fw_label_buffer[m] = names\n", " names = names[i]\n", " \n", " \n", " counts = c[index, i].toarray().flatten()\n", " \n", " s = np.argsort(-counts)\n", " \n", " return names[s], counts[s]" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "def get_backward_adjacent(key, m, c):\n", " index = m._y_label_index[key]\n", " i = c[:,index].nonzero()[0]\n", " \n", " if m in bw_label_buffer:\n", " names = bw_label_buffer[m][i]\n", " else:\n", " names = np.array(m._x_labels)\n", " bw_label_buffer[m] = names\n", " names = names[i]\n", " \n", " \n", " counts = c[i, index].toarray().flatten()\n", " \n", " s = np.argsort(-counts)\n", " \n", " return names[s], counts[s]" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "def sym_sum(key, m, c):\n", " return np.sum(get_sym_adjacent(key,m,c)[1])\n", "\n", "def fw_sum(key, m, c):\n", " return np.sum(get_forward_adjacent(key,m,c)[1])\n", "\n", "def bw_sum(key, m, c):\n", " return np.sum(get_backward_adjacent(key,m,c)[1])" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "def to_grouped_ingredient(ing:Ingredient):\n", " groups = set()\n", " for act in ing._action_set:\n", " groups.add(AG.groups[act])\n", " grouped_ingredient = Ingredient(ing._base_ingredient)\n", " for g in groups:\n", " grouped_ingredient.apply_action(g)\n", " return grouped_ingredient" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### different score functions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### normalizations" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "def fw_normalization_factor(key, m, c, quotient_func):\n", " ia = m._x_label_index[key]\n", " \n", " occurances = c[ia,:].nonzero()[1]\n", " \n", " return 1. / quotient_func(c[ia,occurances].toarray())\n", "\n", "def bw_normalization_factor(key, m, c, quotient_func):\n", " ib = m._y_label_index[key]\n", " \n", " occurances = c[:,ib].nonzero()[0]\n", " \n", " return 1. / quotient_func(c[occurances,ib].toarray())\n", "\n", "def sym_normalization_factor(key, m, c, quotient_func):\n", " ii = m._label_index[key]\n", " \n", " fw_occurances = c[ii,:].nonzero()[1]\n", " bw_occurances = c[:,ii].nonzero()[0]\n", " \n", " return 1. / quotient_func(np.concatenate(\n", " [c[ii,fw_occurances].toarray().flatten(),\n", " c[bw_occurances,ii].toarray().flatten()]\n", " ))" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "def sym_p_a_given_b(key_a, key_b, m, c, quot_func = np.max):\n", " ia = m._label_index[key_a]\n", " ib = m._label_index[key_b]\n", " \n", " v = c[ia,ib] + c[ib,ia]\n", " \n", " return v * sym_normalization_factor(key_b, m, c, quot_func)\n", "\n", "def fw_p_a_given_b(key_a, key_b, m, c, quot_func = np.max):\n", " ia = m._x_label_index[key_a]\n", " ib = m._y_label_index[key_b]\n", " \n", " v = c[ia,ib]\n", " \n", " return v * bw_normalization_factor(key_b, m, c, quot_func)\n", "\n", "def bw_p_a_given_b(key_a, key_b, m, c, quot_func = np.max):\n", " ia = m._y_label_index[key_a]\n", " ib = m._x_label_index[key_b]\n", " \n", " v = c[ib,ia]\n", " \n", " return v * fw_normalization_factor(key_b, m, c, quot_func)\n" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "def sym_score(key_a, key_b, m, c):\n", "\n", " ia = m._label_index[key_a]\n", " ib = m._label_index[key_b]\n", " \n", " v = c[ia,ib] + c[ib,ia]\n", " \n", " if v == 0:\n", " return 0\n", " \n", " return max((v/sym_sum(key_a, m, c)), (v/sym_sum(key_b, m, c)))\n", "\n", "def asym_score(key_a, key_b, m, c):\n", " ia = m._x_label_index[key_a]\n", " ib = m._y_label_index[key_b]\n", " \n", " v = c[ia,ib]\n", " \n", " if v == 0:\n", " return 0\n", " \n", " return max(v/fw_sum(key_a, m, c), v/bw_sum(key_b, m, c))" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "def p_ingredient_unprepared(base_ing):\n", " ing = Ingredient(base_ing)\n", " base_sum = sym_sum(base_ing, m_base_mix, c_base_mix)\n", " specialized_sum = sym_sum(ing.to_json(), m_mix, c_mix)\n", " return specialized_sum / base_sum" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**new probability for preprocess ingredients:**" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "PREPARE_RATIO_THRESHOLD = 0.35\n", "HEAT_RATIO_THRESHOLD = 0.65\n", "\n", "PREPARE_SCORE_EPS = 0.1\n", "HEAT_SCORE_EPS = 0.1\n", "\n", "def prepare_ratio(ing:str):\n", " try:\n", " keys, values = m_grouped_act.get_backward_adjacent(Ingredient(ing).to_json())\n", " except KeyError:\n", " return 0\n", " action_dict = dict(zip(keys,values))\n", " if 'prepare' not in action_dict:\n", " return 0\n", " if 'heat' not in action_dict:\n", " return 1\n", " return action_dict['prepare'] / action_dict['heat']\n", "\n", "def random_prepare(ing:str):\n", " \"\"\"\n", " returns randomly a boolean value if ing should be prepared, w.r.t. the prepare_ration function\n", " \"\"\"\n", " \n", " return prepare_ratio(ing) > np.random.normal(PREPARE_RATIO_THRESHOLD,0.1)\n", "\n", "def heat_ratio(ingredient:str):\n", " try:\n", " action_set, action_weights = m_grouped_base_act.get_backward_adjacent(ingredient)\n", " except KeyError:\n", " return 0\n", " d = dict(zip(action_set, action_weights))\n", " \n", " if 'prepare' not in d:\n", " return 1\n", " if 'heat' not in d:\n", " return 0\n", " \n", " ratio = 1 - d['prepare'] / d['heat']\n", " \n", " return ratio\n", "\n", "def random_heated(ingredient:str):\n", " ratio = heat_ratio(ingredient)\n", " \n", " return ratio > np.random.normal(HEAT_RATIO_THRESHOLD,0.15)\n", "\n", "def prepare_score(ingredient:Ingredient):\n", " ing_str = ingredient._base_ingredient\n", " \n", " g_ing = to_grouped_ingredient(ingredient)\n", " \n", " ratio = prepare_ratio(ing_str)\n", " \n", " if ratio > PREPARE_RATIO_THRESHOLD + PREPARE_SCORE_EPS:\n", " if 'prepare' not in g_ing._action_set:\n", " return 0\n", " \n", " if ratio < PREPARE_RATIO_THRESHOLD - PREPARE_SCORE_EPS:\n", " if 'prepare' in g_ing._action_set:\n", " return 0\n", " \n", " return 1\n", "\n", "def heat_score(ingredient:Ingredient):\n", " ing_str = ingredient._base_ingredient\n", " \n", " g_ing = to_grouped_ingredient(ingredient)\n", " \n", " ratio = heat_ratio(ing_str)\n", " \n", " if ratio > HEAT_RATIO_THRESHOLD + HEAT_SCORE_EPS:\n", " if 'heat' not in g_ing._action_set:\n", " return 0\n", " \n", " if ratio < HEAT_RATIO_THRESHOLD - HEAT_SCORE_EPS:\n", " if 'heat' in g_ing._action_set:\n", " return 0\n", " \n", " return 1\n" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "def relative_action_rank(ingredient:str, action:str):\n", " action_set, action_weights = m_base_act.get_backward_adjacent(ingredient)\n", " if action not in action_set or len(action_set) <= 1:\n", " return 0\n", " return 1 - action_set.tolist().index(action) / (len(action_set) - 1)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "def filter_set_by_group(act_set, act_w, group):\n", " new_act_set = []\n", " new_act_w = []\n", " for i in range(len(act_set)):\n", " if act_set[i] in AG.inverse_groups[group]:\n", " new_act_set.append(act_set[i])\n", " new_act_w.append(act_w[i])\n", " return np.array(new_act_set), np.array(new_act_w)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## better normalized scores:" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "def normalized_score(key, matrix):\n", " sum_key = matrix.get_sum(key)\n", " keys, values = matrix.get_adjacent(key)\n", " normalized_values = np.array([(values[i] / matrix.get_sum(keys[i])) * (values[i] / sum_key) for i in range(len(keys))])\n", " sort = np.argsort(-normalized_values)\n", " return keys[sort], normalized_values[sort]\n", "\n", "def forward_normalized_score(key, matrix):\n", " sum_key = matrix.get_fw_sum(key)\n", " keys, values = matrix.get_forward_adjacent(key)\n", " normalized_values = np.array([(values[i] / matrix.get_bw_sum(keys[i])) * (values[i] / sum_key) for i in range(len(keys))])\n", " sort = np.argsort(-normalized_values)\n", " return keys[sort], normalized_values[sort]\n", "\n", "def backward_normalized_score(key, matrix):\n", " sum_key = matrix.get_bw_sum(key)\n", " keys, values = matrix.get_backward_adjacent(key)\n", " normalized_values = np.array([(values[i] / matrix.get_fw_sum(keys[i])) * (values[i] / sum_key) for i in range(len(keys))])\n", " sort = np.argsort(-normalized_values)\n", " return keys[sort], normalized_values[sort]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Helper class for instructions" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "class RecipeInstructionState(object):\n", " def __init__(self):\n", " self.current_step = 1\n", " self.id_to_state = {}\n", " self.instructions_by_step = {}\n", " self.step_by_nodeid = {}\n", " self.text_by_nodeid = {}\n", " self.ingredients = set()\n", " \n", " def _add_instruction(self, node_id):\n", " s = self.text_by_nodeid[node_id]\n", " self.instructions_by_step[self.current_step] = s\n", " self.step_by_nodeid[node_id] = self.current_step\n", " self.current_step += 1\n", " return self.current_step - 1\n", " \n", " def add_text(self, node_id, text, is_instruction=False, is_ingredient=False):\n", " self.text_by_nodeid[node_id] = text\n", " if is_instruction:\n", " self._add_instruction(node_id)\n", " if is_ingredient:\n", " self.ingredients.add(text)\n", " \n", " def exists_any_instruction(self, node_ids:list):\n", " \"\"\"check if any instruction exists for list of id's\n", " \"\"\"\n", " \n", " for node_id in node_ids:\n", " if node_id in self.step_by_nodeid:\n", " return True\n", " return False\n", " \n", " def to_markdown(self):\n", " \n", " md_text = \"**Ingredients**:\\n\"\n", " \n", " for ing in self.ingredients:\n", " md_text += f\" * {ing}\\n\"\n", " \n", " md_text += \"\\n\\n**Instructions**:\\n\\n\"\n", " md_text += \"| Step | Instruction |\\n\"\n", " md_text += \"| ----:|:----------- |\\n\"\n", " \n", " for step in range(1, self.current_step):\n", " md_text += f\"| {step} | {self.instructions_by_step[step]} |\\n\"\n", " \n", " return Markdown(md_text)\n", " \n", " \n", " \n", " \n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Recipe Tree\n", "### Tree Node Base Class" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "class RecipeTreeNode(object):\n", " \n", " id = 0\n", " \n", " def __init__(self, name, constant=False, single_child=False):\n", " self._constant = constant\n", " self._name = name\n", " self._parent = None\n", " \n", " self._id = str(RecipeTreeNode.id)\n", " RecipeTreeNode.id += 1\n", " \n", " self._single_child = single_child\n", " \n", " if self._single_child:\n", " self._child = None\n", " \n", " def child():\n", " return self._child\n", " \n", " def remove_child(c):\n", " assert c == self._child\n", " self._child._parent = None\n", " self._child = None\n", " \n", " def childs():\n", " c = self.child()\n", " if c is None:\n", " return set()\n", " return set([c])\n", " \n", " def add_child(n):\n", " self._child = n\n", " n._parent = self\n", " \n", " self.child = child\n", " self.childs = childs\n", " self.add_child = add_child\n", " self.remove_child = remove_child\n", " else:\n", " self._childs = set()\n", " \n", " def childs():\n", " return self._childs\n", " \n", " def add_child(n):\n", " self._childs.add(n)\n", " n._parent = self\n", " \n", " def remove_child(c):\n", " assert c in self._childs\n", " c._parent = None\n", " self._childs.remove(c)\n", " \n", " self.childs = childs\n", " self.add_child = add_child\n", " self.remove_child = remove_child\n", " \n", " def parent(self):\n", " return self._parent\n", " \n", " def root(self):\n", " if self._parent is None:\n", " return self\n", " return self._parent.root()\n", " \n", " def name(self):\n", " return self._name\n", " \n", " def traverse(self):\n", " l = []\n", " \n", " for c in self.childs():\n", " l += c.traverse()\n", " \n", " return [self] + l\n", " \n", " def traverse_ingredients(self):\n", " ingredient_set = []\n", " for c in self.childs():\n", " ingredient_set += c.traverse_ingredients()\n", " \n", " return ingredient_set\n", " \n", " def remove(self):\n", " p = self.parent()\n", " childs = self.childs().copy()\n", " \n", " assert p is None or not (len(childs) > 1 and p._single_child)\n", " \n", " for c in childs:\n", " self.remove_child(c)\n", " \n", " if p is not None:\n", " p.remove_child(self)\n", " \n", " if self._single_child and self._child is not None and p._name == self._child._name:\n", " # two adjacent nodes with same name would remain after deletion.\n", " # merge them! (by adding the child's childs to our parent instead of our childs)\n", " childs = self._child.childs()\n", " self._child.remove()\n", " \n", " \n", " for c in childs:\n", " p.add_child(c)\n", " \n", " def insert_before(self, n):\n", " p = self._parent\n", " if p is not None:\n", " p.remove_child(self)\n", " p.add_child(n)\n", " n.add_child(self)\n", " \n", " def mutate(self):\n", " n_node = self.n_node_mutate_options()\n", " n_edge = self.n_edge_mutate_options()\n", " \n", " choice = random.choice(range(n_node + n_edge))\n", " if choice < n_node:\n", " self.mutate_node()\n", " else:\n", " self.mutate_edges()\n", " \n", " def mutate_edges(self):\n", " ings = self.traverse_ingredients()\n", " ing = random.choice(ings)\n", " \n", " a, w = get_backward_adjacent(ing._base_ingredient, m_base_act, c_base_act)\n", " \n", " if len(a) > 0:\n", " \n", " action = ea_tools.wheel_of_fortune_selection(a,w)\n", " self.insert_before(ActionNode(action))\n", " \n", " else:\n", " print(\"Warning: cannot find matching action node for mutation\")\n", " \n", " def mutate_node(self):\n", " raise NotImplementedError\n", " \n", " def n_node_mutate_options(self):\n", " \n", " return 0 if self._constant else 1\n", " \n", " def n_edge_mutate_options(self):\n", " n = 1 if self._parent is not None else 0\n", " return n\n", " \n", " def n_mutate_options(self):\n", " return self.n_edge_mutate_options() + self.n_node_mutate_options()\n", " \n", " def dot_node(self, dot):\n", " raise NotImplementedError()\n", " \n", " def dot(self, d=None):\n", " if d is None:\n", " d = Digraph()\n", " self.dot_node(d)\n", " \n", " else:\n", " self.dot_node(d)\n", " if self._parent is not None:\n", " d.edge(self._parent._id, self._id)\n", " \n", " \n", " for c in self.childs():\n", " c.dot(d)\n", " \n", " return d\n", " \n", " def simplify(self):\n", " # simplify nodes (mainly used to delete doubled Mix Nodes)\n", " for c in self.childs().copy():\n", " c.simplify()\n", " \n", " def serialize(self):\n", " r = {}\n", " r['type'] = str(self.__class__.__name__)\n", " r['id'] = self._id\n", " r['parent'] = self._parent._id if self._parent is not None else None\n", " r['name'] = self._name\n", " r['childs'] = [c._id for c in self.childs()]\n", " r['constant'] = self._constant\n", " r['single_child'] = self._single_child\n", " \n", " return r\n", " \n", " def node_score(self):\n", " raise NotImplementedError()\n", " \n", " def to_instruction(self, state:RecipeInstructionState):\n", " # create an instruction out of a recipe Tree\n", " raise NotImplementedError()\n", " \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Mix Node" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For the Node Score: just make a simple lookup whether this combination is seen or not. So the node Score is defined as:\n" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "class MixNode(RecipeTreeNode):\n", " def __init__(self, constant=False):\n", " super().__init__(\"mix\", constant, single_child=False)\n", " \n", " def dot_node(self, dot):\n", " dot.node(self._id, label=f\"< {self._name}
node score: {self.node_score():.4f}>\", shape=\"diamond\", style=\"filled\", color=\"#d5e8d4\")\n", " \n", " def split(self, set_above, set_below, node_between):\n", " assert len(set_above.difference(self.childs())) == 0\n", " assert len(set_below.difference(self.childs())) == 0\n", " \n", " n_above = MixNode()\n", " n_below = MixNode()\n", " \n", " p = self.parent()\n", " \n", " for c in self.childs().copy():\n", " self.remove_child(c)\n", " self.remove()\n", " \n", " for c in set_below:\n", " n_below.add_child(c)\n", " \n", " for c in set_above:\n", " n_above.add_child(c)\n", " \n", " n_above.add_child(node_between)\n", " node_between.add_child(n_below)\n", " \n", " if p is not None:\n", " p.add_child(n_above)\n", " \n", " # test whether the mix nodes are useless\n", " if len(n_above.childs()) == 1:\n", " n_above.remove()\n", " \n", " if len(n_below.childs()) == 1:\n", " n_below.remove()\n", " \n", " def n_node_mutate_options(self):\n", " return 0 if self._constant or len(self.childs()) <= 2 else len(self.childs())\n", " \n", " def mutate_node(self):\n", " \n", " childs = self.childs()\n", " \n", " if len(childs) <= 2:\n", " print(\"Warning: cannot modify mix node\")\n", " return\n", " \n", " childs = random.sample(childs, len(childs))\n", " \n", " n = random.choice(range(1, len(childs)-1))\n", " \n", " ings = self.traverse_ingredients()\n", " ing = random.choice(ings)\n", " \n", " base_ing = ing._base_ingredient\n", " act = None\n", " try:\n", " a, w = m_base_act.get_backward_adjacent(base_ing)\n", " act = ea_tools.wheel_of_fortune_selection(a,w)\n", " except ValueError:\n", " print(\"Warning: cannot mutate given node\")\n", " \n", " if act is not None:\n", " between_node = ActionNode(act)\n", "\n", " self.split(set(childs[:n]), set(childs[n:]), between_node)\n", " \n", " \n", " def node_score(self):\n", " child_ingredients = [c.traverse_ingredients() for c in self.childs()]\n", " \n", " tmp_set = set()\n", " cumulative_sets = []\n", " \n", " pairwise_tuples = []\n", " \n", " for c in child_ingredients:\n", " if len(tmp_set) > 0:\n", " cumulative_sets.append(tmp_set)\n", " pairwise_tuples += [x for x in itertools.product(tmp_set, c)]\n", " tmp_set = tmp_set.union(set(c))\n", " \n", " s_base = 0\n", " s = 0\n", " \n", " for ing_a, ing_b in pairwise_tuples:\n", " try:\n", " #s_base += sym_score(ing_a._base_ingredient, ing_b._base_ingredient, m_base_mix, c_base_mix)\n", " \n", " #s += sym_score(ing_a.to_json(), ing_b.to_json(), m_mix, c_mix)\n", " \n", " # old method:\n", " #p1 = sym_p_a_given_b(ing_a.to_json(), ing_b.to_json(), m_mix, c_mix)\n", " #p2 = sym_p_a_given_b(ing_b.to_json(), ing_a.to_json(), m_mix, c_mix)\n", " #s += 0.5 * p1 + 0.5 * p2\n", " \n", " #grouped_ing_a = to_grouped_ingredient(ing_a)\n", " #grouped_ing_b = to_grouped_ingredient(ing_b)\n", " \n", " #ia = m_grouped_mix._label_index[grouped_ing_a.to_json()]\n", " #ib = m_grouped_mix._label_index[grouped_ing_b.to_json()]\n", " \n", " #if c_grouped_mix[ia,ib] > 0 or c_grouped_mix[ib,ia] > 0:\n", " # s += 1\n", " \n", " ia = m_mix._label_index[ing_a.to_json()]\n", " ib = m_mix._label_index[ing_b.to_json()]\n", " \n", " if c_mix[ia,ib] > 0 or c_mix[ib,ia] > 0:\n", " s += 1\n", " \n", " \n", " \n", " except KeyError as e:\n", " pass\n", " \n", " #s_base /= len(pairwise_tuples)\n", " s /= len(pairwise_tuples)\n", " \n", " #return 0.5 * (s_base + s)\n", " return s\n", " \n", " def simplify(self):\n", " for c in self.childs().copy():\n", " c.simplify()\n", " \n", " # if our parent is also a Mix Node, we can just delete ourselve\n", " p = self.parent()\n", " \n", " if p is not None:\n", " if type(p) == MixNode:\n", " # just delete ourselve\n", " self.remove()\n", " \n", " def to_instruction(self, state:RecipeInstructionState = None):\n", " \"\"\"\n", " returns a RecipeInstructionState\n", " \"\"\"\n", " \n", " def english_enum(items, use_and=True):\n", " if len(items) > 1 and use_and:\n", " return \", \".join(items[:-1]) + \" and \" + items[-1]\n", " return \", \".join(items)\n", " \n", " if state is None:\n", " state = RecipeInstructionState()\n", " \n", " for c in self.childs():\n", " c.to_instruction(state)\n", " \n", " \n", " text = \"\"\n", " \n", " # children with instructions\n", " instruction_childs = []\n", " \n", " # children without instructions\n", " base_childs = []\n", " \n", " # childre without instructions that are ingredients\n", " ingredient_childs = []\n", " \n", " for c in self.childs():\n", " assert type(c) != MixNode\n", " if type(c) == IngredientNode:\n", " ingredient_childs.append(c)\n", " elif c._id not in state.step_by_nodeid:\n", " # action node with no step so far, so a base child\n", " base_childs.append(c)\n", " else:\n", " instruction_childs.append(c)\n", " \n", " if len(base_childs) > 0:\n", " use_and= len(ingredient_childs)==0 and len(instruction_childs)==0\n", " text = english_enum([state.text_by_nodeid[c._id] for c in base_childs], use_and=use_and)\n", " \n", " \n", " if len(ingredient_childs) > 0:\n", " if len(base_childs) > 0:\n", " text += \" and mix it with \" + english_enum([state.text_by_nodeid[c._id] for c in ingredient_childs])\n", " \n", " else:\n", " text = \"Mix \" + english_enum([state.text_by_nodeid[c._id] for c in ingredient_childs])\n", " \n", " if len(instruction_childs) > 0:\n", " if len(base_childs) == 0 and len(ingredient_childs) == 0:\n", " text = \"Mix together the results of \"\n", " else:\n", " text += \" and mix it together with the results of \"\n", " \n", " text += english_enum([f\"step {state.step_by_nodeid[c._id]}\" for c in instruction_childs])\n", " \n", " text += \".\"\n", " \n", " if type(self.parent()) == ActionNode:\n", " state.add_text(self._id, text, is_instruction=False)\n", " else:\n", " state.add_text(self._id, text, is_instruction=True)\n", " \n", " \n", " return state\n", " \n", " \n", " \n", " \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Ingredient Node Class" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "n_wanted_actions = 2\n", "gaussian_normalize_factor = 1 / gaussian(n_wanted_actions, n_wanted_actions, 1)\n", "\n", "class IngredientNode(RecipeTreeNode):\n", " def __init__(self, name, constant=False):\n", " super().__init__(name, constant, single_child=True)\n", " \n", " def get_actions(self):\n", " a_list = []\n", " n = self.parent()\n", " while n is not None:\n", " if type(n) == ActionNode:\n", " a_list.append(n.name())\n", " n = n.parent()\n", " return a_list\n", " \n", " def mutate_node(self):\n", " if self._constant:\n", " return\n", " mixes, weights = m_base_mix.get_adjacent(self._name)\n", " self._name = ea_tools.wheel_of_fortune_selection(mixes, weights)\n", " \n", " #self._name = random.choice(base_ingredients)\n", " #TODO: change w.r.t. mixing probabilities \n", " \n", " def traverse_ingredients(self):\n", " return [Ingredient(self._name)]\n", " \n", " def duplicate_actions_score(self, actions):\n", " \n", " if len(actions) == 0:\n", " return 1\n", " \n", " seen_actions = set()\n", " n_duplicates = 0\n", " for act in actions:\n", " if act in seen_actions:\n", " n_duplicates += 1\n", " else:\n", " seen_actions.add(act)\n", " \n", " duplicate_actions_score = len(seen_actions) / len(actions)\n", " \n", " return duplicate_actions_score\n", " \n", " def duplicate_groups_score(self, actions):\n", " if len(actions) == 0:\n", " return 1\n", " groups = [AG.groups[a] for a in actions]\n", " groups_set = set(groups)\n", " \n", " return len(groups_set) / len(groups)\n", " \n", " def node_score(self):\n", " actions = self.get_actions()\n", " \n", " ing = Ingredient(self._name)\n", " for a in actions:\n", " ing.apply_action(a)\n", " \n", " heat = heat_score(ing)\n", " prepare = prepare_score(ing)\n", " \n", " score = (heat + prepare) / 2\n", " score *= self.duplicate_actions_score(actions)\n", " \n", " return score\n", " \n", " \"\"\"\n", " actions = self.get_actions()\n", " \n", " if len(actions) == 0:\n", " if p_ingredient_unprepared(self._name) < 0.2:\n", " return 0\n", " return 1\n", " \n", " seen_actions = set()\n", " n_duplicates = 0\n", " for act in actions:\n", " if act in seen_actions:\n", " n_duplicates += 1\n", " else:\n", " seen_actions.add(act)\n", " \n", " duplicate_actions_score = len(seen_actions) / len(actions)\n", " \n", " return duplicate_actions_score\n", " \"\"\"\n", " \n", " \n", " def dot_node(self, dot):\n", " dot.node(self._id, label=f\"< {self._name}
node score:{self.node_score():.4f}>\", shape=\"box\", style=\"filled\", color=\"#ffe6cc\")\n", " \n", " def to_instruction(self, state:RecipeInstructionState = None):\n", " state.add_text(self._id, self._name, is_instruction=False, is_ingredient=True)\n", " return state" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Action Node Class" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "class ActionNode(RecipeTreeNode):\n", " def __init__(self, name, constant=False):\n", " super().__init__(name, constant, single_child=True)\n", " \n", " def n_node_mutate_options(self):\n", " # beacause we can change or remove ourselve!\n", " return 0 if self._constant else 2 \n", " def mutate_node(self):\n", " if random.choice(range(2)) == 0:\n", " # change action\n", " ings = self.traverse_ingredients()\n", " ing = np.random.choice(ings)\n", " base_ing = ing._base_ingredient\n", " try:\n", " a, w = m_base_act.get_backward_adjacent(base_ing)\n", " self._name = ea_tools.wheel_of_fortune_selection(a,w)\n", " except ValueError:\n", " print(\"Warning: cannot mutate given node\")\n", " else:\n", " # delete\n", " self.remove()\n", " \n", " def traverse_ingredients(self):\n", " ingredient_set = super().traverse_ingredients()\n", " for ing in ingredient_set:\n", " ing.apply_action(self._name)\n", " \n", " return ingredient_set\n", " \n", " def node_score(self):\n", " ings = self.child().traverse_ingredients()\n", " \n", " s = 0\n", " \n", " for ing in ings:\n", " try:\n", " \n", " i_act = m_act._x_label_index[self.name()]\n", " i_ing = m_act._y_label_index[ing.to_json()]\n", " \n", " if c_act[i_act,i_ing] > 0:\n", " s += 1\n", " \n", " except KeyError as e:\n", " #print(f\"WARNING: no entry found for: {str(e)}\")\n", " pass\n", " \n", " ''' # old method:\n", " for ing in ings:\n", " try:\n", " #score = asym_score(self._name, ing.to_json(), m_act, c_act)\n", " #base_score = asym_score(self._name, ing._base_ingredient, m_base_act, c_base_act)\n", " \n", " score = fw_p_a_given_b(self._name, ing._base_ingredient, m_base_act, c_base_act)\n", " \n", " s += score\n", " except KeyError as e:\n", " pass\n", " '''\n", " \n", " \n", " return s / len(ings)\n", " \n", " def dot_node(self, dot):\n", " dot.node(self._id, label=f\"< {self._name}
node score: {self.node_score():.4f}>\", shape=\"ellipse\", style=\"filled\", color=\"#dae8fc\")\n", " \n", " def to_instruction(self, state:RecipeInstructionState = None):\n", " \n", " if state is None:\n", " state = RecipeInstructionState()\n", " \n", " for c in self.childs():\n", " c.to_instruction(state)\n", " \n", " c = self._child\n", " \n", " if type(c) == MixNode:\n", " text = state.text_by_nodeid[c._id] + f\" Then {self._name} it.\"\n", " state.add_text(self._id, text, True)\n", " elif type(c) == IngredientNode:\n", " text = f\"{self._name} {state.text_by_nodeid[c._id]}\"\n", " state.add_text(self._id, text, False)\n", " \n", " elif type(c) == ActionNode:\n", " if c._id in state.step_by_nodeid:\n", " text = f\"{self._name} the result of step {state.step_by_nodeid[c._id]}\"\n", " else:\n", " prev_words = state.text_by_nodeid[c._id].split()\n", " text = f\"{prev_words[0]} and {self._name} {' '.join(prev_words[1:])}\"\n", " state.add_text(self._id, text, True)\n", " \n", " return state\n", " \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Tree Class" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "class Tree(object):\n", " @staticmethod\n", " def build_initial_tree(ingredients: list, main_ingredients: list, max_n = 20, wheel_turns = 2):\n", " \n", " assert set(main_ingredients).issubset(set(ingredients))\n", "\n", " def does_action_match(ingredient:str, action:str, t = 0.6):\n", " return relative_action_rank(ingredient, action) > t\n", "\n", "\n", " # choose randomly an action for each ingredient by the \"wheel of fortune\" method\n", " actions_for_ing = {}\n", " for ing in ingredients:\n", " actions_for_ing[ing] = set()\n", " action_set, action_weights = m_base_act.get_backward_adjacent(ing)\n", " if random_heated(ing):\n", " #print(action_set)\n", " action_set, action_weights = filter_set_by_group(action_set, action_weights, \"heat\")\n", " #print(action_set)\n", " for i in range(wheel_turns):\n", " if ing in main_ingredients:\n", " # if main ingredient: choose by action probability\n", " w = np.array(list(action_weights), dtype=float)\n", " w *= (1.0 / np.sum(w))\n", " action = np.random.choice(list(action_set), size=1, replace=False, p=w)[0]\n", " else:\n", " # else: choose rank based\n", " action = ea_tools.wheel_of_fortune_selection(action_set[:max_n], action_weights[:max_n])\n", " actions_for_ing[ing].add(action)\n", " #print(f\"action {action} for ing {ing}\")\n", " #print(ing, action)\n", "\n", " # create ingredient nodes:\n", " ingredient_nodes = {}\n", "\n", " # create ingredient nodes:\n", " for ing in ingredients:\n", " new_node = IngredientNode(ing, constant=False)\n", "\n", " # check if we should do a preparation step\n", " if random_prepare(ing):\n", " # choose a preparation cooking action\n", " action_set, action_weights = m_act.get_backward_adjacent(Ingredient(ing).to_json())\n", " action_set, action_weights = filter_set_by_group(action_set, action_weights, \"prepare\")\n", " if len(action_set) > 0:\n", " action = ea_tools.wheel_of_fortune_selection(action_set[:max_n], action_weights[:max_n])\n", " act_node = ActionNode(action)\n", " act_node.add_child(new_node)\n", " new_node = act_node\n", "\n", "\n", " ingredient_nodes[ing] = new_node\n", "\n", " # starting now with the actions found for the main ingredients and try to match all ingredients together\n", " # with that:\n", "\n", " unprocessed_ings = set(filter(lambda x: len(actions_for_ing[x]) > 0, ingredients))\n", " unprocessed_main_ings = set(filter(lambda x: len(actions_for_ing[x]) > 0, main_ingredients))\n", "\n", " while len(unprocessed_main_ings) > 0:\n", " main_ing = unprocessed_main_ings.pop()\n", "\n", " # random action for that ing:\n", " act = actions_for_ing[main_ing].pop()\n", "\n", " act_node = ActionNode(act)\n", " mix_node = MixNode()\n", " mix_node.add_child(ingredient_nodes[main_ing])\n", " act_node.add_child(mix_node)\n", " ingredient_nodes[main_ing] = act_node\n", "\n", " unprocessed_ings.remove(main_ing)\n", "\n", " for ing in unprocessed_ings.copy():\n", " if does_action_match(ing, act):\n", " mix_node.add_child(ingredient_nodes[ing])\n", " ingredient_nodes[ing] = act_node\n", " unprocessed_ings.remove(ing)\n", " if ing in unprocessed_main_ings:\n", " unprocessed_main_ings.remove(ing)\n", "\n", " if len(mix_node.childs()) == 1:\n", " mix_node.remove()\n", "\n", " # now make the same with all remaining ingredients:\n", " while len(unprocessed_ings) > 0:\n", " current_ing = unprocessed_ings.pop() \n", "\n", " # random action for that ing:\n", " act = actions_for_ing[current_ing].pop()\n", "\n", " act_node = ActionNode(act)\n", " mix_node = MixNode()\n", " mix_node.add_child(ingredient_nodes[current_ing])\n", " act_node.add_child(mix_node)\n", "\n", " ingredient_nodes[current_ing] = act_node\n", "\n", "\n", " for ing in unprocessed_ings.copy():\n", " if does_action_match(ing, act):\n", " mix_node.add_child(ingredient_nodes[ing])\n", " ingredient_nodes[ing] = act_node\n", " unprocessed_ings.remove(ing)\n", "\n", " if len(mix_node.childs()) == 1:\n", " mix_node.remove()\n", "\n", "\n", " root_layer = set([n.root() for n in ingredient_nodes.values()])\n", "\n", " root_layer_without_parents = []\n", " for node in root_layer:\n", " if node.parent() is None:\n", " root_layer_without_parents.append(node)\n", "\n", " if len(root_layer_without_parents) == 1:\n", " root_node = root_layer_without_parents[0]\n", "\n", " else:\n", " root_node = MixNode()\n", " for r in root_layer_without_parents:\n", " root_node.add_child(r)\n", " \n", " return root_node\n", "\n", "\n", " \n", " @staticmethod\n", " def find_ingredients(constant_ingredients, main_ingredients, min_additional:int, max_additional:int, top_ings:int=3, ing_range=50):\n", " '''\n", " create an initial set of ingredients, based on given constant ingredients.\n", " min_additional and max_additional gives the range of ingredients that are added to our set\n", " '''\n", " \n", " seen_items = set(constant_ingredients)\n", "\n", " items = []\n", " scores = []\n", "\n", " assert set(main_ingredients).issubset(set(constant_ingredients))\n", "\n", " # additional ingredients are choosen w.r.t all given ingredients\n", " n_additional_ings = np.random.randint(min_additional, max_additional + 1)\n", "\n", " # extra ings are ingredients choosen specially for the main ingredient\n", " n_extra_ings = int((len(main_ingredients) / len(constant_ingredients)) * n_additional_ings)\n", "\n", " if n_extra_ings > n_additional_ings:\n", " n_extra_ings = n_additional_ings\n", "\n", "\n", " # choose extra ingredients\n", " extra_candidates = []\n", " extra_weights = []\n", "\n", " for ing in main_ingredients:\n", " candidates, weights = normalized_score(ing, m_base_mix)\n", " extra_candidates.append(candidates[:ing_range])\n", " extra_weights.append(weights[:ing_range])\n", "\n", " extra_ingredients = ea_tools.combined_wheel_of_fortune_selection(extra_candidates,\n", " extra_weights,\n", " n_extra_ings)\n", "\n", " for ing in constant_ingredients:\n", " # find best matching ingredients\n", " best_items = []\n", " best_scores = []\n", "\n", " candidates, weights = m_base_mix.get_adjacent(ing)\n", " i = 0\n", " while i < len(candidates) and len(best_items) < top_ings:\n", " if candidates[i] not in seen_items:\n", " best_items.append(candidates[i])\n", " best_scores.append(weights[i])\n", " i += 1\n", "\n", " items.append(best_items)\n", " scores.append(best_scores)\n", "\n", " #TODO: error handling if too few options are availabale!\n", "\n", " additional_ingredients = ea_tools.combined_wheel_of_fortune_selection(items,\n", " scores,\n", " n_additional_ings - n_extra_ings)\n", " \n", " return list(constant_ingredients) + list(additional_ingredients) + list(extra_ingredients)\n", "\n", " @staticmethod\n", " def from_ingredients(ingredients: list, main_ingredients: list, min_additional=0, max_additional=10):\n", " root = None\n", " \n", " constant_ingredients = ingredients\n", " \n", " if max_additional > 0:\n", " ingredients = Tree.find_ingredients(ingredients, main_ingredients, min_additional=min_additional, max_additional=max_additional)\n", " \n", " \n", " root = Tree.build_initial_tree(ingredients, main_ingredients)\n", " \n", " # mark initial ingredient nodes as constant:\n", " nodes = root.traverse()\n", " for node in nodes:\n", " if type(node) == IngredientNode:\n", " if node.name() in constant_ingredients:\n", " node._constant = True\n", " \n", " return Tree(root)\n", " \n", " @staticmethod\n", " def from_serialization(s):\n", " def empty_node(raw_n):\n", " if raw_n['type'] == \"MixNode\":\n", " node = MixNode(raw_n['constant'])\n", " elif raw_n['type'] == \"IngredientNode\":\n", " node = IngredientNode(raw_n['name'], raw_n['constant'])\n", " elif raw_n['type'] == \"ActionNode\":\n", " node = ActionNode(raw_n['name'], raw_n['constant'])\n", " else:\n", " print(\"unknown node detected\")\n", " return\n", " \n", " return node\n", " \n", " nodes = {}\n", " for n in s:\n", " nodes[n['id']] = empty_node(n)\n", " \n", " for n in s:\n", " childs = n['childs']\n", " id = n['id']\n", " for c in childs:\n", " nodes[id].add_child(nodes[c])\n", " \n", " return Tree(nodes[s[0]['id']])\n", " \n", " \n", " def __init__(self, root, main_ingredients=None):\n", " # create a dummy entry node\n", " self._root = RecipeTreeNode(\"root\", single_child=True)\n", " self._root.add_child(root)\n", " self._touched = True\n", " self._main_ingredients = main_ingredients\n", " \n", " def root(self):\n", " return self._root.child()\n", " \n", " def mutate(self):\n", " self._touched = True\n", " nodes = self.root().traverse()\n", " weights = [n.n_mutate_options() for n in nodes]\n", " \n", " n = random.choices(nodes, weights)[0]\n", " \n", " n.mutate()\n", " \n", " # check for simplification after modification\n", " self.root().simplify()\n", " \n", " def dot(self):\n", " return self.root().dot()\n", " \n", " def serialize(self):\n", " return [n.serialize() for n in self.root().traverse()]\n", " \n", " def structure_score(self):\n", " n_duplicates = 0\n", " \n", " \n", " def collect_scores(self):\n", " self._mix_scores = []\n", " self._act_scores = []\n", " self._ing_scores = []\n", " \n", " nodes = self.root().traverse()\n", " self._n_mix_nodes = 0\n", " self._n_act_nodes = 0\n", " self._n_ing_nodes = 0\n", " \n", " s = 0\n", " for n in nodes:\n", " if type(n) == MixNode:\n", " self._mix_scores.append(n.node_score())\n", " self._n_mix_nodes += 1\n", " if type(n) == ActionNode:\n", " self._act_scores.append(n.node_score())\n", " self._n_act_nodes += 1\n", " if type(n) == IngredientNode:\n", " self._ing_scores.append(n.node_score())\n", " self._n_ing_nodes += 1\n", " \n", " seen_ingredients = set()\n", " self._n_duplicates = 0\n", " \n", " for n in nodes:\n", " if type(n) == IngredientNode:\n", " if n.name() in seen_ingredients:\n", " self._n_duplicates += 1\n", " else:\n", " seen_ingredients.add(n.name())\n", " \n", " self._mix_scores = np.array(self._mix_scores)\n", " self._act_scores = np.array(self._act_scores)\n", " self._ing_scores = np.array(self._ing_scores)\n", " \n", " \n", " def mix_scores(self):\n", " return self._mix_scores\n", " \n", " def action_scores(self):\n", " return self._act_scores\n", " \n", " def ing_scores(self):\n", " return self._ing_scores\n", " \n", " def main_ingredient_score(self):\n", " if self._main_ingredients is None:\n", " return 1\n", " \n", " ings = self.root().traverse_ingredients()\n", " \n", " actions_for_ing = {}\n", " score_for_ing = {}\n", " \n", " for ing in ings:\n", " if ing._base_ingredient in self._main_ingredients:\n", " actions_for_ing[ing._base_ingredient] = ing._action_set\n", " score_for_ing[ing._base_ingredient] = 0\n", " \n", " for ing in self._main_ingredients:\n", " for act in actions_for_ing[ing]:\n", " s = fw_p_a_given_b(act, ing, m_base_act, c_base_act)\n", " if s > 0.5:\n", " score_for_ing[ing] = 1\n", " \n", " return sum([score_for_ing[ing] for ing in self._main_ingredients]) / len(self._main_ingredients)\n", " \n", " \n", " def score(self):\n", " if not self._touched:\n", " return self._score\n", " \n", " self.collect_scores()\n", " s_mix = self.mix_scores()\n", " s_act = self.action_scores()\n", " s_ing = self.ing_scores()\n", " \n", " n = len(s_mix) + len(s_act) + len(s_ing)\n", " \n", " avg_mix = np.average(s_mix) if len(s_mix) > 0 else 1\n", " avg_act = np.average(s_act) if len(s_act) > 0 else 1\n", " avg_ing = np.average(s_ing) if len(s_ing) > 0 else 1\n", " \n", " sum_mix = np.sum(s_mix) if len(s_mix) > 0 else 0\n", " sum_act = np.sum(s_act) if len(s_act) > 0 else 0\n", " sum_ing = np.sum(s_ing) if len(s_ing) > 0 else 0\n", " \n", " self._touched = False\n", " \n", " # boost creativity\n", " if len(s_act) < 3:\n", " self._score = 0\n", " elif len(s_ing) < 3:\n", " self._score = 0\n", " else: \n", " self._score = (sum_mix + sum_act + sum_ing) / n\n", " self._score *= (len(s_ing) - self._n_duplicates) / len(s_ing)\n", " #self._score = 0.95 * self._score + 0.05 * self.main_ingredient_score()\n", "\n", " return self._score\n", " \n", " def copy(self):\n", " return Tree.from_serialization(self.serialize())\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Population" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "class Population(object):\n", " def __init__(self, start_ingredients, main_ingredients, n_population = 50, min_additional=0, max_additional=15, mutations=3):\n", " self.population = []\n", " for i in tqdm(range(n_population), desc=\"build initial population\"):\n", " self.population.append(Tree.from_ingredients(start_ingredients, main_ingredients, min_additional=min_additional, max_additional=max_additional))\n", " self._n = n_population\n", " self._n_mutations = mutations\n", " \n", " def mutate(self):\n", " for tree in self.population.copy():\n", " t_clone = tree.copy()\n", " for i in range(self._n_mutations):\n", " t_clone.mutate()\n", " #t_clone.mutate()\n", " #t_clone.mutate()\n", " self.population.append(t_clone)\n", " \n", " def pairwise_competition(self):\n", " new_population = []\n", " indices = list(range(len(self.population)))\n", " random.shuffle(indices)\n", " \n", " for i in range(len(self.population) // 2):\n", " i_a = indices[2*i]\n", " i_b = indices[2*i+1]\n", " \n", " \n", " if self.population[i_a].score() > self.population[i_b].score():\n", " new_population.append(self.population[i_a])\n", " else:\n", " new_population.append(self.population[i_b])\n", " \n", " self.population = new_population\n", " \n", " def hold_best(self, n=10):\n", " scores = [tree.score() for tree in self.population]\n", " \n", " sorted_indices = np.argsort(-scores)\n", " \n", " self.population = np.array(self.population)[sorted_indices[:n]].tolist()\n", " \n", " def run(self, n=50):\n", " avg_scores = []\n", " for i in tqdm(range(n), desc=\"run evolutionary cycles\"):\n", " self.mutate()\n", " #self.mutate()\n", " #self.collect_scores()\n", " \n", " self.pairwise_competition()\n", " #self.collect_scores()\n", " #self.hold_best(self._n)\n", " scores = [t.score() for t in self.population]\n", " avg_scores.append(scores)\n", " return avg_scores\n", " \n", " \n", " def plot_population(self, n_best=10):\n", " scores = [tree.score() for tree in self.population]\n", " \n", " ii = np.argsort(-np.array(scores))[:n_best]\n", "\n", " for i in ii:\n", " self.population[i].root().simplify()\n", " display(self.population[i].root().dot())\n", " display(Markdown(f\"**Recipe Score**: {scores[i]}\"))\n", " display(self.population[i].root().to_instruction().to_markdown())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Run Evolutionary Algorithm" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "636d5d3b8ea3447e82f75c61c79616dd", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, description='build initial population', max=50.0, style=ProgressStyle(…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "p = Population([\"noodle\"],['noodle'], min_additional=4, max_additional=13, n_population = 50)" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [], "source": [ "#p_ingredient_unprepared(list(p.population[0].root().childs())[0]._name) < 0.2" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "p.run(25)" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "\n", "\n", "%3\n", "\n", "\n", "\n", "6780\n", "\n", " \n", "cook\n", "node score: 1.0000\n", "\n", "\n", "\n", "6781\n", "\n", " \n", "mix\n", "node score: 0.4000\n", "\n", "\n", "\n", "6780->6781\n", "\n", "\n", "\n", "\n", "\n", "6789\n", "\n", " \n", "noodle\n", "node score:1.0000\n", "\n", "\n", "\n", "6781->6789\n", "\n", "\n", "\n", "\n", "\n", "6784\n", "\n", " \n", "milk\n", "node score:1.0000\n", "\n", "\n", "\n", "6781->6784\n", "\n", "\n", "\n", "\n", "\n", "6787\n", "\n", " \n", "tomato sauce\n", "node score:1.0000\n", "\n", "\n", "\n", "6781->6787\n", "\n", "\n", "\n", "\n", "\n", "6785\n", "\n", " \n", "chop\n", "node score: 1.0000\n", "\n", "\n", "\n", "6781->6785\n", "\n", "\n", "\n", "\n", "\n", "6788\n", "\n", " \n", "thyme\n", "node score:1.0000\n", "\n", "\n", "\n", "6781->6788\n", "\n", "\n", "\n", "\n", "\n", "6782\n", "\n", " \n", "cut\n", "node score: 1.0000\n", "\n", "\n", "\n", "6781->6782\n", "\n", "\n", "\n", "\n", "\n", "6786\n", "\n", " \n", "onion\n", "node score:1.0000\n", "\n", "\n", "\n", "6785->6786\n", "\n", "\n", "\n", "\n", "\n", "6783\n", "\n", " \n", "broccoli\n", "node score:1.0000\n", "\n", "\n", "\n", "6782->6783\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Recipe Score**: 0.9400000000000001" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Ingredients**:\n", " * onion\n", " * milk\n", " * broccoli\n", " * noodle\n", " * thyme\n", " * tomato sauce\n", "\n", "\n", "**Instructions**:\n", "\n", "| Step | Instruction |\n", "| ----:|:----------- |\n", "| 1 | chop onion, cut broccoli and mix it with noodle, milk, tomato sauce and thyme. Then cook it. |\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "\n", "\n", "%3\n", "\n", "\n", "\n", "1198\n", "\n", " \n", "cook\n", "node score: 1.0000\n", "\n", "\n", "\n", "1199\n", "\n", " \n", "mix\n", "node score: 0.3333\n", "\n", "\n", "\n", "1198->1199\n", "\n", "\n", "\n", "\n", "\n", "1197\n", "\n", " \n", "cut\n", "node score: 1.0000\n", "\n", "\n", "\n", "1199->1197\n", "\n", "\n", "\n", "\n", "\n", "1193\n", "\n", " \n", "milk\n", "node score:1.0000\n", "\n", "\n", "\n", "1199->1193\n", "\n", "\n", "\n", "\n", "\n", "1195\n", "\n", " \n", "chop\n", "node score: 1.0000\n", "\n", "\n", "\n", "1199->1195\n", "\n", "\n", "\n", "\n", "\n", "1191\n", "\n", " \n", "tomato sauce\n", "node score:1.0000\n", "\n", "\n", "\n", "1199->1191\n", "\n", "\n", "\n", "\n", "\n", "1192\n", "\n", " \n", "mushroom soup\n", "node score:1.0000\n", "\n", "\n", "\n", "1199->1192\n", "\n", "\n", "\n", "\n", "\n", "1190\n", "\n", " \n", "noodle\n", "node score:1.0000\n", "\n", "\n", "\n", "1199->1190\n", "\n", "\n", "\n", "\n", "\n", "1196\n", "\n", " \n", "broccoli\n", "node score:1.0000\n", "\n", "\n", "\n", "1197->1196\n", "\n", "\n", "\n", "\n", "\n", "1194\n", "\n", " \n", "onion\n", "node score:1.0000\n", "\n", "\n", "\n", "1195->1194\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Recipe Score**: 0.9333333333333333" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Ingredients**:\n", " * onion\n", " * mushroom soup\n", " * milk\n", " * broccoli\n", " * noodle\n", " * tomato sauce\n", "\n", "\n", "**Instructions**:\n", "\n", "| Step | Instruction |\n", "| ----:|:----------- |\n", "| 1 | cut broccoli, chop onion and mix it with milk, tomato sauce, mushroom soup and noodle. Then cook it. |\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "\n", "\n", "%3\n", "\n", "\n", "\n", "1682\n", "\n", " \n", "mix\n", "node score: 0.2381\n", "\n", "\n", "\n", "1680\n", "\n", " \n", "cook\n", "node score: 0.9000\n", "\n", "\n", "\n", "1682->1680\n", "\n", "\n", "\n", "\n", "\n", "1669\n", "\n", " \n", "cheese\n", "node score:1.0000\n", "\n", "\n", "\n", "1682->1669\n", "\n", "\n", "\n", "\n", "\n", "1679\n", "\n", " \n", "slice\n", "node score: 1.0000\n", "\n", "\n", "\n", "1682->1679\n", "\n", "\n", "\n", "\n", "\n", "1681\n", "\n", " \n", "mix\n", "node score: 0.4222\n", "\n", "\n", "\n", "1680->1681\n", "\n", "\n", "\n", "\n", "\n", "1668\n", "\n", " \n", "wash\n", "node score: 1.0000\n", "\n", "\n", "\n", "1681->1668\n", "\n", "\n", "\n", "\n", "\n", "1675\n", "\n", " \n", "ground beef\n", "node score:1.0000\n", "\n", "\n", "\n", "1681->1675\n", "\n", "\n", "\n", "\n", "\n", "1672\n", "\n", " \n", "seasoning\n", "node score:1.0000\n", "\n", "\n", "\n", "1681->1672\n", "\n", "\n", "\n", "\n", "\n", "1666\n", "\n", " \n", "slice\n", "node score: 1.0000\n", "\n", "\n", "\n", "1681->1666\n", "\n", "\n", "\n", "\n", "\n", "1671\n", "\n", " \n", "basil\n", "node score:1.0000\n", "\n", "\n", "\n", "1681->1671\n", "\n", "\n", "\n", "\n", "\n", "1674\n", "\n", " \n", "chop\n", "node score: 1.0000\n", "\n", "\n", "\n", "1681->1674\n", "\n", "\n", "\n", "\n", "\n", "1664\n", "\n", " \n", "noodle\n", "node score:1.0000\n", "\n", "\n", "\n", "1681->1664\n", "\n", "\n", "\n", "\n", "\n", "1670\n", "\n", " \n", "water\n", "node score:1.0000\n", "\n", "\n", "\n", "1681->1670\n", "\n", "\n", "\n", "\n", "\n", "1676\n", "\n", " \n", "mushroom soup\n", "node score:1.0000\n", "\n", "\n", "\n", "1681->1676\n", "\n", "\n", "\n", "\n", "\n", "1677\n", "\n", " \n", "salt\n", "node score:1.0000\n", "\n", "\n", "\n", "1681->1677\n", "\n", "\n", "\n", "\n", "\n", "1667\n", "\n", " \n", "broccoli\n", "node score:1.0000\n", "\n", "\n", "\n", "1668->1667\n", "\n", "\n", "\n", "\n", "\n", "1665\n", "\n", " \n", "green onion\n", "node score:1.0000\n", "\n", "\n", "\n", "1666->1665\n", "\n", "\n", "\n", "\n", "\n", "1673\n", "\n", " \n", "mushroom\n", "node score:1.0000\n", "\n", "\n", "\n", "1674->1673\n", "\n", "\n", "\n", "\n", "\n", "1678\n", "\n", " \n", "tomato\n", "node score:1.0000\n", "\n", "\n", "\n", "1679->1678\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Recipe Score**: 0.9242272347535505" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Ingredients**:\n", " * water\n", " * seasoning\n", " * basil\n", " * green onion\n", " * mushroom\n", " * mushroom soup\n", " * cheese\n", " * salt\n", " * tomato\n", " * ground beef\n", " * broccoli\n", " * noodle\n", "\n", "\n", "**Instructions**:\n", "\n", "| Step | Instruction |\n", "| ----:|:----------- |\n", "| 1 | wash broccoli, slice green onion, chop mushroom and mix it with ground beef, seasoning, basil, noodle, water, mushroom soup and salt. Then cook it. |\n", "| 2 | slice tomato and mix it with cheese and mix it together with the results of step 1. |\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "\n", "\n", "%3\n", "\n", "\n", "\n", "1728\n", "\n", " \n", "bake\n", "node score: 0.8750\n", "\n", "\n", "\n", "1729\n", "\n", " \n", "mix\n", "node score: 0.2143\n", "\n", "\n", "\n", "1728->1729\n", "\n", "\n", "\n", "\n", "\n", "1727\n", "\n", " \n", "cut\n", "node score: 1.0000\n", "\n", "\n", "\n", "1729->1727\n", "\n", "\n", "\n", "\n", "\n", "1719\n", "\n", " \n", "mushroom soup\n", "node score:1.0000\n", "\n", "\n", "\n", "1729->1719\n", "\n", "\n", "\n", "\n", "\n", "1725\n", "\n", " \n", "mozzarella cheese\n", "node score:1.0000\n", "\n", "\n", "\n", "1729->1725\n", "\n", "\n", "\n", "\n", "\n", "1718\n", "\n", " \n", "noodle\n", "node score:1.0000\n", "\n", "\n", "\n", "1729->1718\n", "\n", "\n", "\n", "\n", "\n", "1722\n", "\n", " \n", "sausage\n", "node score:1.0000\n", "\n", "\n", "\n", "1729->1722\n", "\n", "\n", "\n", "\n", "\n", "1720\n", "\n", " \n", "milk\n", "node score:1.0000\n", "\n", "\n", "\n", "1729->1720\n", "\n", "\n", "\n", "\n", "\n", "1724\n", "\n", " \n", "brush\n", "node score: 1.0000\n", "\n", "\n", "\n", "1729->1724\n", "\n", "\n", "\n", "\n", "\n", "1721\n", "\n", " \n", "ground beef\n", "node score:1.0000\n", "\n", "\n", "\n", "1729->1721\n", "\n", "\n", "\n", "\n", "\n", "1726\n", "\n", " \n", "chicken\n", "node score:1.0000\n", "\n", "\n", "\n", "1727->1726\n", "\n", "\n", "\n", "\n", "\n", "1723\n", "\n", " \n", "cheese\n", "node score:1.0000\n", "\n", "\n", "\n", "1724->1723\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Recipe Score**: 0.9241071428571429" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Ingredients**:\n", " * sausage\n", " * milk\n", " * cheese\n", " * ground beef\n", " * mushroom soup\n", " * noodle\n", " * chicken\n", " * mozzarella cheese\n", "\n", "\n", "**Instructions**:\n", "\n", "| Step | Instruction |\n", "| ----:|:----------- |\n", "| 1 | cut chicken, brush cheese and mix it with mushroom soup, mozzarella cheese, noodle, sausage, milk and ground beef. Then bake it. |\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "\n", "\n", "%3\n", "\n", "\n", "\n", "1636\n", "\n", " \n", "cook\n", "node score: 1.0000\n", "\n", "\n", "\n", "1637\n", "\n", " \n", "mix\n", "node score: 0.2000\n", "\n", "\n", "\n", "1636->1637\n", "\n", "\n", "\n", "\n", "\n", "1634\n", "\n", " \n", "chop\n", "node score: 1.0000\n", "\n", "\n", "\n", "1637->1634\n", "\n", "\n", "\n", "\n", "\n", "1635\n", "\n", " \n", "water\n", "node score:1.0000\n", "\n", "\n", "\n", "1637->1635\n", "\n", "\n", "\n", "\n", "\n", "1629\n", "\n", " \n", "noodle\n", "node score:1.0000\n", "\n", "\n", "\n", "1637->1629\n", "\n", "\n", "\n", "\n", "\n", "1632\n", "\n", " \n", "chop\n", "node score: 1.0000\n", "\n", "\n", "\n", "1637->1632\n", "\n", "\n", "\n", "\n", "\n", "1630\n", "\n", " \n", "seasoning\n", "node score:1.0000\n", "\n", "\n", "\n", "1637->1630\n", "\n", "\n", "\n", "\n", "\n", "1633\n", "\n", " \n", "chicken\n", "node score:1.0000\n", "\n", "\n", "\n", "1634->1633\n", "\n", "\n", "\n", "\n", "\n", "1631\n", "\n", " \n", "mushroom\n", "node score:1.0000\n", "\n", "\n", "\n", "1632->1631\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Recipe Score**: 0.911111111111111" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Ingredients**:\n", " * water\n", " * seasoning\n", " * mushroom\n", " * noodle\n", " * chicken\n", "\n", "\n", "**Instructions**:\n", "\n", "| Step | Instruction |\n", "| ----:|:----------- |\n", "| 1 | chop chicken, chop mushroom and mix it with water, noodle and seasoning. Then cook it. |\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "\n", "\n", "%3\n", "\n", "\n", "\n", "27192\n", "\n", " \n", "mix\n", "node score: 0.0000\n", "\n", "\n", "\n", "27195\n", "\n", " \n", "mozzarella cheese\n", "node score:1.0000\n", "\n", "\n", "\n", "27192->27195\n", "\n", "\n", "\n", "\n", "\n", "27198\n", "\n", " \n", "boil\n", "node score: 0.8000\n", "\n", "\n", "\n", "27192->27198\n", "\n", "\n", "\n", "\n", "\n", "27196\n", "\n", " \n", "bake\n", "node score: 1.0000\n", "\n", "\n", "\n", "27192->27196\n", "\n", "\n", "\n", "\n", "\n", "27199\n", "\n", " \n", "mix\n", "node score: 0.3556\n", "\n", "\n", "\n", "27198->27199\n", "\n", "\n", "\n", "\n", "\n", "27207\n", "\n", " \n", "chop\n", "node score: 1.0000\n", "\n", "\n", "\n", "27199->27207\n", "\n", "\n", "\n", "\n", "\n", "27209\n", "\n", " \n", "sausage\n", "node score:1.0000\n", "\n", "\n", "\n", "27199->27209\n", "\n", "\n", "\n", "\n", "\n", "27205\n", "\n", " \n", "chop\n", "node score: 1.0000\n", "\n", "\n", "\n", "27199->27205\n", "\n", "\n", "\n", "\n", "\n", "27204\n", "\n", " \n", "red pepper\n", "node score:1.0000\n", "\n", "\n", "\n", "27199->27204\n", "\n", "\n", "\n", "\n", "\n", "27200\n", "\n", " \n", "soy sauce\n", "node score:1.0000\n", "\n", "\n", "\n", "27199->27200\n", "\n", "\n", "\n", "\n", "\n", "27212\n", "\n", " \n", "red wine\n", "node score:1.0000\n", "\n", "\n", "\n", "27199->27212\n", "\n", "\n", "\n", "\n", "\n", "27202\n", "\n", " \n", "grind\n", "node score: 1.0000\n", "\n", "\n", "\n", "27199->27202\n", "\n", "\n", "\n", "\n", "\n", "27210\n", "\n", " \n", "butter\n", "node score:1.0000\n", "\n", "\n", "\n", "27199->27210\n", "\n", "\n", "\n", "\n", "\n", "27211\n", "\n", " \n", "clove garlic\n", "node score:1.0000\n", "\n", "\n", "\n", "27199->27211\n", "\n", "\n", "\n", "\n", "\n", "27201\n", "\n", " \n", "noodle\n", "node score:1.0000\n", "\n", "\n", "\n", "27199->27201\n", "\n", "\n", "\n", "\n", "\n", "27208\n", "\n", " \n", "ground black pepper\n", "node score:1.0000\n", "\n", "\n", "\n", "27207->27208\n", "\n", "\n", "\n", "\n", "\n", "27206\n", "\n", " \n", "garlic\n", "node score:1.0000\n", "\n", "\n", "\n", "27205->27206\n", "\n", "\n", "\n", "\n", "\n", "27203\n", "\n", " \n", "garlic clove\n", "node score:1.0000\n", "\n", "\n", "\n", "27202->27203\n", "\n", "\n", "\n", "\n", "\n", "27197\n", "\n", " \n", "spaghetti sauce\n", "node score:1.0000\n", "\n", "\n", "\n", "27196->27197\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Recipe Score**: 0.9029239766081871" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Ingredients**:\n", " * sausage\n", " * garlic clove\n", " * soy sauce\n", " * red pepper\n", " * butter\n", " * spaghetti sauce\n", " * garlic\n", " * clove garlic\n", " * ground black pepper\n", " * red wine\n", " * noodle\n", " * mozzarella cheese\n", "\n", "\n", "**Instructions**:\n", "\n", "| Step | Instruction |\n", "| ----:|:----------- |\n", "| 1 | chop ground black pepper, chop garlic, grind garlic clove and mix it with sausage, red pepper, soy sauce, red wine, butter, clove garlic and noodle. Then boil it. |\n", "| 2 | bake spaghetti sauce and mix it with mozzarella cheese and mix it together with the results of step 1. |\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "\n", "\n", "%3\n", "\n", "\n", "\n", "1456\n", "\n", " \n", "mix\n", "node score: 0.0000\n", "\n", "\n", "\n", "1453\n", "\n", " \n", "garlic\n", "node score:0.5000\n", "\n", "\n", "\n", "1456->1453\n", "\n", "\n", "\n", "\n", "\n", "1454\n", "\n", " \n", "bake\n", "node score: 0.8333\n", "\n", "\n", "\n", "1456->1454\n", "\n", "\n", "\n", "\n", "\n", "1455\n", "\n", " \n", "mix\n", "node score: 0.2121\n", "\n", "\n", "\n", "1454->1455\n", "\n", "\n", "\n", "\n", "\n", "1440\n", "\n", " \n", "basil\n", "node score:1.0000\n", "\n", "\n", "\n", "1455->1440\n", "\n", "\n", "\n", "\n", "\n", "1439\n", "\n", " \n", "cut\n", "node score: 1.0000\n", "\n", "\n", "\n", "1455->1439\n", "\n", "\n", "\n", "\n", "\n", "1448\n", "\n", " \n", "cut\n", "node score: 1.0000\n", "\n", "\n", "\n", "1455->1448\n", "\n", "\n", "\n", "\n", "\n", "1434\n", "\n", " \n", "noodle\n", "node score:1.0000\n", "\n", "\n", "\n", "1455->1434\n", "\n", "\n", "\n", "\n", "\n", "1451\n", "\n", " \n", "cut\n", "node score: 1.0000\n", "\n", "\n", "\n", "1455->1451\n", "\n", "\n", "\n", "\n", "\n", "1437\n", "\n", " \n", "chop\n", "node score: 1.0000\n", "\n", "\n", "\n", "1455->1437\n", "\n", "\n", "\n", "\n", "\n", "1446\n", "\n", " \n", "rinse\n", "node score: 1.0000\n", "\n", "\n", "\n", "1455->1446\n", "\n", "\n", "\n", "\n", "\n", "1452\n", "\n", " \n", "sauce\n", "node score:1.0000\n", "\n", "\n", "\n", "1455->1452\n", "\n", "\n", "\n", "\n", "\n", "1435\n", "\n", " \n", "parsley\n", "node score:1.0000\n", "\n", "\n", "\n", "1455->1435\n", "\n", "\n", "\n", "\n", "\n", "1442\n", "\n", " \n", "chop\n", "node score: 1.0000\n", "\n", "\n", "\n", "1455->1442\n", "\n", "\n", "\n", "\n", "\n", "1444\n", "\n", " \n", "wash\n", "node score: 1.0000\n", "\n", "\n", "\n", "1455->1444\n", "\n", "\n", "\n", "\n", "\n", "1449\n", "\n", " \n", "mushroom soup\n", "node score:1.0000\n", "\n", "\n", "\n", "1455->1449\n", "\n", "\n", "\n", "\n", "\n", "1438\n", "\n", " \n", "broccoli\n", "node score:1.0000\n", "\n", "\n", "\n", "1439->1438\n", "\n", "\n", "\n", "\n", "\n", "1447\n", "\n", " \n", "cheese\n", "node score:1.0000\n", "\n", "\n", "\n", "1448->1447\n", "\n", "\n", "\n", "\n", "\n", "1450\n", "\n", " \n", "chicken\n", "node score:1.0000\n", "\n", "\n", "\n", "1451->1450\n", "\n", "\n", "\n", "\n", "\n", "1436\n", "\n", " \n", "garlic clove\n", "node score:1.0000\n", "\n", "\n", "\n", "1437->1436\n", "\n", "\n", "\n", "\n", "\n", "1445\n", "\n", " \n", "spinach\n", "node score:1.0000\n", "\n", "\n", "\n", "1446->1445\n", "\n", "\n", "\n", "\n", "\n", "1441\n", "\n", " \n", "tomato\n", "node score:1.0000\n", "\n", "\n", "\n", "1442->1441\n", "\n", "\n", "\n", "\n", "\n", "1443\n", "\n", " \n", "shrimp\n", "node score:1.0000\n", "\n", "\n", "\n", "1444->1443\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Recipe Score**: 0.8932806324110673" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Ingredients**:\n", " * garlic clove\n", " * shrimp\n", " * basil\n", " * mushroom soup\n", " * garlic\n", " * cheese\n", " * tomato\n", " * sauce\n", " * broccoli\n", " * noodle\n", " * spinach\n", " * chicken\n", " * parsley\n", "\n", "\n", "**Instructions**:\n", "\n", "| Step | Instruction |\n", "| ----:|:----------- |\n", "| 1 | cut broccoli, cut cheese, cut chicken, chop garlic clove, rinse spinach, chop tomato, wash shrimp and mix it with basil, noodle, sauce, parsley and mushroom soup. Then bake it. |\n", "| 2 | Mix garlic and mix it together with the results of step 1. |\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "\n", "\n", "%3\n", "\n", "\n", "\n", "28766\n", "\n", " \n", "cook\n", "node score: 0.8333\n", "\n", "\n", "\n", "28767\n", "\n", " \n", "mix\n", "node score: 0.1333\n", "\n", "\n", "\n", "28766->28767\n", "\n", "\n", "\n", "\n", "\n", "28775\n", "\n", " \n", "chop\n", "node score: 1.0000\n", "\n", "\n", "\n", "28767->28775\n", "\n", "\n", "\n", "\n", "\n", "28777\n", "\n", " \n", "bake\n", "node score: 1.0000\n", "\n", "\n", "\n", "28767->28777\n", "\n", "\n", "\n", "\n", "\n", "28771\n", "\n", " \n", "mushroom soup\n", "node score:1.0000\n", "\n", "\n", "\n", "28767->28771\n", "\n", "\n", "\n", "\n", "\n", "28770\n", "\n", " \n", "tomato sauce\n", "node score:1.0000\n", "\n", "\n", "\n", "28767->28770\n", "\n", "\n", "\n", "\n", "\n", "28772\n", "\n", " \n", "bake\n", "node score: 1.0000\n", "\n", "\n", "\n", "28767->28772\n", "\n", "\n", "\n", "\n", "\n", "28768\n", "\n", " \n", "drain\n", "node score: 1.0000\n", "\n", "\n", "\n", "28767->28768\n", "\n", "\n", "\n", "\n", "\n", "28776\n", "\n", " \n", "onion\n", "node score:1.0000\n", "\n", "\n", "\n", "28775->28776\n", "\n", "\n", "\n", "\n", "\n", "28778\n", "\n", " \n", "cut\n", "node score: 1.0000\n", "\n", "\n", "\n", "28777->28778\n", "\n", "\n", "\n", "\n", "\n", "28779\n", "\n", " \n", "broccoli\n", "node score:1.0000\n", "\n", "\n", "\n", "28778->28779\n", "\n", "\n", "\n", "\n", "\n", "28773\n", "\n", " \n", "bake\n", "node score: 1.0000\n", "\n", "\n", "\n", "28772->28773\n", "\n", "\n", "\n", "\n", "\n", "28774\n", "\n", " \n", "milk\n", "node score:0.6667\n", "\n", "\n", "\n", "28773->28774\n", "\n", "\n", "\n", "\n", "\n", "28781\n", "\n", " \n", "cook\n", "node score: 1.0000\n", "\n", "\n", "\n", "28768->28781\n", "\n", "\n", "\n", "\n", "\n", "28769\n", "\n", " \n", "noodle\n", "node score:0.6667\n", "\n", "\n", "\n", "28781->28769\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Recipe Score**: 0.8866666666666667" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Ingredients**:\n", " * onion\n", " * mushroom soup\n", " * milk\n", " * broccoli\n", " * noodle\n", " * tomato sauce\n", "\n", "\n", "**Instructions**:\n", "\n", "| Step | Instruction |\n", "| ----:|:----------- |\n", "| 1 | cut and bake broccoli |\n", "| 2 | bake and bake milk |\n", "| 3 | cook and drain noodle |\n", "| 4 | chop onion and mix it with mushroom soup and tomato sauce and mix it together with the results of step 1, step 2 and step 3. Then cook it. |\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "\n", "\n", "%3\n", "\n", "\n", "\n", "24181\n", "\n", " \n", "brown\n", "node score: 0.1667\n", "\n", "\n", "\n", "24199\n", "\n", " \n", "mix\n", "node score: 0.0000\n", "\n", "\n", "\n", "24181->24199\n", "\n", "\n", "\n", "\n", "\n", "24194\n", "\n", " \n", "cut\n", "node score: 1.0000\n", "\n", "\n", "\n", "24199->24194\n", "\n", "\n", "\n", "\n", "\n", "24185\n", "\n", " \n", "tomato sauce\n", "node score:1.0000\n", "\n", "\n", "\n", "24199->24185\n", "\n", "\n", "\n", "\n", "\n", "24191\n", "\n", " \n", "bake\n", "node score: 1.0000\n", "\n", "\n", "\n", "24199->24191\n", "\n", "\n", "\n", "\n", "\n", "24183\n", "\n", " \n", "cook\n", "node score: 1.0000\n", "\n", "\n", "\n", "24199->24183\n", "\n", "\n", "\n", "\n", "\n", "24189\n", "\n", " \n", "spread\n", "node score: 1.0000\n", "\n", "\n", "\n", "24199->24189\n", "\n", "\n", "\n", "\n", "\n", "24186\n", "\n", " \n", "bake\n", "node score: 1.0000\n", "\n", "\n", "\n", "24199->24186\n", "\n", "\n", "\n", "\n", "\n", "24195\n", "\n", " \n", "place\n", "node score: 1.0000\n", "\n", "\n", "\n", "24194->24195\n", "\n", "\n", "\n", "\n", "\n", "24196\n", "\n", " \n", "chicken breast\n", "node score:1.0000\n", "\n", "\n", "\n", "24195->24196\n", "\n", "\n", "\n", "\n", "\n", "24192\n", "\n", " \n", "heat\n", "node score: 1.0000\n", "\n", "\n", "\n", "24191->24192\n", "\n", "\n", "\n", "\n", "\n", "24193\n", "\n", " \n", "milk\n", "node score:1.0000\n", "\n", "\n", "\n", "24192->24193\n", "\n", "\n", "\n", "\n", "\n", "24184\n", "\n", " \n", "mushroom soup\n", "node score:1.0000\n", "\n", "\n", "\n", "24183->24184\n", "\n", "\n", "\n", "\n", "\n", "24190\n", "\n", " \n", "noodle\n", "node score:1.0000\n", "\n", "\n", "\n", "24189->24190\n", "\n", "\n", "\n", "\n", "\n", "24187\n", "\n", " \n", "cut\n", "node score: 1.0000\n", "\n", "\n", "\n", "24186->24187\n", "\n", "\n", "\n", "\n", "\n", "24188\n", "\n", " \n", "broccoli\n", "node score:1.0000\n", "\n", "\n", "\n", "24187->24188\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Recipe Score**: 0.8854166666666667" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Ingredients**:\n", " * chicken breast\n", " * broccoli\n", " * milk\n", " * mushroom soup\n", " * noodle\n", " * tomato sauce\n", "\n", "\n", "**Instructions**:\n", "\n", "| Step | Instruction |\n", "| ----:|:----------- |\n", "| 1 | place and cut chicken breast |\n", "| 2 | heat and bake milk |\n", "| 3 | cut and bake broccoli |\n", "| 4 | cook mushroom soup, spread noodle and mix it with tomato sauce and mix it together with the results of step 1, step 2 and step 3. Then brown it. |\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "\n", "\n", "%3\n", "\n", "\n", "\n", "20301\n", "\n", " \n", "mix\n", "node score: 0.0000\n", "\n", "\n", "\n", "20318\n", "\n", " \n", "bake\n", "node score: 1.0000\n", "\n", "\n", "\n", "20301->20318\n", "\n", "\n", "\n", "\n", "\n", "20303\n", "\n", " \n", "boil\n", "node score: 0.5000\n", "\n", "\n", "\n", "20301->20303\n", "\n", "\n", "\n", "\n", "\n", "20302\n", "\n", " \n", "mozzarella cheese\n", "node score:1.0000\n", "\n", "\n", "\n", "20301->20302\n", "\n", "\n", "\n", "\n", "\n", "20319\n", "\n", " \n", "spaghetti sauce\n", "node score:1.0000\n", "\n", "\n", "\n", "20318->20319\n", "\n", "\n", "\n", "\n", "\n", "20322\n", "\n", " \n", "mix\n", "node score: 0.0476\n", "\n", "\n", "\n", "20303->20322\n", "\n", "\n", "\n", "\n", "\n", "20307\n", "\n", " \n", "grind\n", "node score: 1.0000\n", "\n", "\n", "\n", "20322->20307\n", "\n", "\n", "\n", "\n", "\n", "20311\n", "\n", " \n", "noodle\n", "node score:1.0000\n", "\n", "\n", "\n", "20322->20311\n", "\n", "\n", "\n", "\n", "\n", "20306\n", "\n", " \n", "sausage\n", "node score:1.0000\n", "\n", "\n", "\n", "20322->20306\n", "\n", "\n", "\n", "\n", "\n", "20313\n", "\n", " \n", "chop\n", "node score: 1.0000\n", "\n", "\n", "\n", "20322->20313\n", "\n", "\n", "\n", "\n", "\n", "20324\n", "\n", " \n", "brown\n", "node score: 1.0000\n", "\n", "\n", "\n", "20322->20324\n", "\n", "\n", "\n", "\n", "\n", "20321\n", "\n", " \n", "drain\n", "node score: 1.0000\n", "\n", "\n", "\n", "20322->20321\n", "\n", "\n", "\n", "\n", "\n", "20312\n", "\n", " \n", "ground beef\n", "node score:1.0000\n", "\n", "\n", "\n", "20322->20312\n", "\n", "\n", "\n", "\n", "\n", "20309\n", "\n", " \n", "soy sauce\n", "node score:1.0000\n", "\n", "\n", "\n", "20322->20309\n", "\n", "\n", "\n", "\n", "\n", "20308\n", "\n", " \n", "garlic clove\n", "node score:1.0000\n", "\n", "\n", "\n", "20307->20308\n", "\n", "\n", "\n", "\n", "\n", "20314\n", "\n", " \n", "broccoli\n", "node score:1.0000\n", "\n", "\n", "\n", "20313->20314\n", "\n", "\n", "\n", "\n", "\n", "20315\n", "\n", " \n", "seasoning\n", "node score:1.0000\n", "\n", "\n", "\n", "20324->20315\n", "\n", "\n", "\n", "\n", "\n", "20323\n", "\n", " \n", "mix\n", "node score: 1.0000\n", "\n", "\n", "\n", "20321->20323\n", "\n", "\n", "\n", "\n", "\n", "20317\n", "\n", " \n", "garlic\n", "node score:1.0000\n", "\n", "\n", "\n", "20323->20317\n", "\n", "\n", "\n", "\n", "\n", "20310\n", "\n", " \n", "red pepper\n", "node score:1.0000\n", "\n", "\n", "\n", "20323->20310\n", "\n", "\n", "\n", "\n", "\n", "20305\n", "\n", " \n", "butter\n", "node score:1.0000\n", "\n", "\n", "\n", "20323->20305\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Recipe Score**: 0.8832199546485261" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Ingredients**:\n", " * garlic clove\n", " * sausage\n", " * soy sauce\n", " * seasoning\n", " * red pepper\n", " * butter\n", " * spaghetti sauce\n", " * garlic\n", " * ground beef\n", " * broccoli\n", " * noodle\n", " * mozzarella cheese\n", "\n", "\n", "**Instructions**:\n", "\n", "| Step | Instruction |\n", "| ----:|:----------- |\n", "| 1 | Mix garlic, red pepper and butter. Then drain it. |\n", "| 2 | grind garlic clove, chop broccoli, brown seasoning and mix it with noodle, sausage, ground beef and soy sauce and mix it together with the results of step 1. Then boil it. |\n", "| 3 | bake spaghetti sauce and mix it with mozzarella cheese and mix it together with the results of step 2. |\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "\n", "\n", "%3\n", "\n", "\n", "\n", "26775\n", "\n", " \n", "mix\n", "node score: 0.0000\n", "\n", "\n", "\n", "26795\n", "\n", " \n", "peel\n", "node score: 1.0000\n", "\n", "\n", "\n", "26775->26795\n", "\n", "\n", "\n", "\n", "\n", "26776\n", "\n", " \n", "cook\n", "node score: 0.8182\n", "\n", "\n", "\n", "26775->26776\n", "\n", "\n", "\n", "\n", "\n", "26796\n", "\n", " \n", "zucchini\n", "node score:1.0000\n", "\n", "\n", "\n", "26795->26796\n", "\n", "\n", "\n", "\n", "\n", "26777\n", "\n", " \n", "mix\n", "node score: 0.2000\n", "\n", "\n", "\n", "26776->26777\n", "\n", "\n", "\n", "\n", "\n", "26788\n", "\n", " \n", "dice\n", "node score: 1.0000\n", "\n", "\n", "\n", "26777->26788\n", "\n", "\n", "\n", "\n", "\n", "26798\n", "\n", " \n", "place\n", "node score: 1.0000\n", "\n", "\n", "\n", "26777->26798\n", "\n", "\n", "\n", "\n", "\n", "26782\n", "\n", " \n", "cut\n", "node score: 1.0000\n", "\n", "\n", "\n", "26777->26782\n", "\n", "\n", "\n", "\n", "\n", "26785\n", "\n", " \n", "cheese\n", "node score:1.0000\n", "\n", "\n", "\n", "26777->26785\n", "\n", "\n", "\n", "\n", "\n", "26786\n", "\n", " \n", "chop\n", "node score: 1.0000\n", "\n", "\n", "\n", "26777->26786\n", "\n", "\n", "\n", "\n", "\n", "26793\n", "\n", " \n", "cook\n", "node score: 1.0000\n", "\n", "\n", "\n", "26777->26793\n", "\n", "\n", "\n", "\n", "\n", "26779\n", "\n", " \n", "mozzarella cheese\n", "node score:1.0000\n", "\n", "\n", "\n", "26777->26779\n", "\n", "\n", "\n", "\n", "\n", "26791\n", "\n", " \n", "grate\n", "node score: 1.0000\n", "\n", "\n", "\n", "26777->26791\n", "\n", "\n", "\n", "\n", "\n", "26784\n", "\n", " \n", "tomato sauce\n", "node score:1.0000\n", "\n", "\n", "\n", "26777->26784\n", "\n", "\n", "\n", "\n", "\n", "26778\n", "\n", " \n", "noodle\n", "node score:1.0000\n", "\n", "\n", "\n", "26777->26778\n", "\n", "\n", "\n", "\n", "\n", "26790\n", "\n", " \n", "tablespoon butter\n", "node score:1.0000\n", "\n", "\n", "\n", "26777->26790\n", "\n", "\n", "\n", "\n", "\n", "26789\n", "\n", " \n", "onion\n", "node score:1.0000\n", "\n", "\n", "\n", "26788->26789\n", "\n", "\n", "\n", "\n", "\n", "26780\n", "\n", " \n", "peel\n", "node score: 1.0000\n", "\n", "\n", "\n", "26798->26780\n", "\n", "\n", "\n", "\n", "\n", "26781\n", "\n", " \n", "shrimp\n", "node score:1.0000\n", "\n", "\n", "\n", "26780->26781\n", "\n", "\n", "\n", "\n", "\n", "26783\n", "\n", " \n", "broccoli\n", "node score:1.0000\n", "\n", "\n", "\n", "26782->26783\n", "\n", "\n", "\n", "\n", "\n", "26787\n", "\n", " \n", "green onion\n", "node score:1.0000\n", "\n", "\n", "\n", "26786->26787\n", "\n", "\n", "\n", "\n", "\n", "26794\n", "\n", " \n", "chicken\n", "node score:0.2500\n", "\n", "\n", "\n", "26793->26794\n", "\n", "\n", "\n", "\n", "\n", "26792\n", "\n", " \n", "tomato\n", "node score:1.0000\n", "\n", "\n", "\n", "26791->26792\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Recipe Score**: 0.8812252964426877" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Ingredients**:\n", " * shrimp\n", " * onion\n", " * green onion\n", " * cheese\n", " * mozzarella cheese\n", " * tomato\n", " * broccoli\n", " * noodle\n", " * tablespoon butter\n", " * chicken\n", " * tomato sauce\n", " * zucchini\n", "\n", "\n", "**Instructions**:\n", "\n", "| Step | Instruction |\n", "| ----:|:----------- |\n", "| 1 | peel and place shrimp |\n", "| 2 | dice onion, cut broccoli, chop green onion, cook chicken, grate tomato and mix it with cheese, mozzarella cheese, tomato sauce, noodle and tablespoon butter and mix it together with the results of step 1. Then cook it. |\n", "| 3 | peel zucchini and mix it together with the results of step 2. |\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "\n", "\n", "%3\n", "\n", "\n", "\n", "30007\n", "\n", " \n", "cook\n", "node score: 0.6667\n", "\n", "\n", "\n", "30008\n", "\n", " \n", "mix\n", "node score: 0.1333\n", "\n", "\n", "\n", "30007->30008\n", "\n", "\n", "\n", "\n", "\n", "30014\n", "\n", " \n", "mushroom soup\n", "node score:1.0000\n", "\n", "\n", "\n", "30008->30014\n", "\n", "\n", "\n", "\n", "\n", "30015\n", "\n", " \n", "tomato sauce\n", "node score:1.0000\n", "\n", "\n", "\n", "30008->30015\n", "\n", "\n", "\n", "\n", "\n", "30011\n", "\n", " \n", "bake\n", "node score: 1.0000\n", "\n", "\n", "\n", "30008->30011\n", "\n", "\n", "\n", "\n", "\n", "30009\n", "\n", " \n", "chop\n", "node score: 1.0000\n", "\n", "\n", "\n", "30008->30009\n", "\n", "\n", "\n", "\n", "\n", "30019\n", "\n", " \n", "heat\n", "node score: 1.0000\n", "\n", "\n", "\n", "30008->30019\n", "\n", "\n", "\n", "\n", "\n", "30016\n", "\n", " \n", "bake\n", "node score: 1.0000\n", "\n", "\n", "\n", "30008->30016\n", "\n", "\n", "\n", "\n", "\n", "30012\n", "\n", " \n", "cut\n", "node score: 1.0000\n", "\n", "\n", "\n", "30011->30012\n", "\n", "\n", "\n", "\n", "\n", "30013\n", "\n", " \n", "broccoli\n", "node score:1.0000\n", "\n", "\n", "\n", "30012->30013\n", "\n", "\n", "\n", "\n", "\n", "30010\n", "\n", " \n", "onion\n", "node score:1.0000\n", "\n", "\n", "\n", "30009->30010\n", "\n", "\n", "\n", "\n", "\n", "30020\n", "\n", " \n", "cook\n", "node score: 1.0000\n", "\n", "\n", "\n", "30019->30020\n", "\n", "\n", "\n", "\n", "\n", "30021\n", "\n", " \n", "noodle\n", "node score:0.6667\n", "\n", "\n", "\n", "30020->30021\n", "\n", "\n", "\n", "\n", "\n", "30017\n", "\n", " \n", "bake\n", "node score: 1.0000\n", "\n", "\n", "\n", "30016->30017\n", "\n", "\n", "\n", "\n", "\n", "30018\n", "\n", " \n", "milk\n", "node score:0.6667\n", "\n", "\n", "\n", "30017->30018\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Recipe Score**: 0.8755555555555555" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Ingredients**:\n", " * onion\n", " * broccoli\n", " * milk\n", " * mushroom soup\n", " * noodle\n", " * tomato sauce\n", "\n", "\n", "**Instructions**:\n", "\n", "| Step | Instruction |\n", "| ----:|:----------- |\n", "| 1 | cut and bake broccoli |\n", "| 2 | cook and heat noodle |\n", "| 3 | bake and bake milk |\n", "| 4 | chop onion and mix it with mushroom soup and tomato sauce and mix it together with the results of step 1, step 2 and step 3. Then cook it. |\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "\n", "\n", "%3\n", "\n", "\n", "\n", "15304\n", "\n", " \n", "place\n", "node score: 0.1667\n", "\n", "\n", "\n", "15289\n", "\n", " \n", "cook\n", "node score: 0.6667\n", "\n", "\n", "\n", "15304->15289\n", "\n", "\n", "\n", "\n", "\n", "15290\n", "\n", " \n", "mix\n", "node score: 0.1333\n", "\n", "\n", "\n", "15289->15290\n", "\n", "\n", "\n", "\n", "\n", "15298\n", "\n", " \n", "drain\n", "node score: 1.0000\n", "\n", "\n", "\n", "15290->15298\n", "\n", "\n", "\n", "\n", "\n", "15294\n", "\n", " \n", "tomato sauce\n", "node score:1.0000\n", "\n", "\n", "\n", "15290->15294\n", "\n", "\n", "\n", "\n", "\n", "15293\n", "\n", " \n", "mushroom soup\n", "node score:1.0000\n", "\n", "\n", "\n", "15290->15293\n", "\n", "\n", "\n", "\n", "\n", "15291\n", "\n", " \n", "bake\n", "node score: 1.0000\n", "\n", "\n", "\n", "15290->15291\n", "\n", "\n", "\n", "\n", "\n", "15300\n", "\n", " \n", "chop\n", "node score: 1.0000\n", "\n", "\n", "\n", "15290->15300\n", "\n", "\n", "\n", "\n", "\n", "15295\n", "\n", " \n", "bake\n", "node score: 1.0000\n", "\n", "\n", "\n", "15290->15295\n", "\n", "\n", "\n", "\n", "\n", "15299\n", "\n", " \n", "noodle\n", "node score:1.0000\n", "\n", "\n", "\n", "15298->15299\n", "\n", "\n", "\n", "\n", "\n", "15303\n", "\n", " \n", "cool\n", "node score: 1.0000\n", "\n", "\n", "\n", "15291->15303\n", "\n", "\n", "\n", "\n", "\n", "15292\n", "\n", " \n", "milk\n", "node score:1.0000\n", "\n", "\n", "\n", "15303->15292\n", "\n", "\n", "\n", "\n", "\n", "15301\n", "\n", " \n", "onion\n", "node score:1.0000\n", "\n", "\n", "\n", "15300->15301\n", "\n", "\n", "\n", "\n", "\n", "15296\n", "\n", " \n", "cut\n", "node score: 1.0000\n", "\n", "\n", "\n", "15295->15296\n", "\n", "\n", "\n", "\n", "\n", "15297\n", "\n", " \n", "broccoli\n", "node score:1.0000\n", "\n", "\n", "\n", "15296->15297\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Recipe Score**: 0.8644444444444445" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Ingredients**:\n", " * onion\n", " * broccoli\n", " * milk\n", " * mushroom soup\n", " * noodle\n", " * tomato sauce\n", "\n", "\n", "**Instructions**:\n", "\n", "| Step | Instruction |\n", "| ----:|:----------- |\n", "| 1 | cool and bake milk |\n", "| 2 | cut and bake broccoli |\n", "| 3 | drain noodle, chop onion and mix it with tomato sauce and mushroom soup and mix it together with the results of step 1 and step 2. Then cook it. |\n", "| 4 | place the result of step 3 |\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "\n", "\n", "%3\n", "\n", "\n", "\n", "26491\n", "\n", " \n", "mix\n", "node score: 0.1905\n", "\n", "\n", "\n", "26492\n", "\n", " \n", "cook\n", "node score: 0.7000\n", "\n", "\n", "\n", "26491->26492\n", "\n", "\n", "\n", "\n", "\n", "26507\n", "\n", " \n", "cheese\n", "node score:1.0000\n", "\n", "\n", "\n", "26491->26507\n", "\n", "\n", "\n", "\n", "\n", "26508\n", "\n", " \n", "slice\n", "node score: 1.0000\n", "\n", "\n", "\n", "26491->26508\n", "\n", "\n", "\n", "\n", "\n", "26515\n", "\n", " \n", "mix\n", "node score: 0.2857\n", "\n", "\n", "\n", "26492->26515\n", "\n", "\n", "\n", "\n", "\n", "26498\n", "\n", " \n", "slice\n", "node score: 1.0000\n", "\n", "\n", "\n", "26515->26498\n", "\n", "\n", "\n", "\n", "\n", "26506\n", "\n", " \n", "salt\n", "node score:1.0000\n", "\n", "\n", "\n", "26515->26506\n", "\n", "\n", "\n", "\n", "\n", "26514\n", "\n", " \n", "refrigerate\n", "node score: 0.3333\n", "\n", "\n", "\n", "26515->26514\n", "\n", "\n", "\n", "\n", "\n", "26497\n", "\n", " \n", "seasoning\n", "node score:1.0000\n", "\n", "\n", "\n", "26515->26497\n", "\n", "\n", "\n", "\n", "\n", "26500\n", "\n", " \n", "basil\n", "node score:1.0000\n", "\n", "\n", "\n", "26515->26500\n", "\n", "\n", "\n", "\n", "\n", "26504\n", "\n", " \n", "water\n", "node score:1.0000\n", "\n", "\n", "\n", "26515->26504\n", "\n", "\n", "\n", "\n", "\n", "26503\n", "\n", " \n", "noodle\n", "node score:1.0000\n", "\n", "\n", "\n", "26515->26503\n", "\n", "\n", "\n", "\n", "\n", "26501\n", "\n", " \n", "chop\n", "node score: 1.0000\n", "\n", "\n", "\n", "26515->26501\n", "\n", "\n", "\n", "\n", "\n", "26499\n", "\n", " \n", "green onion\n", "node score:1.0000\n", "\n", "\n", "\n", "26498->26499\n", "\n", "\n", "\n", "\n", "\n", "26516\n", "\n", " \n", "mix\n", "node score: 0.3333\n", "\n", "\n", "\n", "26514->26516\n", "\n", "\n", "\n", "\n", "\n", "26494\n", "\n", " \n", "wash\n", "node score: 1.0000\n", "\n", "\n", "\n", "26516->26494\n", "\n", "\n", "\n", "\n", "\n", "26496\n", "\n", " \n", "ground beef\n", "node score:1.0000\n", "\n", "\n", "\n", "26516->26496\n", "\n", "\n", "\n", "\n", "\n", "26505\n", "\n", " \n", "mushroom soup\n", "node score:1.0000\n", "\n", "\n", "\n", "26516->26505\n", "\n", "\n", "\n", "\n", "\n", "26495\n", "\n", " \n", "broccoli\n", "node score:1.0000\n", "\n", "\n", "\n", "26494->26495\n", "\n", "\n", "\n", "\n", "\n", "26502\n", "\n", " \n", "mushroom\n", "node score:1.0000\n", "\n", "\n", "\n", "26501->26502\n", "\n", "\n", "\n", "\n", "\n", "26509\n", "\n", " \n", "tomato\n", "node score:1.0000\n", "\n", "\n", "\n", "26508->26509\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Recipe Score**: 0.8496598639455781" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Ingredients**:\n", " * water\n", " * seasoning\n", " * basil\n", " * mushroom soup\n", " * green onion\n", " * mushroom\n", " * cheese\n", " * salt\n", " * tomato\n", " * ground beef\n", " * broccoli\n", " * noodle\n", "\n", "\n", "**Instructions**:\n", "\n", "| Step | Instruction |\n", "| ----:|:----------- |\n", "| 1 | wash broccoli and mix it with ground beef and mushroom soup. Then refrigerate it. |\n", "| 2 | slice green onion, chop mushroom and mix it with salt, seasoning, basil, water and noodle and mix it together with the results of step 1. Then cook it. |\n", "| 3 | slice tomato and mix it with cheese and mix it together with the results of step 2. |\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "\n", "\n", "%3\n", "\n", "\n", "\n", "30717\n", "\n", " \n", "mix\n", "node score: 0.0952\n", "\n", "\n", "\n", "30733\n", "\n", " \n", "cheese\n", "node score:1.0000\n", "\n", "\n", "\n", "30717->30733\n", "\n", "\n", "\n", "\n", "\n", "30734\n", "\n", " \n", "slice\n", "node score: 1.0000\n", "\n", "\n", "\n", "30717->30734\n", "\n", "\n", "\n", "\n", "\n", "30718\n", "\n", " \n", "cook\n", "node score: 0.5000\n", "\n", "\n", "\n", "30717->30718\n", "\n", "\n", "\n", "\n", "\n", "30735\n", "\n", " \n", "tomato\n", "node score:1.0000\n", "\n", "\n", "\n", "30734->30735\n", "\n", "\n", "\n", "\n", "\n", "30738\n", "\n", " \n", "mix\n", "node score: 0.0857\n", "\n", "\n", "\n", "30718->30738\n", "\n", "\n", "\n", "\n", "\n", "30720\n", "\n", " \n", "wash\n", "node score: 1.0000\n", "\n", "\n", "\n", "30738->30720\n", "\n", "\n", "\n", "\n", "\n", "30737\n", "\n", " \n", "brown\n", "node score: 0.6000\n", "\n", "\n", "\n", "30738->30737\n", "\n", "\n", "\n", "\n", "\n", "30726\n", "\n", " \n", "basil\n", "node score:1.0000\n", "\n", "\n", "\n", "30738->30726\n", "\n", "\n", "\n", "\n", "\n", "30727\n", "\n", " \n", "chop\n", "node score: 1.0000\n", "\n", "\n", "\n", "30738->30727\n", "\n", "\n", "\n", "\n", "\n", "30723\n", "\n", " \n", "seasoning\n", "node score:1.0000\n", "\n", "\n", "\n", "30738->30723\n", "\n", "\n", "\n", "\n", "\n", "30722\n", "\n", " \n", "ground beef\n", "node score:1.0000\n", "\n", "\n", "\n", "30738->30722\n", "\n", "\n", "\n", "\n", "\n", "30721\n", "\n", " \n", "broccoli\n", "node score:1.0000\n", "\n", "\n", "\n", "30720->30721\n", "\n", "\n", "\n", "\n", "\n", "30739\n", "\n", " \n", "mix\n", "node score: 0.3000\n", "\n", "\n", "\n", "30737->30739\n", "\n", "\n", "\n", "\n", "\n", "30731\n", "\n", " \n", "mushroom soup\n", "node score:1.0000\n", "\n", "\n", "\n", "30739->30731\n", "\n", "\n", "\n", "\n", "\n", "30729\n", "\n", " \n", "noodle\n", "node score:1.0000\n", "\n", "\n", "\n", "30739->30729\n", "\n", "\n", "\n", "\n", "\n", "30740\n", "\n", " \n", "melt\n", "node score: 1.0000\n", "\n", "\n", "\n", "30739->30740\n", "\n", "\n", "\n", "\n", "\n", "30724\n", "\n", " \n", "slice\n", "node score: 1.0000\n", "\n", "\n", "\n", "30739->30724\n", "\n", "\n", "\n", "\n", "\n", "30732\n", "\n", " \n", "salt\n", "node score:1.0000\n", "\n", "\n", "\n", "30739->30732\n", "\n", "\n", "\n", "\n", "\n", "30730\n", "\n", " \n", "syrup\n", "node score:1.0000\n", "\n", "\n", "\n", "30740->30730\n", "\n", "\n", "\n", "\n", "\n", "30725\n", "\n", " \n", "green onion\n", "node score:1.0000\n", "\n", "\n", "\n", "30724->30725\n", "\n", "\n", "\n", "\n", "\n", "30728\n", "\n", " \n", "mushroom\n", "node score:1.0000\n", "\n", "\n", "\n", "30727->30728\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Recipe Score**: 0.8445887445887447" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Ingredients**:\n", " * syrup\n", " * basil\n", " * mushroom soup\n", " * green onion\n", " * mushroom\n", " * seasoning\n", " * cheese\n", " * salt\n", " * tomato\n", " * ground beef\n", " * broccoli\n", " * noodle\n", "\n", "\n", "**Instructions**:\n", "\n", "| Step | Instruction |\n", "| ----:|:----------- |\n", "| 1 | melt syrup, slice green onion and mix it with mushroom soup, noodle and salt. Then brown it. |\n", "| 2 | wash broccoli, chop mushroom and mix it with basil, seasoning and ground beef and mix it together with the results of step 1. Then cook it. |\n", "| 3 | slice tomato and mix it with cheese and mix it together with the results of step 2. |\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "\n", "\n", "%3\n", "\n", "\n", "\n", "28082\n", "\n", " \n", "cook\n", "node score: 0.6667\n", "\n", "\n", "\n", "28095\n", "\n", " \n", "pour\n", "node score: 0.8333\n", "\n", "\n", "\n", "28082->28095\n", "\n", "\n", "\n", "\n", "\n", "28083\n", "\n", " \n", "mix\n", "node score: 0.1333\n", "\n", "\n", "\n", "28095->28083\n", "\n", "\n", "\n", "\n", "\n", "28090\n", "\n", " \n", "cut\n", "node score: 1.0000\n", "\n", "\n", "\n", "28083->28090\n", "\n", "\n", "\n", "\n", "\n", "28089\n", "\n", " \n", "tomato sauce\n", "node score:1.0000\n", "\n", "\n", "\n", "28083->28089\n", "\n", "\n", "\n", "\n", "\n", "28084\n", "\n", " \n", "mushroom soup\n", "node score:1.0000\n", "\n", "\n", "\n", "28083->28084\n", "\n", "\n", "\n", "\n", "\n", "28087\n", "\n", " \n", "drain\n", "node score: 1.0000\n", "\n", "\n", "\n", "28083->28087\n", "\n", "\n", "\n", "\n", "\n", "28085\n", "\n", " \n", "bake\n", "node score: 1.0000\n", "\n", "\n", "\n", "28083->28085\n", "\n", "\n", "\n", "\n", "\n", "28093\n", "\n", " \n", "onion\n", "node score:0.5000\n", "\n", "\n", "\n", "28083->28093\n", "\n", "\n", "\n", "\n", "\n", "28091\n", "\n", " \n", "broccoli\n", "node score:1.0000\n", "\n", "\n", "\n", "28090->28091\n", "\n", "\n", "\n", "\n", "\n", "28088\n", "\n", " \n", "noodle\n", "node score:1.0000\n", "\n", "\n", "\n", "28087->28088\n", "\n", "\n", "\n", "\n", "\n", "28086\n", "\n", " \n", "milk\n", "node score:1.0000\n", "\n", "\n", "\n", "28085->28086\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Recipe Score**: 0.8444444444444444" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Ingredients**:\n", " * onion\n", " * mushroom soup\n", " * milk\n", " * broccoli\n", " * noodle\n", " * tomato sauce\n", "\n", "\n", "**Instructions**:\n", "\n", "| Step | Instruction |\n", "| ----:|:----------- |\n", "| 1 | cut broccoli, drain noodle, bake milk and mix it with tomato sauce, mushroom soup and onion. Then pour it. |\n", "| 2 | cook the result of step 1 |\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "\n", "\n", "%3\n", "\n", "\n", "\n", "22832\n", "\n", " \n", "mix\n", "node score: 0.0952\n", "\n", "\n", "\n", "22849\n", "\n", " \n", "slice\n", "node score: 1.0000\n", "\n", "\n", "\n", "22832->22849\n", "\n", "\n", "\n", "\n", "\n", "22833\n", "\n", " \n", "cook\n", "node score: 0.3000\n", "\n", "\n", "\n", "22832->22833\n", "\n", "\n", "\n", "\n", "\n", "22848\n", "\n", " \n", "cheese\n", "node score:1.0000\n", "\n", "\n", "\n", "22832->22848\n", "\n", "\n", "\n", "\n", "\n", "22850\n", "\n", " \n", "tomato\n", "node score:1.0000\n", "\n", "\n", "\n", "22849->22850\n", "\n", "\n", "\n", "\n", "\n", "22853\n", "\n", " \n", "mix\n", "node score: 0.0000\n", "\n", "\n", "\n", "22833->22853\n", "\n", "\n", "\n", "\n", "\n", "22837\n", "\n", " \n", "ground beef\n", "node score:1.0000\n", "\n", "\n", "\n", "22853->22837\n", "\n", "\n", "\n", "\n", "\n", "22852\n", "\n", " \n", "bake\n", "node score: 0.7778\n", "\n", "\n", "\n", "22853->22852\n", "\n", "\n", "\n", "\n", "\n", "22854\n", "\n", " \n", "mix\n", "node score: 0.2778\n", "\n", "\n", "\n", "22852->22854\n", "\n", "\n", "\n", "\n", "\n", "22844\n", "\n", " \n", "noodle\n", "node score:1.0000\n", "\n", "\n", "\n", "22854->22844\n", "\n", "\n", "\n", "\n", "\n", "22847\n", "\n", " \n", "salt\n", "node score:1.0000\n", "\n", "\n", "\n", "22854->22847\n", "\n", "\n", "\n", "\n", "\n", "22846\n", "\n", " \n", "green bean\n", "node score:1.0000\n", "\n", "\n", "\n", "22854->22846\n", "\n", "\n", "\n", "\n", "\n", "22855\n", "\n", " \n", "brown\n", "node score: 1.0000\n", "\n", "\n", "\n", "22854->22855\n", "\n", "\n", "\n", "\n", "\n", "22835\n", "\n", " \n", "wash\n", "node score: 1.0000\n", "\n", "\n", "\n", "22854->22835\n", "\n", "\n", "\n", "\n", "\n", "22842\n", "\n", " \n", "chop\n", "node score: 1.0000\n", "\n", "\n", "\n", "22854->22842\n", "\n", "\n", "\n", "\n", "\n", "22845\n", "\n", " \n", "water\n", "node score:1.0000\n", "\n", "\n", "\n", "22854->22845\n", "\n", "\n", "\n", "\n", "\n", "22841\n", "\n", " \n", "basil\n", "node score:1.0000\n", "\n", "\n", "\n", "22854->22841\n", "\n", "\n", "\n", "\n", "\n", "22839\n", "\n", " \n", "slice\n", "node score: 1.0000\n", "\n", "\n", "\n", "22854->22839\n", "\n", "\n", "\n", "\n", "\n", "22838\n", "\n", " \n", "seasoning\n", "node score:1.0000\n", "\n", "\n", "\n", "22855->22838\n", "\n", "\n", "\n", "\n", "\n", "22836\n", "\n", " \n", "broccoli\n", "node score:1.0000\n", "\n", "\n", "\n", "22835->22836\n", "\n", "\n", "\n", "\n", "\n", "22843\n", "\n", " \n", "mushroom\n", "node score:1.0000\n", "\n", "\n", "\n", "22842->22843\n", "\n", "\n", "\n", "\n", "\n", "22840\n", "\n", " \n", "green onion\n", "node score:1.0000\n", "\n", "\n", "\n", "22839->22840\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Recipe Score**: 0.8386724386724386" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Ingredients**:\n", " * water\n", " * seasoning\n", " * mushroom\n", " * basil\n", " * green onion\n", " * cheese\n", " * green bean\n", " * salt\n", " * tomato\n", " * ground beef\n", " * broccoli\n", " * noodle\n", "\n", "\n", "**Instructions**:\n", "\n", "| Step | Instruction |\n", "| ----:|:----------- |\n", "| 1 | brown seasoning, wash broccoli, chop mushroom, slice green onion and mix it with noodle, salt, green bean, water and basil. Then bake it. |\n", "| 2 | Mix ground beef and mix it together with the results of step 1. Then cook it. |\n", "| 3 | slice tomato and mix it with cheese and mix it together with the results of step 2. |\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "\n", "\n", "%3\n", "\n", "\n", "\n", "30219\n", "\n", " \n", "mix\n", "node score: 0.1905\n", "\n", "\n", "\n", "30235\n", "\n", " \n", "cheese\n", "node score:1.0000\n", "\n", "\n", "\n", "30219->30235\n", "\n", "\n", "\n", "\n", "\n", "30236\n", "\n", " \n", "slice\n", "node score: 1.0000\n", "\n", "\n", "\n", "30219->30236\n", "\n", "\n", "\n", "\n", "\n", "30220\n", "\n", " \n", "cook\n", "node score: 0.5000\n", "\n", "\n", "\n", "30219->30220\n", "\n", "\n", "\n", "\n", "\n", "30237\n", "\n", " \n", "tomato\n", "node score:1.0000\n", "\n", "\n", "\n", "30236->30237\n", "\n", "\n", "\n", "\n", "\n", "30240\n", "\n", " \n", "mix\n", "node score: 0.0857\n", "\n", "\n", "\n", "30220->30240\n", "\n", "\n", "\n", "\n", "\n", "30226\n", "\n", " \n", "slice\n", "node score: 1.0000\n", "\n", "\n", "\n", "30240->30226\n", "\n", "\n", "\n", "\n", "\n", "30222\n", "\n", " \n", "wash\n", "node score: 1.0000\n", "\n", "\n", "\n", "30240->30222\n", "\n", "\n", "\n", "\n", "\n", "30224\n", "\n", " \n", "ground beef\n", "node score:1.0000\n", "\n", "\n", "\n", "30240->30224\n", "\n", "\n", "\n", "\n", "\n", "30239\n", "\n", " \n", "blend\n", "node score: 0.6000\n", "\n", "\n", "\n", "30240->30239\n", "\n", "\n", "\n", "\n", "\n", "30232\n", "\n", " \n", "water\n", "node score:1.0000\n", "\n", "\n", "\n", "30240->30232\n", "\n", "\n", "\n", "\n", "\n", "30231\n", "\n", " \n", "noodle\n", "node score:1.0000\n", "\n", "\n", "\n", "30240->30231\n", "\n", "\n", "\n", "\n", "\n", "30227\n", "\n", " \n", "green onion\n", "node score:1.0000\n", "\n", "\n", "\n", "30226->30227\n", "\n", "\n", "\n", "\n", "\n", "30223\n", "\n", " \n", "broccoli\n", "node score:1.0000\n", "\n", "\n", "\n", "30222->30223\n", "\n", "\n", "\n", "\n", "\n", "30241\n", "\n", " \n", "mix\n", "node score: 0.4000\n", "\n", "\n", "\n", "30239->30241\n", "\n", "\n", "\n", "\n", "\n", "30242\n", "\n", " \n", "cook\n", "node score: 1.0000\n", "\n", "\n", "\n", "30241->30242\n", "\n", "\n", "\n", "\n", "\n", "30225\n", "\n", " \n", "seasoning\n", "node score:1.0000\n", "\n", "\n", "\n", "30241->30225\n", "\n", "\n", "\n", "\n", "\n", "30234\n", "\n", " \n", "salt\n", "node score:1.0000\n", "\n", "\n", "\n", "30241->30234\n", "\n", "\n", "\n", "\n", "\n", "30229\n", "\n", " \n", "chop\n", "node score: 1.0000\n", "\n", "\n", "\n", "30241->30229\n", "\n", "\n", "\n", "\n", "\n", "30228\n", "\n", " \n", "basil\n", "node score:1.0000\n", "\n", "\n", "\n", "30241->30228\n", "\n", "\n", "\n", "\n", "\n", "30233\n", "\n", " \n", "mushroom soup\n", "node score:0.6667\n", "\n", "\n", "\n", "30242->30233\n", "\n", "\n", "\n", "\n", "\n", "30230\n", "\n", " \n", "plum tomato\n", "node score:1.0000\n", "\n", "\n", "\n", "30229->30230\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Recipe Score**: 0.8383116883116883" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Ingredients**:\n", " * water\n", " * seasoning\n", " * basil\n", " * green onion\n", " * mushroom soup\n", " * cheese\n", " * salt\n", " * tomato\n", " * ground beef\n", " * broccoli\n", " * plum tomato\n", " * noodle\n", "\n", "\n", "**Instructions**:\n", "\n", "| Step | Instruction |\n", "| ----:|:----------- |\n", "| 1 | cook mushroom soup, chop plum tomato and mix it with seasoning, salt and basil. Then blend it. |\n", "| 2 | slice green onion, wash broccoli and mix it with ground beef, water and noodle and mix it together with the results of step 1. Then cook it. |\n", "| 3 | slice tomato and mix it with cheese and mix it together with the results of step 2. |\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "\n", "\n", "%3\n", "\n", "\n", "\n", "30583\n", "\n", " \n", "cook\n", "node score: 0.6667\n", "\n", "\n", "\n", "30584\n", "\n", " \n", "mix\n", "node score: 0.1333\n", "\n", "\n", "\n", "30583->30584\n", "\n", "\n", "\n", "\n", "\n", "30585\n", "\n", " \n", "mushroom soup\n", "node score:1.0000\n", "\n", "\n", "\n", "30584->30585\n", "\n", "\n", "\n", "\n", "\n", "30587\n", "\n", " \n", "bake\n", "node score: 1.0000\n", "\n", "\n", "\n", "30584->30587\n", "\n", "\n", "\n", "\n", "\n", "30586\n", "\n", " \n", "clove garlic\n", "node score:1.0000\n", "\n", "\n", "\n", "30584->30586\n", "\n", "\n", "\n", "\n", "\n", "30590\n", "\n", " \n", "chop\n", "node score: 1.0000\n", "\n", "\n", "\n", "30584->30590\n", "\n", "\n", "\n", "\n", "\n", "30592\n", "\n", " \n", "heat\n", "node score: 0.0000\n", "\n", "\n", "\n", "30584->30592\n", "\n", "\n", "\n", "\n", "\n", "30596\n", "\n", " \n", "bake\n", "node score: 1.0000\n", "\n", "\n", "\n", "30584->30596\n", "\n", "\n", "\n", "\n", "\n", "30588\n", "\n", " \n", "cut\n", "node score: 1.0000\n", "\n", "\n", "\n", "30587->30588\n", "\n", "\n", "\n", "\n", "\n", "30589\n", "\n", " \n", "broccoli\n", "node score:1.0000\n", "\n", "\n", "\n", "30588->30589\n", "\n", "\n", "\n", "\n", "\n", "30591\n", "\n", " \n", "onion\n", "node score:1.0000\n", "\n", "\n", "\n", "30590->30591\n", "\n", "\n", "\n", "\n", "\n", "30599\n", "\n", " \n", "bake\n", "node score: 1.0000\n", "\n", "\n", "\n", "30592->30599\n", "\n", "\n", "\n", "\n", "\n", "30593\n", "\n", " \n", "cook\n", "node score: 1.0000\n", "\n", "\n", "\n", "30599->30593\n", "\n", "\n", "\n", "\n", "\n", "30594\n", "\n", " \n", "noodle\n", "node score:0.7500\n", "\n", "\n", "\n", "30593->30594\n", "\n", "\n", "\n", "\n", "\n", "30597\n", "\n", " \n", "milk\n", "node score:1.0000\n", "\n", "\n", "\n", "30596->30597\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Recipe Score**: 0.8366666666666667" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Ingredients**:\n", " * onion\n", " * clove garlic\n", " * broccoli\n", " * milk\n", " * mushroom soup\n", " * noodle\n", "\n", "\n", "**Instructions**:\n", "\n", "| Step | Instruction |\n", "| ----:|:----------- |\n", "| 1 | cut and bake broccoli |\n", "| 2 | cook and bake noodle |\n", "| 3 | heat the result of step 2 |\n", "| 4 | chop onion, bake milk and mix it with mushroom soup and clove garlic and mix it together with the results of step 1 and step 3. Then cook it. |\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "\n", "\n", "%3\n", "\n", "\n", "\n", "30304\n", "\n", " \n", "brown\n", "node score: 0.1667\n", "\n", "\n", "\n", "30305\n", "\n", " \n", "mix\n", "node score: 0.0000\n", "\n", "\n", "\n", "30304->30305\n", "\n", "\n", "\n", "\n", "\n", "30311\n", "\n", " \n", "spread\n", "node score: 1.0000\n", "\n", "\n", "\n", "30305->30311\n", "\n", "\n", "\n", "\n", "\n", "30314\n", "\n", " \n", "pour\n", "node score: 0.0000\n", "\n", "\n", "\n", "30305->30314\n", "\n", "\n", "\n", "\n", "\n", "30318\n", "\n", " \n", "spread\n", "node score: 1.0000\n", "\n", "\n", "\n", "30305->30318\n", "\n", "\n", "\n", "\n", "\n", "30306\n", "\n", " \n", "cut\n", "node score: 1.0000\n", "\n", "\n", "\n", "30305->30306\n", "\n", "\n", "\n", "\n", "\n", "30313\n", "\n", " \n", "tomato sauce\n", "node score:1.0000\n", "\n", "\n", "\n", "30305->30313\n", "\n", "\n", "\n", "\n", "\n", "30308\n", "\n", " \n", "bake\n", "node score: 1.0000\n", "\n", "\n", "\n", "30305->30308\n", "\n", "\n", "\n", "\n", "\n", "30321\n", "\n", " \n", "cook\n", "node score: 1.0000\n", "\n", "\n", "\n", "30311->30321\n", "\n", "\n", "\n", "\n", "\n", "30312\n", "\n", " \n", "noodle\n", "node score:1.0000\n", "\n", "\n", "\n", "30321->30312\n", "\n", "\n", "\n", "\n", "\n", "30315\n", "\n", " \n", "cut\n", "node score: 1.0000\n", "\n", "\n", "\n", "30314->30315\n", "\n", "\n", "\n", "\n", "\n", "30316\n", "\n", " \n", "place\n", "node score: 1.0000\n", "\n", "\n", "\n", "30315->30316\n", "\n", "\n", "\n", "\n", "\n", "30317\n", "\n", " \n", "chicken breast\n", "node score:1.0000\n", "\n", "\n", "\n", "30316->30317\n", "\n", "\n", "\n", "\n", "\n", "30319\n", "\n", " \n", "mushroom soup\n", "node score:1.0000\n", "\n", "\n", "\n", "30318->30319\n", "\n", "\n", "\n", "\n", "\n", "30307\n", "\n", " \n", "broccoli\n", "node score:1.0000\n", "\n", "\n", "\n", "30306->30307\n", "\n", "\n", "\n", "\n", "\n", "30309\n", "\n", " \n", "soak\n", "node score: 1.0000\n", "\n", "\n", "\n", "30308->30309\n", "\n", "\n", "\n", "\n", "\n", "30310\n", "\n", " \n", "milk\n", "node score:1.0000\n", "\n", "\n", "\n", "30309->30310\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Recipe Score**: 0.8333333333333334" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "**Ingredients**:\n", " * chicken breast\n", " * broccoli\n", " * milk\n", " * mushroom soup\n", " * noodle\n", " * tomato sauce\n", "\n", "\n", "**Instructions**:\n", "\n", "| Step | Instruction |\n", "| ----:|:----------- |\n", "| 1 | cook and spread noodle |\n", "| 2 | place and cut chicken breast |\n", "| 3 | pour the result of step 2 |\n", "| 4 | soak and bake milk |\n", "| 5 | spread mushroom soup, cut broccoli and mix it with tomato sauce and mix it together with the results of step 1, step 3 and step 4. Then brown it. |\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "p.plot_population(n_best=20)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "file_extension": ".py", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.5" }, "mimetype": "text/x-python", "name": "python", "npconvert_exporter": "python", "pygments_lexer": "ipython3", "version": 3 }, "nbformat": 4, "nbformat_minor": 4 }