{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import plotly.graph_objs as go\n", "from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot\n", "init_notebook_mode(connected=True)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "ingredients = [\n", " \"noodles\",\n", " \"boiled noodles\",\n", " \"cheese powder\",\n", " \"butter\",\n", " \"milk\",\n", " \"soup\",\n", " \"drained boiled noodles\",\n", " \"tuna\",\n", " \"corn\",\n", " \"drained tuna\",\n", " \"drained corn\"\n", "]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "actions = [\n", " \"boil\",\n", " \"drain\"\n", "]" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "ii = {}\n", "ai = {}" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "i = 0\n", "for ing in ingredients:\n", " ii[ing] = i\n", " i += 1\n", "i = 0\n", "for act in actions:\n", " ai[act] = i\n", " i += 1" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "ing_act = np.zeros((len(actions), len(ingredients)))\n", "ing_ing = np.zeros((len(ingredients), len(ingredients)))" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "ing_act[ai[\"boil\"], ii[\"noodles\"]] = 1\n", "ing_act[ai[\"drain\"], ii[\"boiled noodles\"]] = 1\n", "ing_act[ai[\"drain\"], ii[\"tuna\"]] = 1\n", "ing_act[ai[\"drain\"], ii[\"corn\"]] = 1\n", "\n", "ing_ing[ii[\"cheese powder\"], ii[\"butter\"]] = 1\n", "ing_ing[ii[\"cheese powder\"], ii[\"milk\"]] = 1\n", "ing_ing[ii[\"cheese powder\"], ii[\"soup\"]] = 1\n", "ing_ing[ii[\"cheese powder\"], ii[\"drained boiled noodles\"]] = 1\n", "ing_ing[ii[\"cheese powder\"], ii[\"drained tuna\"]] = 1\n", "ing_ing[ii[\"cheese powder\"], ii[\"drained corn\"]] = 1\n", "\n", "\n", "ing_ing[ii[\"butter\"], ii[\"milk\"]] = 1\n", "ing_ing[ii[\"butter\"], ii[\"soup\"]] = 1\n", "ing_ing[ii[\"butter\"], ii[\"drained boiled noodles\"]] = 1\n", "ing_ing[ii[\"butter\"], ii[\"drained tuna\"]] = 1\n", "ing_ing[ii[\"butter\"], ii[\"drained corn\"]] = 1\n", "\n", "ing_ing[ii[\"milk\"], ii[\"soup\"]] = 1\n", "ing_ing[ii[\"milk\"], ii[\"drained boiled noodles\"]] = 1\n", "ing_ing[ii[\"milk\"], ii[\"drained tuna\"]] = 1\n", "ing_ing[ii[\"milk\"], ii[\"drained corn\"]] = 1\n", "\n", "ing_ing[ii[\"soup\"], ii[\"drained boiled noodles\"]] = 1\n", "ing_ing[ii[\"soup\"], ii[\"drained tuna\"]] = 1\n", "ing_ing[ii[\"soup\"], ii[\"drained corn\"]] = 1\n", "\n", "ing_ing[ii[\"drained boiled noodles\"], ii[\"drained tuna\"]] = 1\n", "ing_ing[ii[\"drained boiled noodles\"], ii[\"drained corn\"]] = 1\n", "\n" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "ing_ing += np.transpose(ing_ing)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n", " [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n", " [0., 0., 0., 1., 1., 1., 1., 0., 0., 1., 1.],\n", " [0., 0., 1., 0., 1., 1., 1., 0., 0., 1., 1.],\n", " [0., 0., 1., 1., 0., 1., 1., 0., 0., 1., 1.],\n", " [0., 0., 1., 1., 1., 0., 1., 0., 0., 1., 1.],\n", " [0., 0., 1., 1., 1., 1., 0., 0., 0., 1., 1.],\n", " [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n", " [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n", " [0., 0., 1., 1., 1., 1., 1., 0., 0., 0., 0.],\n", " [0., 0., 1., 1., 1., 1., 1., 0., 0., 0., 0.]])" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ing_ing" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "type": "heatmap", "x": [ "noodles", "boiled noodles", "cheese powder", "butter", "milk", "soup", "drained boiled noodles", "tuna", "corn", "drained tuna", "drained corn" ], "xgap": 2, "y": [ "boil", "drain" ], "ygap": 2, "z": [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0 ] ] } ], "layout": { "autosize": true, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "zerolinecolor": "white", "zerolinewidth": 2 } } }, "xaxis": { "autorange": true, "domain": [ 0, 1 ], "range": [ -0.5, 10.5 ], "type": "category" }, "yaxis": { "autorange": true, "domain": [ 0, 1 ], "range": [ -1.8248355263157894, 2.8248355263157894 ], "scaleanchor": "x", "scaleratio": 1, "type": "category" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw0AAAHCCAYAAACtwCWoAAAgAElEQVR4Xuydd5gUxdaHz0ZyBhVEvMYLKioGMOA1J0RQERWRnERylozknEEJIhkUEQNiABUj6mdGRUVREUVEspI28D2nZMYFF7dn6nRVT/Vv/vFxqTqn6q3q6X67qnuSDh06dIjwAQEQAAEQAAEQAAEQAAEQAIFjEEiCNGBugAAIgAAIgAAIgAAIgAAI/BsBSAPmBwiAAAiAAAiAAAiAAAiAwL8SgDRggoAACIAACIAACIAACIAACEAaMAdAAARAAARAAARAAARAAATiJ4CVhvjZoSYIgAAIgAAIgAAIgAAIhIIApCEUw4xOggAIgAAIgAAIgAAIgED8BCAN8bNDTRAAARAAARAAARAAARAIBQFIQyiGGZ0EARAAARAAARAAARAAgfgJQBriZ4eaIAACIAACIAACIAACIBAKApCGUAwzOgkCIAACIAACIAACIAAC8ROANMTPDjVBAARAAARAAARAAARAIBQEIA2hGGZ0EgRAAARAAARAAARAAATiJwBpiJ8daoIACIAACIAACIAACIBAKAhAGkIxzOgkCIAACIAACIAACIAACMRPANIQPzvUBAEQAAEQAAEQAAEQAIFQEIA0hGKY0UkQAAEQAAEQAAEQAAEQiJ8ApCF+dqgJAiAAAiAAAiAAAiAAAqEgAGkIxTCjkyAAAiAAAiAAAiAAAiAQPwFIQ/zsUBMEQAAEQAAEQAAEQAAEQkEA0hCKYUYnQQAEQAAEQAAEQAAEQCB+ApCG+NmhJgiAAAiAAAiAAAiAAAiEggCkIRTDjE6CAAiAAAiAAAiAAAiAQPwEIA3xs0NNEAABEAABEAABEAABEAgFAUhDKIYZnQQBEAABEAABEAABEACB+AlAGuJnh5ogAAIgAAIgAAIgAAIgEAoCkIZQDDM6CQIgAAIgAAIgAAIgAALxE4A0xM8ONUEABEAABEAABEAABEAgFAQgDaEYZnQSBEAABEAABEAABEAABOInAGmInx1qggAIgAAIgAAIgAAIgEAoCEAaQjHM6CQIgAAIgAAIgAAIgAAIxE8A0hA/O9QEARAAARAAARAAARAAgVAQgDSEYpjRSRAAARAAARAAARAAARCInwCkIX52qAkCIAACIAACIAACIAACoSAAaQjFMKOTIAACIAACIAACIAACIBA/AUhD/OxQEwRAAARAAARAAARAAARCQQDSEIphRidBAARAAARAAARAAARAIH4CkIb42aEmCIAACIAACIAACIAACISCAKQhFMOMToIACIAACIAACIAACIBA/AQgDfGzQ00QAAEQAAEQAAEQAAEQCAUBSEMohhmdBAEQAAEQAAEQAAEQAIH4CUAa4meHmiAAAiAAAiAAAiAAAiAQCgKQhlAMMzoJAiAAAiAAAiAAAiAAAvETgDTEzw41QQAEQAAEQAAEQAAEQCAUBCANoRhmdBIEQAAEQAAEQAAEQAAE4icAaYifHWqCAAiAAAiAAAiAAAiAQCgIQBpCMczoJAiAAAiAAAiAAAiAAAjETwDSED871AQBEAABEAABEAABEACBUBCANIRimNFJEAABEAABEAABEAABEIifAKQhfnaoCQIgAAIgAAIgAAIgAAKhIABpCMUwo5MgAAIgAAIgAAIgAAIgED8BSEP87FATBEAABEAABEAABEAABEJBANIQimFGJ0EABEAABEAABEAABEAgfgKQhvjZoSYIgAAIgAAIgAAIgAAIhIIApCEUw4xOggAIgAAIgAAIgAAIgED8BCAN8bNDTRAAARAAARAAARAAARAIBQFIQyiGGZ0EARAAARAAARAAARAAgfgJQBriZ4eaIAACIAACIAACIAACIBAKApCGUAwzOgkCIAACIAACIAACIAAC8ROANMTPDjVBAARAAARAAARAAARAIBQEIA2hGGZ0EgRAAARAAARAAARAAATiJwBpiJ8daoIACIAACIAACIAACIBAKAhAGkIxzOgkCIAACIAACIAACIAACMRPANIQPzvUBAEQAAEQAAEQAAEQAIFQEIA0hGKY0UkQAAEQAAEQAAEQAAEQiJ8ApCF+dqgJAiAAAiAAAiAAAiAAAqEgAGkIxTCjkyAAAiAAAiAAAiAAAiAQPwFIQ/zsUBMEQAAEQAAEQAAEQAAEQkEA0hCKYUYnQQAEQAAEQAAEQAAEQCB+ApCG+NmhJgiAAAiAAAiAAAiAAAiEggCkIRTDjE6CAAiAAAiAAAiAAAiAQPwEIA3xs0NNEAABEAABEAABEAABEAgFAUhDKIYZnQQBEAABEAABEAABEACB+AlAGuJnh5ogAAIgAAIgAAIgAAIgEAoCkIZQDDM6CQIgAAIgAAIgAAIgAALxE4A0xM8ONUEABEAABEAABEAABEAgFAQgDaEYZnQSBEAABEAABEAABEAABOInAGmInx1qggAIgAAIgAAIgAAIgEAoCEAaQjHM6CQIgAAIgAAIgAAIgAAIxE8A0hA/O9QEARAAARAAARAAARAAgVAQgDSEYpjRSRAAARAAARAAARAAARCInwCkIX52qAkCIAACIAACIAACIAACoSAAaQjFMKOTIAACIAACIAACIAACIBA/AUhD/OxQEwRAAARAAARAAARAAARCQQDSEIphRidBAARAAARAAARAAARAIH4CkIb42aEmCIAACIAACIAACIAACISCAKQhFMOMToIACIAACIAACIAACIBA/AQgDfGzQ00QAAEQAAEQAAEQAAEQCAUBSEMohhmdBAEQAAEQAAEQAAEQAIH4CUAa4meHmiAAAiAAAiAAAiAAAiAQCgKQhlAMMzoJAiAAAiAAAiAAAiAAAvETgDTEzw41QQAEQAAEQAAEQAAEQCAUBCANoRhmdBIEQAAEQAAEQAAEQAAE4icAaYifHWqCAAiAAAiAAAiAAAiAQCgIQBpCMczoJAiAAAiAAAiAAAiAAAjETwDSED871AQBEAABEAABEAABEACBUBCANIRimNFJEAABEAABEAABEAABEIifAKQhfnaoCQIgAAIgAAIgAAIgAAKhIABpCMUwo5MgAAIgAAIgAAIgAAIgED8BSEP87FATBEAABEAABEAABEAABEJBANKgOcy/bNunGcF79eNL5Kffdx2grOxD3islSMlihdIoI+sQ7d2fmSAt9t7M/OkpVDBfCm3fc9B7pQQpmZREdEKJArR5u7njwCSa0sXy0a4/MygjM9tkWiO5ihRIJUpKoj17M4zkM5kkPTWZihZKU9+XLn7KlixAv27fR+6dCYhKFkmnvQeyaP/BLOeGrlD+VEpNSVLfKa59UpKTiL8vt+zYb6xr5UoVMJYLif4iAGnQnAmQBk2Ah6tDGmQ4mo4CaTBNXC4fpEGOpelIkAbTxGXyQRpkOEaiQBpkeXqJBmnwQulfykAaNAFCGmQAWooCabAEXiAtpEEAoqUQkAZL4DXTQho0AR5VHdIgy9NLNEiDF0qQBk1KeVfHSkPejIJYAtIQxFHx1iZIgzdOQSwFaQjiqOTdJkhD3oxiKQFpiIWWTFlIgyZHrDRoAsRKgwxAS1EgDZbAC6SFNAhAtBQC0mAJvGZaSIMmQKw0yAKMIxqkIQ5oOatAGjQBQhpkAFqKAmmwBF4gLaRBAKKlEJAGS+A100IaNAGGUBpeX/MpdRv0MM2d2Isqnl5BFmAc0SANcUCDNGhCy6U6tifJMzUREdJggrI/OSAN/nA1ERXSYIKyfA5IgyxT17cnzX78RXrtnY9p3/4DNLBbU0iD7PSxEw0rDTLcIQ0yHE1HgTSYJi6XD9Igx9J0JEiDaeIy+SANMhwjUVyXhvc+XkdVzj6dmnUZRb073AdpkJ0+dqJBGmS4QxpkOJqOAmkwTVwuH6RBjqXpSJAG08Rl8kEaZDiGRRoi/byv7RDq07EBpEF2+tiJBmmQ4Q5pkOFoOgqkwTRxuXyQBjmWpiNBGkwTl8kHaZDhCGmQ5RhLNDzTEAutXMpCGjQBHq4OaZDhaDoKpME0cbl8kAY5lqYjQRpME5fJB2mQ4ei3NOw6cKpsQz1GK5ZvQ64lsdLgEWAiFIM0yIwSpEGGo+kokAbTxOXyQRrkWJqOBGkwTVwmH6RBhqPv0rDPkjQUgDTIzpAARoM0yAwKpEGGo+kokAbTxOXyQRrkWJqOBGkwTVwmH6RBhqPf0rD7TzvSULQQpEF2hgQwGqRBZlAgDTIcTUeBNJgmLpcP0iDH0nQkSINp4jL5IA0yHH2Xhj2WpKEIpEF2hgQwGqRBZlAgDTIcTUeBNJgmLpcP0iDH0nQkSINp4jL5IA0yHP2Whj277EhDkWK5S4MsNb1oeBBajx9BGjQBHq4OaZDhaDoKpME0cbl8kAY5lqYjQRpME5fJB2mQ4ei7NOw8TbahHqMVKf6dx5L2ikEaNNlDGjQBQhpkAFqKAmmwBF4gLaRBAKKlEJAGS+A100IaNAEeVd2vH3f7Y7sdaShcEtIgO0MCGA3SIDMoWGmQ4Wg6CqTBNHG5fJAGOZamI0EaTBOXyQdpkOHo90rDH79bkobSkAbZGRLAaJAGmUGBNMhwNB0F0mCauFw+SIMcS9ORIA2micvkgzTIcPRbGv78zY40FDoO0iA7QwIYDdIgMyiQBhmOpqNAGkwTl8sHaZBjaToSpME0cZl8kAYZjr5LwxZL0nA8pEF2hgQwGqRBZlAgDTIcTUeBNJgmLpcP0iDH0nQkSINp4jL5IA0yHP2Whr2b7UhDwbKQBtkZEsBokAaZQYE0yHA0HQXSYJq4XD5IgxxL05EgDaaJy+SDNMhw9F0afj5dtqEeoxU88VuPJe0Vw9uTNNlDGjQBHq4OaZDhaDoKpME0cbl8kAY5lqYjQRpME5fJB2mQ4ei3NOz7yY40FDgJ0iA7QwIYDdIgMyiQBhmOpqNAGkwTl8sHaZBjaToSpME0cZl8kAYZjr5Lw4+WpOFkSIPsDAlgNEiDzKBAGmQ4mo4CaTBNXC4fpEGOpelIkAbTxGXyQRpkOPotDft/sCMN+f8DaZCdIQGMBmmQGRRIgwxH01EgDaaJy+WDNMixNB0J0mCauEw+SIMMR9+lYYMlaTgV0iA7QwIYDdIgMyiQBhmOpqNAGkwTl8sHaZBjaToSpME0cZl8kAYZjn5Lw4Fvz5BtqMdo+U5f77GkvWJ4EFqTPaRBE+Dh6pAGGY6mo0AaTBOXywdpkGNpOhKkwTRxmXyQBhmOvkvDN5ak4UxIg+wMCWA0SIPMoEAaZDiajgJpME1cLh+kQY6l6UiQBtPEZfJBGmQ4+i0NB7+yIw3pFSENsjMkgNEgDTKDAmmQ4Wg6CqTBNHG5fJAGOZamI0EaTBOXyQdpkOHouzSssyQNlSANsjMkgNEgDTKDAmmQ4Wg6CqTBNHG5fJAGOZamI0EaTBOXyQdpkOHotzRkfGFHGtLOhjTIzpAARoM0yAwKpEGGo+kokAbTxOXyQRrkWJqOBGkwTVwmH6RBhqPv0rD2TNmGeoyWVvkbjyXtFcOD0JrsIQ2aAA9XhzTIcDQdBdJgmrhcPkiDHEvTkSANponL5IM0yHD0WxoyP7UjDannQRpkZ0gAo0EaZAYF0iDD0XQUSINp4nL5IA1yLE1HgjSYJi6TD9Igw9F3afjEkjScD2mQnSEBjAZpkBkUSIMMR9NRIA2micvlgzTIsTQdCdJgmrhMPkiDDEe/pSHrIzvSkHIBpEF2hgQwGqRBZlAgDTIcTUeBNJgmLpcP0iDH0nQkSINp4jL5IA0yHH2Xhg8sScNFkAbZGRLAaJAGmUGBNMhwNB0F0mCauFw+SIMcS9ORIA2micvkgzTIcPRdGt7/r2xDPUZLqfq1x5L2iuFBaE32kAZNgIerQxpkOJqOAmkwTVwuH6RBjqXpSJAG08Rl8kEaZDj6Lg3vWZKGapAG2RkSwGiQBplBgTTIcDQdBdJgmrhcPkiDHEvTkSANponL5IM0yHD0XRrWVJRtqMdoKZd+5bGkvWJYadBkD2nQBIiVBhmAlqJAGiyBF0gLaRCAaCkEpMESeM20kAZNgEdVL1eqgGzAw9Gy3q7kS9y8gqZcvi6vItb/HdKgOQSQBk2AkAYZgJaiQBosgRdIC2kQgGgpBKTBEnjNtJAGTYCmpOGts2Qb6jFaSvUvPZa0VwzSoMke0qAJENIgA9BSFEiDJfACaSENAhAthYA0WAKvmRbSoAnQlDS8YUka/gdpkJ0hAYwGaZAZFDzTIMPRdBRIg2nicvkgDXIsTUeCNJgmLpMP0iDDMRLFt+1Jq8+WbajHaClXfeGxpL1iWGnQZA9p0ASIlQYZgJaiQBosgRdIC2kQgGgpBKTBEnjNtJAGTYCmVhpeO0e2oR6jpVz9uceS9opBGjTZQxo0AUIaZABaigJpsAReIC2kQQCipRCQBkvgNdNCGjQBmpKGVyrLNtRjtJRr13osaa8YpEGTPaRBEyCkQQagpSiQBkvgBdJCGgQgWgoBabAEXjMtpEEToClpWGVJGq6DNMjOkABGgzTIDAqeaZDhaDoKpME0cbl8kAY5lqYjQRpME5fJB2mQ4RiJ4tszDS+fK9tQj9FSbvjMY0l7xbDSoMke0qAJECsNMgAtRYE0WAIvkBbSIADRUghIgyXwmmkhDZoATa00vHiebEM9Rku56VOPJe0VgzRosoc0aAKENMgAtBQF0mAJvEBaSIMAREshIA2WwGumhTRoAjQlDS+cL9tQj9FSbv7EY0l7xSANmuwhDZoAIQ0yAC1FgTRYAi+QFtIgANFSCEiDJfCaaSENmgBNScPzVWQb6jFayi0feyxprxikQZM9pEETIKRBBqClKJAGS+AF0kIaBCBaCgFpsAReMy2kQROgIWnIfM6ONKTeCmmQnSEBjAZpkBkUPAgtw9F0FEiDaeJy+SANcixNR4I0mCYukw/SIMMxEsWvB6Ezn71AtqEeo6XW+shjSXvFsNKgyR7SoAkQKw0yAC1FgTRYAi+QFtIgANFSCEiDJfCaaSENmgBNrTQ8faFsQz1GS73tQ48l7RWDNGiyhzRoAoQ0yAC0FAXSYAm8QFpIgwBESyEgDZbAa6aFNGgCNCUNT10k21CP0VLv+OCIkmu/+p76jJhJW7ftpIqnVaARfVpRmVLF/xHt9TWf0rjpS+jAwYNUpHBB6tOhAZ171mkes8ZWDNIQG69/lIY0aAKENMgAtBQF0mAJvEBaSIMAREshIA2WwGumhTRoAjQlDUstSUOdv6UhKyubatzXg/p0bEhXVKtM85eupDUffkFThnY8gkJGZhZdXacjLZzahyqceDy9+9GXNHTCfHp2zlBZ2IejQRo0sUIaNAFCGmQAWooCabAEXiAtpEEAoqUQkAZL4DXTQho0AZqShiUXyzbUY7TUuv8XLbl23QYaNmkBLZzaV/0tO/sQXXlHe1oxf4RaTYh8/ty7X8nFq0vGUUpKMm3fuYfubNFP/b8fH0iDJlVIgyZASIMMQEtRIA2WwAukhTQIQLQUAtJgCbxmWkiDJkBT0vBEVdmGeoyWetf70ZLLV65RKwtDHmwe/ds9rQdS7w4NqHLFU46IOHLKIvplyza69/braMaC5XT7zVdQjWurecwaWzFIQ2y8/lEa0qAJENIgA9BSFEiDJfACaSENAhAthYA0WAKvmRbSoAnQlDQs9ueCO6/ep97zXrTIkuWrad36jdSvU8Po3xp3HE6tG9WmalUqHRHq+42bqVX3MWqloexxpWh0/weoZPEieaWL698hDXFh+7sSpEETIKRBBqClKJAGS+AF0kIaBCBaCgFpsAReMy2kQROgKWlYaEka7v1bGpavWkNvvvuZevg58qnTvB8N6NKYKlc6Nfq3bTt2031tB9PEwe3pjFPK09MvvkWzFr9AS2c8RGlpqbLAiQjSoIkU0qAJENIgA9BSFEiDJfACaSENAhAthYA0WAKvmRbSoAnQlDQsuES2oR6jpdZ/N1ryy29+oP6jZ9OS6QPU3zKzsqh67Xb00sJRVKxooWi55195l95+fy0N7dki+rd7HxhE/To3ooqnV/CY2XsxSIN3VrmWhDRoAoQ0yAC0FAXSYAm8QFpIgwBESyEgDZbAa6aFNGgCNCUN8y6VbajHaKkN1kRL8oPPtzbqST3b1afqVf96e9Krb31Es8b1oE2bt9KCp1ZRjzb16Iuvf6Dugx+hhVP6KpnY+PNv1KjDUHp29tAjHpj22IQ8i0Ea8kT07wUgDZoAIQ0yAC1FgTRYAi+QFtIgANFSCEiDJfCaaSENmgBNScOcy2Qb6jFaaqN3jij59Xc/Ua9hM2jzlm106snlaHjvllS+bBn6+PP16u/8JqWkpCQlEIuffoUOEVG+9DTq2OJOuqLauR6zxlYM0hAbr3+UhjRoAoQ0yAC0FAXSYAm8QFpIgwBESyEgDZbAa6aFNGgCNCUNsy1JQ+MjpUGWlkw0SIMmR0iDJkBIgwxAS1EgDZbAC6SFNAhAtBQC0mAJvGZaSIMmQEPSkDHrctmGeoyW1vRtjyXtFYM0aLKHNGgChDTIALQUBdJgCbxAWkiDAERLISANlsBrpoU0aAI0JQ2PVpdtqMdoac3e8ljSXjFIgyZ7SIMmQEiDDEBLUSANlsALpIU0CEC0FALSYAm8ZlpIgyZAQ9JwcMYVsg31GC29xZseS9orBmnQZA9p0AQIaZABaCkKpMESeIG0kAYBiJZCQBosgddMC2nQBGhIGg5M/59sQz1Gy9fyDY8l7RWDNGiyhzRoAoQ0yAC0FAXSYAm8QFpIgwBESyEgDZbAa6aFNGgCNCUN066UbajHaPlave6xpL1ikAZN9pAGTYCQBhmAlqJAGiyBF0gLaRCAaCkEpMESeM20kAZNgIakYf/DV8k21GO0/K1XeyxprxikQZM9pEETIKRBBqClKJAGS+AF0kIaBCBaCgFpsAReMy2kQROgKWmYerVsQz1Gy//Aax5L2isGadBkD2nQBAhpkAFoKQqkwRJ4gbSQBgGIlkJAGiyB10wLadAEaEga9k2+RrahHqMVaPuqx5L2ikEaNNlDGjQBQhpkAFqKAmmwBF4gLaRBAKKlEJAGS+A100IaNAGakoZJ18o21GO0Au1e8VjSXjFIgyZ7SIMmQEiDDEBLUSANlsALpIU0CEC0FALSYAm8ZlpIgyZAQ9Kwd8J1sg31GK1gh1UeS9orBmnQZA9p0AQIaZABaCkKpMESeIG0kAYBiJZCQBosgddMC2nQBGhKGsZfL9tQj9EKdlzpsaS9YpAGTfYsDQ3rLtWM4q16WloyZWRmEx3yVl6n1NwldVT1AgUa64TxXDclJYkOHSLKzjbQOSLat2+2apuJsUtOTqLkZKLMTDN9i4ydib5RElF6ajIdzMj2PNY6BY32jYjSUpMpMytbzU2/P6b7xsccf7KyDHSOiEz2j2U2NeXw96XfA5ejb6a+L9PTzB1zke9KU31LTU2i7Gwz5wKT5wGehnwu4Lnp4jHH5wL+vswweC4oV6qAL0f3n2Nv8CVuXkELdX45ryLW/x3SoDkELA0Vy0/QjBK86l9t6qAaVajI2cFrnECL/tzzhYri8tihbwITxWCIyDHn4rgxRpf75/L3ZeS70sVzgcvngTAcc75Jw5gbDX7z/52qUJeXrOSNJSmkIRZauZSFNGgCtFTd5ZNFGC7OXLywdnncwnAB4+pNFkiDpZOUQFqXv1O4b35Jwx+jbxKgH3uIwl1fjL2S4RqQBk3gkAZNgJaqQxosgddM6/pJ0NXVL0iD5sS3WB3SYBG+ZmrXvy99k4aRN2uSj6964e4vxFfRYC1IgyZsSIMmQEvVIQ2WwGumdf0kCGnQnCCWqmN7kiXwmmldPg+EQdT9koY9I2pozqz4qhfpsSK+igZrQRo0YUMaNAFaqu7yyQIX1pYmlWZal8ctDBcw3EeX9/273DcXtzuG4ZjzTRqGWZKGnpAGzdNo8KtDGoI/Rrm1ENKQmOPm8oW1y30LwwUMpCHxvlNcPg+E4ZjzSxp2D73FymQu2ut5K3ljSYqVhlho5VIW0qAJ0FJ1l08WLl98om+WDhiBtGEYO5fvxrvcN6w0CBzghkP4+SD0rsE1Dffmr3TF+iy3kjeWpJCGWGhBGjRpBac6pCE4YxFLS8Jw4YkLmFhmRDDK4pmGYIxDrK1w+TyAlYZYZ8Pf5XcNujX+yho1i/V9TqO2maqQBk3OWGnQBGipussnC1xYW5pUmmldHrcwXMBwH12+G+9y3yDqml9eFqr7udKw86FaFnpEVLz/s1byxpIU0hALLaw0aNIKTnVIQ3DGIpaWuHxh7XLfIA2xzPJglcUrV4M1HrG0xuXvFF+lYUDtWDCLlS0+4BmxWH4FgjRoksVKgyZAS9UhDZbAa6Z1/STIeHDXU3OSWKiO7UkWoAukdPk8EAZR9+tB6B39bxOYXbGHKPHQ07FXMlwD0qAJHNKgCdBSdZdPFriwtjSpNNO6PG5huIDhPrq8hcflvkHUNb+8LFT3c6VhR9/bLfSIqMSgZVbyxpIU0hALrVzKQho0AVqqDmmwBF4zrcsX1i73DdKgOfEtVsf2JIvwNVO7/J3ipzRs73OHJvn4qpcc/FR8FQ3WgjRowoY0aAK0VB3SYAm8ZlrXT4KMB3c9NSeJherYnmQBukBKl88DYRB1v7Ynbe9VR2B2xR6i5NClsVcyXAPSoAkc0qAJ0FJ1l08WuLC2NKk007o8bmG4gOE+uryFx+W+QdQ1v7wsVPdzpWFbzzst9Iio1LAnreSNJSmkIRZauZSFNGgCtFQd0mAJvGZaly+sXe4bpEFz4lusju1JFuFrpnb5O8VPafj9wbqa5OOrXnr4kvgqGqwFadCEDWnQBGipOqTBEnjNtK6fBBkP7npqThIL1bE9yQJ0gZQunwfCIOp+bU/6vftdArMr9hClRz4ReyXDNSANmsAhDZoALVV3+WSBC2tLk0ozrcvjFoYLGO6jy1t4XO4bRF3zy8tCdT9XGrZ2u9tCj4jKjHrcSt5YkkIaYqGVS/tAdhcAACAASURBVFlIgyZAS9UhDZbAa6Z1+cLa5b5BGjQnvsXq2J5kEb5mape/U/yUht+63qNJPr7qx41eHF9Fg7UgDZqwIQ2aAC1VhzRYAq+Z1vWTIOPBXU/NSWKhOrYnWYAukNLl80AYRN2v7UlbOtcTmF2xhzh+7KLYKxmu4bQ0/O/29vTM7CFUolgR37BCGnxD62tgl08WuLD2der4FtzlcQvDBQz30eUtPC73DaLu29eab4H9XGn4tZMdaThhHKTBtwnjJXC80rDgqZW0d98BalG/Zp5pIA15IgpkAUhDIIclz0a5fGHtct8gDXlO7cAWwPakwA5Nng1z+TvFV2noeG+ebP0ocML4hX6EFY2JlYZccP7y6++UmZVNFU48Lk/YkIY8EQWyAKQhkMOSZ6NcPwkyANz1zHMaBK4AticFbkg8Ncjl80AYRN2v7UmbO9T3NH+kC5WdsEA6pHg8p6ThqRVv0IwFyyktLY1uvPIiWvbiW7Rk+gC1Palmw57UqUVdGjJxHlWtUomG92pJy154k2YtWkH7D2ZQqRJFaXS/1lS+bBkV4+DBDGrT5Hb69MvvaPr85+iEMiXpx5+30Lbtu6jRXTfRbTdVV4MBaRCfk0YCunyywIW1kSkknsTlcQvDBQz30eUtPC73DaIu/nXme0A/Vxp+aXef7+3PLUG5SfOt5I0lqTPSsGHjZmrScTg9Pq2/usCfs+QlGjllEb31zCQlDVVr3E9XVDuXHurahAoXKqAYff3dT3TCcSWpWJFCNOaRJ2jf/gPUp2ODf0jDvQ8MokVT+9K5Z51G23bsplsb9qTVS8dTenoapCGW2RagspCGAA1GDE1x+cLa5b5BGmKY5AEriu1JARuQGJrj8neKn9Lwc9sGMVCWK3ri5HlywXyK5Iw0zFq8grZs3UE92/21rJSRkUkX3NiC3lg2UUnD+dc3p2ceG0Inlz8+V5TvfPA5LXhqFU0Z2vEf0tB3xKP07Jyh0Xq8ajF1WCe1fWnvgUw6ofhon4bHXthfd3b9i2PSmfYa4WPmtEPfqOgujx365uME8iH0lsPH3PEOfp8wLpf7F+nbQQe/LyPflS6eC1w+D/AxFzmPu3ouKJgv1YdvYqJNbRr6EjevoOWnzD2iyNqvvqc+I2bS1m07qeJpFWhEn1ZUplTxXMPMX7qSFj39Ch04mEE3XV2Vut7vz29NOCMNo6YuppIlilKzejWiQC+r1Yaenzc8Kg0fvzyDkpKSov++ZPlqWvXGh3To0CHatftPVf/h4Z3+IQ1jHnmc5k7sFa1Xq3FvGj+wLZ1aoSzt2HOQTj5ubF5zIeH+/cffOqs2J+ermHBt99Lg7ANfqWIujx365mUmBKfMD4ePuf84+H3ClF3uX6RvKQ5+X0a+K108F7h8HuBjLnIed/VcUKJIui9f4JtaN/Ilbl5Byz88J1okKyubatzXg/p0bEhXVKtMLAVrPvxC3dg++jP7iRfp/Y/X0ZAHm/v6tlDO64w08ErDtu27qdsDf/0oBwO/4IYWtPqp8VFp+GTlzCjr19d8SpMfW0azxnanIoUL0up3PqHHn30tV2kYO+0JmjOhZ67SgGca8joMgvnv2J4UzHHJq1WuL7dz/7G/Oq9ZELx/x4PQwRsTLy1y+TzA/Xf9+9KvB6F/ur+xl+kjXuakR2ZHY65dt4GGTVpAC6f2VX/Lzj5EV97RnlbMH6GuWSMfvta98d5u9OT0h6h4scLibTo6oDPS8O33P1Or7mNo0cP96LjSxWnhsldoyIR50WcaeHtSTmngh6BfWv1/ShJ4OafH4Gl0MCMT0nB4hrh8EuQuunyycP1E4eqFtcvjFoYLGO6jyw8Lu9w3iLrv15riCfx8pmFjqybi7fUSsMK0x6LFlq9co1YWePUg8rmn9UDq3aEBVa54SvRv32zYRL2Hz6RqF1SiN9/7jIoUKkidW9WlCyr7s7XcGWlggk8uf11tLUpJSaarL6tC7328jmaM7prrSsPeffupQ9/J9MOmX6l0yWLUoM4N9NzKdyANkAYvx3agy7h88Ym+BXrq/WvjwjB2Ll9Yu9w3SEPifa/4KQ0/tmhqBcjJM2ZF8/L2+XXrN1K/Tn8/X9G443Bq3ag2VatSKVruzffWUoe+E2lYrxZ0/f8upnXrf6S2vcfT8/NGUMEC+cT74ZQ0iNPxEBDbkzxACmARrDQEcFA8NCkMF564gPEwEQJWxOWVWbw9KWCTLYbmuP596df2pB+aN4uBslzR/8x89O+VhlVr6M13P1MPP0c+dZr3owFdGlPlSqdG/7bmgy9o6pxnaN6kv5+7bdppBHVocSedd9Zpco07HAnSoIkU0qAJ0FJ1SIMl8JppXT8JMh5Ig+YksVAd0mABukBKl88DjMf170vfpKGZJWl49G9p+PKbH6j/6Nnqt8b4k5mVRdVrt6OXFo6iYkULRWf/xp9/o/t7jFHPOkQ+97UdQr073EeVzjhZ4Cg5MgSkQRMppEEToKXqLp8sXD9RuHph7fK4heEChvvo8hYel/sGUbd0ItZI6+f2pO+b/v0cgUYTY656yqy/X9bDDz7f2qin+hmB6lX/envSq299RLPG9aBNm7eqnwjo0aaeytGg3RCqdePlVLfmVfTx5+up++Bp9PzcYeq3xKQ/kAZNopAGTYCWqkMaLIHXTOvyhbXLfYM0aE58i9WxPckifM3ULn+n+CkNGxq30CQfX/VTZ884oiL/AHGvYTNo85ZtdOrJ5Wh475ZUvmwZJQb8d15d4J8R4NWG3sNnqP8eV7qEeg4i5xam+FqTey1IgyZNSIMmQEvVIQ2WwGumdf0k6OoqCqRBc+JbrA5psAhfM7Xr35d+bU/6rlFLTfLxVT9tzvT4KhqsBWnQhA1p0ARoqTqkwRJ4zbSunwQhDZoTxFJ1PNNgCbxmWpfPA2EQdb+k4duGfz98rDnFYqp++txpMZW3URjSoEkd0qAJ0FJ1l08WuLC2NKk007o8bmG4gOE+urzv3+W+4ZkGzS8vC9X93J707X33W+gR0enzH7GSN5akkIZYaOVSFtKgCdBSdUiDJfCaaV2+sHa5b5AGzYlvsTq2J1mEr5na5e8UP6Vhff3WmuTjq37Ggofjq2iwFqRBEzakQROgpeqQBkvgNdO6fhJkPLjrqTlJLFTH9iQL0AVSunweCIOo+7U96Zt7HxCYXbGHOHPh1NgrGa4BadAEDmnQBGipussnC1xYW5pUmmldHrcwXMBwH13ewuNy3yDqml9eFqr7udLwdb02FnpE9N9FU6zkjSUppCEWWrmUhTRoArRUHdJgCbxmWpcvrF3uG6RBc+JbrI7tSRbha6Z2+TvFT2n46u62muTjq17x8cnxVTRYC9KgCRvSoAnQUnVIgyXwmmldPwkyHtz11JwkFqpje5IF6AIpXT4PhEHU/dqetO6udgKzK/YQlZ6YFHslwzUgDZrAIQ2aAC1Vd/lkgQtrS5NKM63L4xaGCxjuo8tbeFzuG0Rd88vLQnU/Vxq+rNveQo+Izloy0UreWJJCGmKhlUtZSIMmQEvVIQ2WwGumdfnC2uW+QRo0J77F6tieZBG+ZmqXv1P8lIYv7uygST6+6mc/OSG+igZrQRo0YUMaNAFaqg5psAReM63rJ0HGg7uempPEQnVsT7IAXSCly+eBMIi6X9uTPr+jo8Dsij3EOU+Nj72S4RqQBk3gkAZNgJaqu3yywIW1pUmlmdblcQvDBQz30eUtPC73DaKu+eVlobqfKw1rb+9koUdElZeNs5I3lqSQhlho5VIW0qAJ0FJ1SIMl8JppXb6wdrlvkAbNiW+xOrYnWYSvmdrl7xQ/peGz2zprko+v+rlPj42vosFakAZN2JAGTYCWqkMaLIHXTOv6SZDx4K6n5iSxUB3bkyxAF0jp8nkgDKLu1/akT2t3EZhdsYc475kxsVcyXAPSoAkc0qAJ0FJ1l08WuLC2NKk007o8bmG4gOE+uryFx+W+QdQ1v7wsVPdzpeGTWl0t9Ijo/GdHW8kbS1JIQyy0cikLadAEaKk6pMESeM20Ll9Yu9w3SIPmxLdYHduTLMLXTO3yd4qf0vBxzW6a5OOrXmX5qPgqGqwFadCEDWnQBGipOqTBEnjNtK6fBBkP7npqThIL1bE9yQJ0gZQunwfCIOp+bU/66JbuArMr9hAXPD8y9kqGa0AaNIFDGjQBWqru8skCF9aWJpVmWpfHLQwXMNxHl7fwuNw3iLrml5eF6n6uNHxYo4eFHhFduGKElbyxJIU0xEIrl7IsDe+v2aQZxVv1EkXSadefGZSdfchbBY1SVS8tr2qnpPyfRhTvVQsVSKWsrEO0/2CW90oaJbOyLla1TYxdeloy5U9Lpt17MzVa7L1qZOxM9C0piahkkXy0bfcB7w3UKGmyb9zMYoXT6M99mZSZZe6YMzFu3LeC+VKIkpJo73735mVaShIVLJBKu/7I0Jht3qua/r4sVTQfbd99gPyflUSR70pT54KiBVNpf0Y2HczI9j4AcZY0eR7gJuZPT6GUlCT1nWLiY/L7Mjk5iYoVSqMdew6a6Bpx3/xaafjg5geN9OHoJBe9MNxK3liSQhpioXUMadAM4bn68SXy0++7DlCWAWnw3Cihgvxlk5F1yNgFjFCzPYXhEwVfoG039GXqqVFChVgaTihRgDZv3ycUMVhhShfLp0Q9I9P/CxjTPS9SIFVJw569Zi6sTfYvPTWZihZKU9+XLn7KlixAv27fZ0QaTPMrWSSd9h7IMnYDyWT/CuVPpdSUJPWd4tonJTmJ+Ptyy479xrrmlzT83409jfUhZ6KLXxpmJW8sSSENsdA6hjQUKNBYM4q36mlpyX9dvBi4vbRv32zVqIZ1l3prnGYpvvty6BAZWUXhps5dUsdY//gOTHIyUWamgYEz3DdKIuILNBN3BU2PG+dLS02mzKxsNTf9/pick9wXPub4wyt8Jj4m+8cym5py+PvSQOdM9o27w6uXrh5zqalJlJ1t5lxgetz4XMBz08Vjjs8F/H2ZYWCFKHIu8Esa3r+hl4FvjX+mqPryUCt5Y0kKaYiF1jGkAXs9NSFaqO7y/nH0zcKEEkjp8rgxHpf7h74JHAAWQrg8bmE45vyShveu721hNhJVWznESt5YkkIaYqEFadCkFZzqLp8s0LfgzLNYWuLyuIXhAob76OIDtS7PS5f7FoZjzi9pePe6PrF8dYuVvWTVYLFYfgWCNGiS5QehsdKgCdFCdZdPFuibhQklkNLlcQvDBQykQeAgMBwCx5xh4ILp/Hx70ppr+wq21HuoS18Z5L2wpZKQBk3wkAZNgJaqu3yyQN8sTSrNtC6PG6RBc3JYrO7yvHS5b2E45vxaaXjn6n5WjrjLXhtoJW8sSSENsdDKpSykQROgpeounyzQN0uTSjOty+MWhgsYrDRoHgAWquOYswBdKKWfKw1vX9VfqJWxhbl89UOxVbBQGtKgCR3SoAnQUnWXTxbom6VJpZnW5XGDNGhODovVXZ6XLvctDMecXysNb105wMoRV/11O3lj6SykIRZaWGnQpBWc6i6fLNC34MyzWFri8riF4QIGKw2xzPZglMUxF4xxiKcVfq40vPk/O3f8r3jDzgpHLPwhDbHQgjRo0gpOdZdPFuhbcOZZLC1xedwgDbHMhGCVdXleuty3MBxzfq00vHGFnWcL/vemnWcpYvnGgTTEQgvSoEkrONVdPlmgb8GZZ7G0xOVxC8MFDFYaYpntwSiLYy4Y4xBPK/xcaXj9cjtvMbrybTtvbYqFP6QhFlqQBk1awanu8skCfQvOPIulJS6PG6QhlpkQrLIuz0uX+xaGY86vlYbVl9n5vYSr3rHz+xCxfONAGmKhBWnQpBWc6i6fLNC34MyzWFri8riF4QIGKw2xzPZglMUxF4xxiKcVfq40vHapnV9mvnqNnV+ijoU/pCEWWpAGTVrBqe7yyQJ9C848i6UlLo8bpCGWmRCssi7PS5f7FoZjzq+VhlcvGWrlILzm3V5W8saSFNIQCy1Igyat4FR3+WSBvgVnnsXSEpfHLQwXMFhpiGW2B6MsjrlgjEM8rfBzpWFV1WHxNEm7znXv99SO4XcASIMmYfxOgyZAS9VdPlmgb5YmlWZal8cN0qA5OSxWd3leuty3MBxzfq00rLx4uJUj7vr/e9BK3liSQhpioYWVBk1awanu8skCfQvOPIulJS6PWxguYLDSEMtsD0ZZHHPBGId4WuHnSsPLF42Ip0nadW74oId2DL8DQBo0CWOlQROgpeounyzQN0uTSjOty+MGadCcHBaruzwvXe5bGI45v1YaXrpwpJUj7sYPu1vJG0tSSEMstLDSoEkrONVdPlmgb8GZZ7G0xOVxC8MFDFYaYpntwSiLYy4Y4xBPK/xcaXjhglHxNEm7zs0fddOO4XcASIMmYaw0aAK0VN3lkwX6ZmlSaaZ1edwgDZqTw2J1l+ely30LwzHn10rDivNHWznianzS9Yi8a7/6nvqMmElbt+2kiqdVoBF9WlGZUsWP2bbft++iWo16UZ+ODanGtdV86QOkQRMrpEEToKXqLp8s0DdLk0ozrcvjFoYLGKw0aB4AFqrjmLMAXSilnysNz583RqiVsYW55dMu0QpZWdlU474eSgCuqFaZ5i9dSWs+/IKmDO14zKDtek+gP/fupztrXgVpiA29udKQBnOsJTO5fLJA3yRnirlYLo8bpMHcPJLO5PK8dLlvYTjm/FppWH7uWOnDyFO8mp91jpZbu24DDZu0gBZO7av+lp19iK68oz2tmD+CihQu+I94z778Nn302XrKly+NzjvrdEiDJ+J5FGrZbTQ1v7cmVa1SUSvc+dc3p09WzlQxIA1aKK1Vdvlkgb5Zm1ZaiV0etzBcwHAfK5afoDUHgljZ5Xnpct/CcMz5JQ3PVh5n5VCstbZTNO/ylWvUysKQB5tH/3ZP64HUu0MDqlzxlCPax9uX7u8xluZO7EXjpi+hCyqfCWmQGMF4peHQoUN0073dafncYZSWlkqQBonRsBvD5ZMF+mZ3bsWb3eVxC8MFDKQh3plvrx6OOXvsdTP7uT3pmXPsSEPtz/+WhiXLV9O69RupX6eGUVSNOw6n1o1qU7UqlY7A16bXeGpY90b198Hj50EadCdXpD5LQ4v6Neni82NfaXj3wy/pkgvPUqEgDVIjYi+OyycL9M3evNLJ7PK4QRp0Zobdui7PS5f7FoZjzq+VhqfPGm/loLvty7+fV1i+ag29+e5n6uHnyKdO8340oEtjqlzp1Ojflr3wJn35zQ9qBYI/kAbBoWNpOP+cM+jFV99TD4tUrVKJ+nVuRAXyp6ssr6/5VC3t/LF3H5184vHUv0tjqnDicf8QBUiD4KBYCuXyyQJ9szSpNNO6PG5huIDhPmJ7kuZBYLg6jjnDwAXT+bnSsKySnW2Gt6/rECXEItB/9GxaMn2A+ltmVhZVr92OXlo4iooVLRQt16LraPr0y28pKSlJ/e3AgYOUkpJCtW+qfsQqhRT6UL09iaWBn0ifMqwjpaelUb9Rs+j4MiWoXdM7aNPmrdSw/VCaPb6nEoWXX/+Aps5+mp56dBAlJycdsboAaZCafvbiuHyyQN/szSudzC6PG6RBZ2bYrevyvHS5b2E45vxaaVhacaKVg67OV+2jefnB51sb9aSe7epT9ap/vT3p1bc+olnjeqjr1QVPraIeber9o51YaRAcOpYGtq9brr1ERf3q243Uc+h0WjZrMM1+4kXavGWbGqDI57YmfWh475ZU8fQKx5SGnX9kUFL6fwVbGYxQhw5+rRpSoYydV4/5TWHj1r9ebeZi/9A3v2ePP/FdHjcm5nL/0Dd/jgm/o7o8bmE45ooXTvNlijz530m+xM0r6J1ftzuiyNff/US9hs1Q16annlxOXY+WL1uGPv58vfo7v0kpssIQqQhpyItyDP/O0tD47pvosovOUbV++30n3dmiH72xbCKNnLKISpUsRs3q1YhGbNV9DN17+3V05aXnHVMa9h7IpIykM2NoRWIUTTv0jWroCcXt/MiJ35R+3fnXj6i42D/0ze/Z4098l8eNibncP/TNn2PC76guj1sYjrmC+VJ9mSJLzpjsS9y8gtZd3zavItb/PXTbk2rdcDnVvP5SBV49PDJ8plppmLV4BW3ZuiPmlQa8ctX6HI6rAS4vS6NvcU0J65VcHjeG63L/0Dfrh09cDXB53MJwzPm1PemJ06fENZ90K931bRvdEL7XD5007D9wkB4Z0YXy50unXsNn0IknlFbPNGz8+Tdq3HEYPTbuQTq5/PG08o0PaNKsZfT0rMF4psH3aWg+gcsnC/TN/HySyOjyuIXhAob7iAehJY4EczFwzJljLZ3JzwehF582Vbq5nuLd890DnsrZLBQqaeDtRjWvu5TmLHmJduzcQxdXqUj9OzeOvj3p1bc/prHTnqD9+w/QSSceRwO6NFECwZ+cDz/jQWibU1Ymt8snC/RNZo6YjuLyuEEaTM8muXwuz0uX+xaGY86vlYZFpz4sdwDFEKnehtYxlLZTNFTS4AdibE/yg6r/MV0+WaBv/s8fPzK4PG5huIDBSoMfR4W/MXHM+cvXz+h+rjQsPOURP5t+zNj3fn+/lbyxJIU0xEIrl7KQBk2Alqq7fLJA3yxNKs20Lo8bpEFzclis7vK8dLlvYTjm/FppWHDyNCtHXP0f//4hNysN8JAU0uAB0r8VgTRoArRU3eWTBfpmaVJppnV53MJwAYOVBs0DwEJ1HHMWoAul9HOlYV4FO9LQYCOkQWh6BDcMpCG4Y/NvLXP5ZIG+YU4GkQDmZRBHJe82YdzyZhTUEq6PnV8rDXNPmm5lSBv+1NJK3liSYqUhFlq5lIU0aAK0VN31L1Pc9bQ0sTTSujwnsdKgMTEsV3V5XrrctzAcc35Jw5zyM6wcdY02tbCSN5akkIZYaEEaNGkFp7rLJwv0LTjzLJaWuDxuYbiAgajHMtuDURbHXDDGIZ5W+Lk9afaJM+Npknadxj83147hdwBIgyZhrDRoArRU3eWTBfpmaVJppnV53CANmpPDYnWX56XLfQvDMefXSsOsso9aOeKabm5mJW8sSSENsdDCSoMmreBUd/lkgb4FZ57F0hKXxy0MFzBYaYhltgejLI65YIxDPK3wc6Xh0RNmxdMk7TrNfm2qHcPvAJAGTcJYadAEaKm6yycL9M3SpNJM6/K4QRo0J4fF6i7PS5f7FoZjzq+VhpnHP2bliGu+pYmVvLEkhTTEQgsrDZq0glPd5ZMF+haceRZLS1wetzBcwGClIZbZHoyyOOaCMQ7xtMLPlYbpx9mRhpa/QRrimQsJVQcrDQk1XNHGunyyQN8wJ4NIAPMyiKOSd5swbnkzCmoJ18fOr5WGaWXsSEOrrZCGoB5LYu2CNIihNBrI9S9T3PU0Op1Ekrk8J7HSIDJFrARxeV663LcwHHN+ScPDZWZbOdZab21sJW8sSbE9KRZauZSFNGgCtFTd5ZMF+mZpUmmmdXncwnABA1HXPAAsVMcxZwG6UEo/tydNKW1HGtr8DmkQmh7BDQNpCO7Y/FvLXD5ZoG+Yk0EkgHkZxFHJu00Yt7wZBbWE62Pn10rD5FJzrAxp222NrOSNJSlWGmKhhZUGTVrBqe76lynuegZnrnltictzEisNXmdB8Mq5PC9d7lsYjjm/pGFiSTvS0H47pCF434DCLcJKgzBQQ+FcPlmgb4YmkXAal8ctDBcwEHXhA8JAOBxzBiD7lMLP7UkTStiRhg47IA0+TZfghIU0BGcsYmmJyycL9C2WmRCcsi6PG6QhOPMs1pa4PC9d7lsYjjm/VhrGFZ8b62EiUr7TzoYicfwMgu1JmnQhDZoALVV3+WSBvlmaVJppXR63MFzAYKVB8wCwUB3HnAXoQin9XGkYY0kaukAahGZHgMNAGgI8OP/SNJdPFugb5mQQCWBeBnFU8m4Txi1vRkEt4frY+bXSMLqYnZWGrruw0hDUY0msXZAGMZRGA7n+ZYq7nkank0gyl+ckVhpEpoiVIC7PS5f7FoZjzi9pGFl0npVjrfvuBlbyxpIU25NioZVLWUiDJkBL1V0+WaBvliaVZlqXxy0MFzAQdc0DwEJ1HHMWoAul9HN70ogidqShxx5Ig9D0CG4YSENwx+bfWubyyQJ9w5wMIgHMyyCOSt5twrjlzSioJVwfO79WGoYVnm9lSHv+cZ+VvLEkxUpDLLSw0qBJKzjVXf8yxV3P4Mw1ry1xeU5ipcHrLAheOZfnpct9C8Mx55c0DClkRxp6/wlpCN43oHCLeKUhJeX/hKPmHq5EkXTa9WcGZWcf8j1fVtbFKsf7azb5nosTFCqQSllZh2j/wSwj+apeWt5Y/9LTkil/WjLt3pvpXN+SkohKFslH23YfcK5v3KFihdPoz32ZlJnl/zFnck5y3wrmSyFKSqK9+92bl2kpSVSwQCrt+iPDyXlZqmg+2r77APk/K4lMz8uiBVNpf0Y2HczI9n3sTPctf3oKpaQkqe8UEx+T/UtOTqJihdJox56DJrqm5qVf0jDYkjT0gTQYmTtWk7A0mPocXyI//b7rAGUZkAZTfYrk4S+bjKxDxi5gTPaPTxR8gbbd0Jepyb6xNJxQogBt3m7uODDZv9LF8ilRz8j0/wLGZL84V5ECqUoa9uw1c2Ftsn/pqclUtFCa+r508VO2ZAH6dfs+I9Jgml/JIum090CWsRtIJvtXKH8qpaYkqe8U1z4pyUnE35dbduw31jW/pGFgwQXG+pAzUb+99a3kjSUptifFQiuXspAGTYCHq0MaZDiajgJpME1cLh+kQY6l6UiQBtPEZfJBGmQ4RqL4JQ0PFbAjDf33QRpkZ0gAo0EaZAYF0iDD0XQUSINp4nL5IA1yLE1HgjSYJi6TD9Igw9Fvaeiff6FsQz1Ge2j/vR5L2iuGlQZN9pAGTYBYaZABaCkKpMESeIG0kAYBiJZCem9EDwAAIABJREFUQBosgddMC2nQBHhUdb9WGvrmsyMNgw5AGmRnSACjQRpkBgUrDTIcTUeBNJgmLpcP0iDH0nQkSINp4jL5IA0yHP1eaeiTbkcaBh+ENMjOkABGgzTIDAqkQYaj6SiQBtPE5fJBGuRYmo4EaTBNXCYfpEGGo9/S0Ct9kWxDPUYberCex5L2imF7kiZ7SIMmwMPVIQ0yHE1HgTSYJi6XD9Igx9J0JEiDaeIy+SANMhz9loaeaXakYVgGpEF2hgQwGqRBZlAgDTIcTUeBNJgmLpcP0iDH0nQkSINp4jL5IA0yHP2Whh6pdqRhRCakQXaGBDAapEFmUCANMhxNR4E0mCYulw/SIMfSdCRIg2niMvkgDTIc/ZaGbimLZRvqMdqorHs8lrRXDNuTNNlDGjQBHq4OaZDhaDoKpME0cbl8kAY5lqYjQRpME5fJB2mQ4ei3NHRNtiMNo7MhDbIzJIDRIA0ygwJpkOFoOgqkwTRxuXyQBjmWpiNBGkwTl8kHaZDh6Lc0dLYkDWMhDbITJIjRIA0yowJpkOFoOgqkwTRxuXyQBjmWpiNBGkwTl8kHaZDh6Lc0dLIkDeOOkoa1X31PfUbMpK3bdlLF0yrQiD6tqEyp4kdAzMjMounznqVlL7xJmVnZdMYp5Wlg96ZU9riSsrAPR8P2JE2skAZNgIerQxpkOJqOAmkwTVwuH6RBjqXpSJAG08Rl8kEaZDj6LQ0dLEnDhBzSkJWVTTXu60F9OjakK6pVpvlLV9KaD7+gKUM7HgFx1+4/afEzr1L9O66jwoUK0NQ5z9C332+isQPayMKGNMjwhDTIcIQ0yHA0HQXSYJq4XD5IgxxL05EgDaaJy+SDNMhw9Fsa2iXbeXvSpOy/3560dt0GGjZpAS2c2ld1Nzv7EF15R3taMX8EFSlc8Jggv/p2I/UcOp2WzRosCxvSIMMT0iDDEdIgw9F0FEiDaeJy+SANcixNR4I0mCYukw/SIMPRb2loa0kaJueQhuUr16iVhSEPNo9Cu6f1QOrdoQFVrnjKMUHyqsOX3/xAA7s1lYUNaZDhCWmQ4QhpkOFoOgqkwTRxuXyQBjmWpiNBGkwTl8kHaZDh6Lc0PGBJGqbmkIYly1fTuvUbqV+nhlFojTsOp9aNalO1KpVyBbll6w5q0mk4zRzdjcqdUFoWNqRBhiekQYYjpEGGo+kokAbTxOXyQRrkWJqOBGkwTVwmH6RBhqPf0nB/8kLZhnqM9kj2vdGSy1etoTff/Uw9/Bz51GnejwZ0aUyVK536j4g7d/1BzbqMpM6t7qLLLz7HY8bYi+FB6NiZHVED0qAJ8HB1SIMMR9NRIA2micvlgzTIsTQdCdJgmrhMPkiDDEe/paGVJWmYlkMaeItR/9Gzacn0Aaq7mVlZVL12O3pp4SgqVrTQESD3/LGXWnQbTU3uvoluvKqqLOSjokEaNPFCGjQBQhpkAFqKAmmwBF4gLaRBAKKlEJAGS+A100IaNAEeVb1cqQKyAQ9Ha2FJGmbkkAZ+8PnWRj2pZ7v6VL3qX29PevWtj2jWuB60afNWWvDUKurRph7t3befWnUfq96edNPV/goD44E0aE45SIMmQEiDDEBLUSANlsALpIU0CEC0FALSYAm8ZlpIgyZAQ9LQLHmBbEM9Rns0u/4RJb/+7ifqNWwGbd6yjU49uRwN792SypctQx9/vl79nd+ktGT56/TQmNmUnJx0RN0Fk/vQuWed5jGz92KQBu+sci0JadAECGmQAWgpCqTBEniBtJAGAYiWQkAaLIHXTAtp0ARoSBqaWpKGWUdJgywtmWiQBk2OkAZNgJAGGYCWokAaLIEXSAtpEIBoKQSkwRJ4zbSQBk2AhqShsSVpmA1pkJ0gQYwGaZAZFTwILcPRdBRIg2nicvkgDXIsTUeCNJgmLpMP0iDDMRLFr2caGibPl22ox2hzs+/zWNJeMaw0aLKHNGgCxEqDDEBLUSANlsALpIU0CEC0FALSYAm8ZlpIgyZAQysN96XYkYb5WZAG2RkSwGiQBplBwUqDDEfTUSANponL5YM0yLE0HQnSYJq4TD5IgwxHv1ca6luShgWQBtkJEsRokAaZUYE0yHA0HQXSYJq4XD5IgxxL05EgDaaJy+SDNMhw9Fsa6qXMk22ox2iLshp4LGmvGLYnabKHNGgCPFwd0iDD0XQUSINp4nL5IA1yLE1HgjSYJi6TD9Igw9FvabjbkjQ8DmmQnSBBjAZpkBkVSIMMR9NRIA2micvlgzTIsTQdCdJgmrhMPkiDDEe/peEuS9LwBKRBdoIEMRqkQWZUIA0yHE1HgTSYJi6XD9Igx9J0JEiDaeIy+SANMhz9loY7U+bKNtRjtCezGnosaa8Ytidpsoc0aAI8XB3SIMPRdBRIg2nicvkgDXIsTUeCNJgmLpMP0iDD0W9puMOSNDwFaZCdIEGMBmmQGRVIgwxH01EgDaaJy+WDNMixNB0J0mCauEw+SIMMR7+l4XZL0rAM0iA7QYIYDdIgMyqQBhmOpqNAGkwTl8sHaZBjaToSpME0cZl8kAYZjn5LQ+2UObIN9RjtmaxGHkvaK4btSZrsIQ2aAA9XhzTIcDQdBdJgmrhcPkiDHEvTkSANponL5IM0yHD0WxputSQNz0EaZCdIEKNBGmRGBdIgw9F0FEiDaeJy+SANcixNR4I0mCYukw/SIMPRb2moaUkalkMaZCdIEKNBGmRGBdIgw9F0FEiDaeJy+SANcixNR4I0mCYukw/SIMPRb2mokTJbtqEeo63IauyxpL1i2J6kyR7SoAnwcHVIgwxH01EgDaaJy+WDNMixNB0J0mCauEw+SIMMR7+l4SZL0vAipEF2ggQxGqRBZlQgDTIcTUeBNJgmLpcP0iDH0nQkSINp4jL5IA0yHP2WhhstScNLkAbZCRLEaJAGmVGBNMhwNB0F0mCauFw+SIMcS9ORIA2micvkgzTIcPRbGq5PfUy2oR6jrcxs4rGkvWLYnqTJHtKgCfBwdUiDDEfTUSANponL5YM0yLE0HQnSYJq4TD5IgwxHv6Xh2tRZsg31GO2VzKYeS9orBmnQZA9p0AQIaZABaCkKpMESeIG0kAYBiJZCQBosgddMC2nQBHhU9XKlCsgGPBztqtRHfYmbV9DVmc3yKmL93yENmkMAadAECGmQAWgpCqTBEniBtJAGAYiWQkAaLIHXTAtp0ARoSBr+lzpTtqEeo72R2dxjSXvFIA2a7CENmgAhDTIALUWBNFgCL5AW0iAA0VIISIMl8JppIQ2aAA1JQ/XUGbIN9RjtrcwWHkvaKwZp0GQPadAECGmQAWgpCqTBEniBtJAGAYiWQkAaLIHXTAtp0ARoSBouS5su21CP0d7JaOmxpL1ikAZN9pAGTYCQBhmAlqJAGiyBF0gLaRCAaCkEpMESeM20kAZNgIak4ZK0abIN9Rjt3YxWHkvaKwZp0GQPadAECGmQAWgpCqTBEniBtJAGAYiWQkAaLIHXTAtp0ARoSBqqpj0i21CP0d7PuN9jSXvFIA2a7CENmgAhDTIALUWBNFgCL5AW0iAA0VIISIMl8JppIQ2aAA1Jw4VpD8s21GO0DzNaeyxprxikQZM9pEETIKRBBqClKJAGS+AF0kIaBCBaCgFpsAReMy2kQROgIWmoYkkaPoY0yE6QIEaDNMiMCn7cTYaj6SiQBtPE5fJBGuRYmo4EaTBNXCYfpEGGYySKX7/TcF76VNmGeoz26cEHPJa0VwwrDZrsIQ2aALHSIAPQUhRIgyXwAmkhDQIQLYWANFgCr5kW0qAJ0NBKQ+X0KbIN9Rht7cE2HkvaKwZp0GQPadAECGmQAWgpCqTBEniBtJAGAYiWQkAaLIHXTAtp0ARoSBrOTp8s21CP0b442NZjSXvFIA2a7CENmgAhDTIALUWBNFgCL5AW0iAA0VIISIMl8JppIQ2aAA1JQ6X0SbIN9Rht3cF2HkvaKwZp0GQPadAECGmQAWgpCqTBEniBtJAGAYiWQkAaLIHXTAtp0ARoSBrOTJ8o21CP0b452N5jSXvFIA2a7CENmgAhDTIALUWBNFgCL5AW0iAA0VIISIMl8JppIQ2aAA1Jw+n5Jsg21GO0bw908FjSXjFIgyZ7SIMmQEiDDEBLUSANlsALpIU0CEC0FALSYAm8ZlpIgyZAQ9Jwar7xsg31GG3DgY4eS9orBmnQZA9p0AQIaZABaCkKpMESeIG0kAYBiJZCQBosgddMC2nQBGhIGv6Tb5xsQz1G++FAJ48l7RWDNGiyhzRoAoQ0yAC0FAXSYAm8QFpIgwBESyEgDZbAa6aFNGgCNCQNFfKNlW2ox2gbD3T2WNJeMUiDJntIgyZASIMMQEtRIA2WwAukhTQIQLQUAtJgCbxmWkiDJkBD0lA+3xjZhnqMtulAF48l7RWDNGiyhzRoAoQ0yAC0FAXSYAm8QFpIgwBESyEgDZbAa6aFNGgCNCQNZS1Jw2ZIg+wECWI0SIPMqBQrlEYZWYdo7/5MmYABipI/PYUK5kuh7XsOBqhVMk2BNMhwtBEF0mCDukxOSIMMR9NRIA2yxMuVKiAb8HC04/OP9iVuXkG37O96RJG1X31PfUbMpK3bdlLF0yrQiD6tqEyp4nmF8fXfsdKgiRfSoAnwcHVIgwxH01EgDaaJy+WDNMixNB0J0mCauEw+SIMMx0gUv6ShTP5Rsg31GG3r/m7RkllZ2VTjvh7Up2NDuqJaZZq/dCWt+fALmjLU7huWIA0eB/NYxSANmgAhDTIALUWBNFgCL5AW0iAA0VIISIMl8JppIQ2aAI+q7pc0lMo/UrahHqNt2989WnLtug00bNICWji1r/pbdvYhuvKO9rRi/ggqUrigx4jyxSANmkwhDZoAIQ0yAC1FgTRYAi+QFtIgANFSCEiDJfCaaSENmgANSUOJ/CNkG+ox2o79PaIll69co1YWhjzYPPq3e1oPpN4dGlDliqd4jChfDNKgyRTSoAkQ0iAD0FIUSIMl8AJpIQ0CEC2FgDRYAq+ZFtKgCdCQNBTLP1y2oR6j7dr/YLTkkuWrad36jdSvU8Po3xp3HE6tG9WmalUqeYwoXwzSoMkU0qAJENIgA9BSFEiDJfACaSENAhAthYA0WAKvmRbSoAnQkDTItjK+aMtXraE33/1MPfwc+dRp3o8GdGlMlSudGl9QgVqQBk2IkAZNgJAGGYCWokAaLIEXSAtpEIBoKQSkwRJ4zbSQBk2AIZKGL7/5gfqPnk1Lpg9Qvc7MyqLqtdvRSwtHUbGihWRBxhAN0hADrNyKQho0AUIaZABaigJpsAReIC2kQQCipRCQBkvgNdNCGjQBhkga+MHnWxv1pJ7t6lP1qn+9PenVtz6iWeP+fu5Blqa3aJAGb5yOWQrSoAkQ0iAD0FIUSIMl8AJpIQ0CEC2FgDRYAq+ZFtKgCTBE0sBd/fq7n6jXsBm0ecs2OvXkcjS8d0sqX7aMLMQYo0EaYgR2dHFIgyZASIMMQEtRIA2WwAukhTQIQLQUAtJgCbxmWkiDJsCQSYMsLZlokAZNjpAGTYCQBhmAlqJAGiyBF0gLaRCAaCkEpMESeM20kAZNgJAGWYBxRIM0xAEtZxVIgyZASIMMQEtRIA2WwAukhTQIQLQUAtJgCbxmWkiDJkBIgyzAOKJBGuKABmnQhJZL9WKF0igj6xDt3Z8pH9xyxPzpKVQwXwpt33PQckvk00Ma5JmaighpMEVaPg+kQZ6piYiQBlnKfv0itGwr3YoGadAcT6w0aALESoMMQEtRIA2WwAukhTQIQLQUAtJgCbxmWkiDJkCsNMgCjCMapCEOaFhp0ISGlQZ5gJYiQhosgRdIC2kQgGgpBKTBEnjNtJAGTYCQBlmAcUSDNMQBDVVAAARAAARAAARAAARAIEwEIA1hGm30FQRAAARAAARAAARAAATiIABpiAMaqoAACIAACIAACIAACIBAmAhAGsI02ugrCIAACIAACIAACIAACMRBANIQBzRU8ZdARmYWpaWm+JsE0cUJZGVlU1JSEiUnJ4nHRkAQAAEQAAEQAAG7BCANdvkj+1EE9h84SHWa96PZ4x+kMqWKg08CEVi47BX64adfqVf7+gnUajQVBEAABEAABEDACwFIgxdKKGOMwNTZT9NPv2ylYb1aGMuJRPoEdu35k2o16kVzJvSk/5x0gn5ARAABEPhXAtnZh2jMI49Ty/tupWJFC4EWCIAACPhOANLgO2LZBK+98zHlT0+nSy86WzZwAKL9unU73d3qIXpyxkNOrjLw9p3s7GxKS0s9gvZPv/xGpUsWpwL50wMwCvE1YejE+ZQvPZ263H9XfAECXMvlY+7HTVto7VcbqOr5lei40u6t7O3dt58OHsyk4sUKqxnGx2CrHmNoWM8WCf0d89Hab6j74Gl02snlaNrILgE+euJvGq8658+XuN+J/9bzHbv2qO/LggXyqWK//Po7PTR2jhNj6eoxF/9MdqsmpCGBxvPAwQyq2bAnnVCmJBUtUpBuuPJiqn3j5QnUg39vardBD9PnX31PJ5U7js4/+3Rq2eBWSk1x49mGOUteomnznqWU5GS66Lz/Uu8ODah0yWLEdwvvajWA2ja5na667PyEHMvvfviZbm/Wly676BzKl55GzevXpMoVT0nIvhzd6MgxV75sadW3m66uRrfdVN2JvvGFC0v6nTWvpJdW/x/VvO5SanLPzU70jTsxd8lL9PCcZ6hokUJUpfIZNLBrE3ry+Tdo9Tsf0/RRXRO6n3yDpW6L/nTVZVVo954/aeyANpSSkpzQfYo0ni+gWYg2bPyFihQqqL4bb73hMif6dvBgBg0YM5tWr/mEChUsQPfVuZ4a1b2ROvWfTGed+R9qUb9mQvfT5WMuoQdGsPGQBkGYfoeaNu85en3NJzR5aEeVauDYOXT2fxP/i4b78vHn66lt7wn06JjudEqFsjRj/nL6ZcvvNLRn4m9Tevblt2nKY0/To2O704knlKanX3yL3nzvM3Wif3L56/TCa++pfifqp0XX0VS+XBnq3eE++n7jZuo68GHVN74LmugfPuZ4rKYO70SHDh2idr0n0F23Xk01r7800btGG3/eQh36TqKnHh1EGRmZ9ODQ6fRAo9vo9FNOTPi+vfja+zR+xpP02LgeVPb4UrRk+Wra8tsO9d9Z43ok/NzsPugROuPU8uoikwWiZLEiNGTifOrTsWFCv0SCL6r5mbYa111C9zeoRVu37aIuD01Vz0lVOuPkhJ+XA8fNpd+27qDR/VtTWmoq9R4xU91gmffkSnp29hBKT09L2D66fswl7MAINxzSIAzUr3C//b6T6jTvS48/0p/KnVBapfn0y+9o5JRFtGBKH7/SGonLF2N33/8QNax7o7rbyR++A39Jzdb0/opHjLTBryTcj+vu7kzDe7WiqlUqRtPw33kZt3bj3mpJOlEv1F59+2MaP30JLX10UPRiZfr851Q/ea/1th27qVDB/Am5zSByzD0xbYC68OQPP3Oz6s0PqWSJolT+hDLUtuntasUo8vlz735KTU1RqxKJ8GFRYLnLeYeT5yZvf8mfP53O+W/irRhx+2vc14MGdW9KF5//1zHHf7vghuZ0d+1rqGe7+rT7j72UnpaakPPyky++pQeHTD/iInPGguX09Xc/0eh+rRNh2h2zjU88t5qeX7VGPRsV+fDY8RvZ/vhzH3227jsqX/Y4qnDicQnXz02bt9JdLQfQi4tGUdHCBVX7/++Tr6hJpxE0YWA7uvaKC2jrtp0JuW3O9WMu4Sabjw2GNPgIVzI0n9wrnHg8PdCodjTs8MkLqUD+fNSheR11UkzUE/2yF96kiY8upVeeGBd9XSfvtW7Yfii9/tQE2rf/IC19/nXatfsPuvaKC6ni6RUk0foaa8PGzdSy22ha9fiYf+QZ9fBievalt9UdtO0791DnVnXVFp9E+fDd6VqNe1GTe2rQXbdeFW023wXlLVh31bqa2vedqPp0T+1rEqVb0XYefcxFtiq1uPcWurPmVfTS6vdp8mPL6JnZQ6Lb6B4aM5vOO/t0tYUpqK8O5u8KvoDhC6+9+w7Q3a0G0Mi+96t5+Pv2XdSq+xgqWbwo5c+XRixB4x5qm1AP2vJq1wM9x9MLC0ZEx/KjteupXZ8J9MKCkeqCrc+IR+nCc8+kcyqeolY2E2kbZJNOw6nebdfRDVdepPrHY3ZHs770OMvtcSXV31iKXnnzQ7r95isS6rjjVYXqVSv/o90ffPo19Rg8TY0Zz91zKp5KD7a9N6Fe7/zEs6/RF9/8QA91bRIdE17JfO+jL9XqF39f8CrLyD6tlMwm0gslXD/mEuog8rmxkAafAUuE59dYtug2mp6bMzR6Z4z/xhfVz80ZRhmZmQl7oucHE+s9MFDtXeXtO5EPP99Q7vjS1LReDarXeiBdcuHZdNYZJ9OTz79O9W+/7og9rl99u1HdzeZnIYL22bX7T7q9WR91sZLz7jNvDbmn9UCaN6m3utPLJ/772g6hmWO6UfmyZYLWjVzbw1urFj39CjWrdwvVuLaaKrP++03UoN1QemnhKPrqu41qC93Tjw2JrkIE9UL66A7mdszxCf7bHzbRqL5/3c3li+/La7WhFxeOUhfVfJewRPEi6gI0yK8O3rxlG7V+cByN6d+aTvvPiTRz4fPqLm7HFncSX5BefF5FeqDxbaqPS59/Q93dzXmhE/TJuWXrDvXduGL+CLXPn8epccdhVOPaS5S8fvnND3RXq4fUM2F8B5v30PNqLf/GSCJ8Lqn5gOpbyeJFVHNZgFgW2jS5Pdr8oRMXqL73aFMvEboUbePoRx6n0iWKUeO7b4r+jZ+9ua1JHxrRpxVdcsFZ6u89hkyjK6qdG12ZToROPv/Ku2qr4/BeLVVzI7LH570zTilP/NwbP4Nz3RUXqjnJN8e6J8j4uX7MJcL8MtVGSIMp0pp5+OIz52v17u8xVn1p1r/juoQ/0WdmZdHjz7xK69ZvpDq3/I9efv0Devv9tbT4kf7Ed255K0jk5MdbevgEsnzusOj+T16a54fILr/4HArim4hmP/EirXz9A7q/YW2qVqWiavcDPcfR5RdXVuMX+fDFdvtmd0S3VGhOGd+r88XY/gMHqGnnkdTk7psof758NGTCPGrdqDbVuuFyurNFP+rUsi7975LzcvRxCHVrfQ+de9Zp6hmBZ156O7APFuc85iJblZbMeEi9iIA/vId34bJVNHdiL3WX8LYmvdVbebhvOV8dzCsyS5a/Tvfefq3vY+I1wbr1P9Lg8fOoSOEC9O0Pv6jtEdmHDlGXAVOU4EYequX98o07DKcXF45UofliJrI90msuG+Umz1qmVl5vu7k6rX7nU9rw4y+0dOZA1a8G7YbQTVdXpfp3XK+axsJUuFAB4m0/Z556UvSNNjba7SUnP5ex5LnVNGFQe7XFiufdy4vHRN++9t2Pv1DTTiPoubnD1KoKP4fTo+29CXEzgi+kW3QdpV44cMt1l6g2z1q8gtZv+PmI13A/9/I79P4nX6ktaPw9wtsgc24T9MLRdBl+XqNNrwnquTZeMeHzAr/wo2+nhsRixFtV+dmpyJZAnpf84RtMFU8/OfCrKi4fc6bnSpDzQRqCPDrHaNub760l3try1KMD1YV2Xif6ROkinwj4bgxvm+C7Zvyg2JV3dKBXloyN7gHlvlxTtxMtmtqPji9Tgt796Ev672knUYliRaJvImrT5Da6+rIqgeo2X8A8v+pddRHNz6KMmLJIjV9kW8QXX/9AHfpOVPtd+Q1LzIEv7PhVmFde+vdFd6A6dbgxfEHNF8nqlbm1r1bs+eHv5SvXHPGWGv7/xc+8SvMn9yZeqn9u5Rp18uQ73EH/8OsQ+ZWkrRv+tT2Qtyrd2rCn2tbDJ36+S/jhZ1/TxEHtFQd+sw0/YMw/UMgXPfxWMH44PGifn3/9XR1bRQoXVGP28effUv/OjaLN5GPymZffppmjuxGv6LXtNZ5eWDgqIR625RWFDT9upkfmPasuzKpVqUQrXnmP5i99OdeVBZYofiHD9f+7iFo1uDW68sCroXv+2Bt9bWsQxpCFlt+g9/1Pv1KbnuNpxfzhqr0s8k07j6Cbr66qnt9Y/c4n1KbXeLVfftMvW9UD/E3uvjnQqyp8scxSVKpkUXXzgVdS+IbQzdf8tZrJn74jZ9FJ5cqo56b4xsPHa9dTg7o30PGlSygBDOqHx+edDz5XqwyjH35c3fzi1wHzzTF+yxefH3J+eCsWv0Tjmw0/qXPiNZf/fV4L4vNTLh9zQZ1TptsFaTBNXCAf71fd+vsOtbXAy4l+6pyniU8yfHet3m3BuduZFwre7sEPifEXa+TDe5O7DpxKrzwxVvWJ99TPn9xHiYZ6E9Gr7x2xzSmvHDb+nS9Orqle5YjnF3hrEm+d4LtrnQdMoazsbKp53WX0wqvv0qknl6N2Te+w0dS4c/JbeW657tLovmveO1+rUU91d5Tf+MWSxHvnTzrxOGrdsJZajeALM35+JYi/F8A/Xsf7jCNbzB6Z+6x6UxRvmYjcJeQtLrxFjrfW8R1rfrg4sgVh0cP91B3GIH++/f5n6jV8Bi2Y3Ef9lsjOXX/QnS3704AujdU+80YdhqmVQL6Qi3wSYbsZyzc/r8FbxviV1fyMxrFeCcyCwM/h3Hx1tegbslg03v6/tTTkweaBHD6+AcEXlfwSidfXfEo/bvqVnpwxUK0c1W7ci+5vWEuNGY9V+z4T1XkgkV7VzVsgeaWIX1PNHxY77seyWYOpYIH86qF3/v7nZ/742Qd+iJpvKAX5w/OMV4TOPLW8eoC99YNj1VZj3mab24ePRX5ZCD/7EPkeyfn8VND66voxFzTeJtsDaTBJ24dc/3aiP650CWrWeYT6sj3rzJPpscdfVBc+ibTPlff98wUz32niCzC+cOG7vXzHjF9fV6hAfvWDYnx3ii8IZozuqvaHJtJn+apIm1EIAAAgAElEQVQ1tPCpVeruJ99hGzR+rrpA4RM935m6oV5XWjFveEK9jo+3jPGd6cE9mlNaWgr1HjZTXYgO7tFMDQ2P4x01/qd+m+Lt9z+nnbv/oKdffJMGdW+mVo6C/GFJ4F+/5gszvjjJeZeQL2j4zTb8/BFvQ+M7omVKFaP2zeoEuUvRtvGWCV5duPDc/6rfM6h761VKfvh3HB5bvIJYfiJ7/9/+v89p3pMv0yMjOidE33gFaMUr71LTe2pE2/vhZ9+oLXV8sXblpefT3bWupjGPPEEVz6igJJ5v0PCKJ28DCvLvIPBF2nc//EJ8g6h/l8ZqVWX24y+qC+wJg9pF+ztp1lNqJTPyzEoiDBxvX+WXK/B3PF8wv/bOJzS0Z3N104Vfq8vPH417qI2al1yGRWL0w4sT5nkAfoMSf//xClfks3DZK7T46Vfo+DIlleDddE1VtX1p4uD26hm4nM9PBXkMXT7mgszdz7ZBGvykayj2sU709dsMpto3VY++2Yb3fl5/dxf1YGqQl3BzYuMvHb7g3Lp9l3p7UrN6NdSrWfmBW34r0fK5w9UJn7drHTiQQX06/nU3KpE+/IzGoB7N1N3Pui0HqD7yFiZe6uXnAzr1m6zeIsUXoXyHfteeP9RFXZBf68lzbcFTq9Q2K77g+vKbH9XbbHjfsboAffwFWjS1rzrRc1l+282nX35LfTs2PGIbQlDHcePPv6m7m5G7hLwaxm8y47uBfJHNFwA8fu16T1R7y/nXvnmLEl948vM3Qf7wcwufrdug5I3fLMTjw3dzh/duReeddZpqOl/I3d6kD/VsX19dvPEWLF4ZC+Iq0b+x5mOPnyO6+vIq9Nb7a9U2s/UbNtGzc4ZSsSKF1NYYfotN83tvCfKQRdsWucPLb2PjZx0WTu0bfZaBnwdTN1ZGdVWr1Pzh1b7zzzmd7q51TfTB6qB2lL/7Nm3+japWqaS2o/LWOn5JBq84lCpRNNps3vo44dGlatvgcaWKU6uGtaLPIQW1bznbxWPHxxv3q0SxwuoNe/xMFJ/nZo9/8B/PTyVCn3K20bVjLtH467YX0qBLMCD1jz7R893QWxo8SG8smxjdN89Lolfc1k5dxPCXLJ/4t+/Yc8SJnpe6+SLgimqVA9Kzv5rBd/z4Ijlyodys80i1lYfvVvODYvwQ8bOzh1LBgvnVHVF+l/5/yp+g9ssH/cFN3rpTsEA+1c+b7u0e/RE4voPG48H/NrLP/dRz6HT6Zcs2Ou0/5dQFKL+TnS/qgv7hLQO86sC/fspzkOclv1aQHxjmDz+8ztuz+AKHH4jnMU2U1w3mvEvIrw7m7YKPjXtQ9YsfuP3vaRXU282YAV+EX3P5BeotPvzWnkT5fLNhk9py9cxjQ6JN5hWG9z5aR5OHdiBe7byjeV/1LEt2drb6RfCIXAS9jyzpXVvfre7M86pei26jVD94rrL08TaY5+YOV987iXT3mrdU8ZYe/h2RyIfvym/fuZsGdmsa/RtfoL7x7qc0a/ELNHVYx4R4WDrSeP4V5XMrnXbEr5jzFke+4O72wD106/WXqe1a/Gryx6f1VxKYCB8+d9/etC8tmzVIyRE/5M0vlXh4eGf1RqWcz09t/m07vfTa+0e8bSroffR6zPGNFr4Zccu1lwZ+u1nQmUu2D9IgSTNAsXgPNv+QzEuLRkVbxQ+MLXhqJfGPVb374ZfUe/hMdfea38o0fmBb9YwA371/ft5wtRLBF0H8uwiRH6IJSvdeefMjenjuM6offPH115uIzlFvQ+FX8dEhUhcCvBoxfNJC9RamyEV5UPpwrHbwGyi27dyt7rhHLiz5odtHFz6vXn/59GOD1UOr7328To0lP3ibSB++E9pz6AzVj8inXZ+JVPX8itTgzhvUn/jOdiI9CM5tZhnii5VJQzqofcp80TZp1lIldXyHcGjPlgnx8HBuc4kvxG5v1pdG9G6lHlz//OvvqXmXUfTEtP5qH3nzrqOUoPOPpm3Y+Iv6lWneEpMI2wT5d1T6jZylvu/4wdKdu/bQsscGqxstLH38MDE/K5Dod6/5gVq+K8+rzPzA7etrPlGrXpdeeLbasspCwfM054/8Bfl7hY+3CTOfVFtXedtj5MM3WfhtZTlXnPmcxq9wTaTfwHn1rY+It5KdUqEcrVv/g1pd4dceH/38VNeBDxNLfbnjS6mVah6/oP+qtNdjLnIzgrew8vHIOwx49QgfuwQgDXb5+5qdL6DLHldKHWyff7VBLbXz3Qq+6OTfRhjT/wH13mu+Czx9/nL648+96t3ld9a8ktau20CdBkxRDyHzSSVIH767wm3lixLeVz1i8kJ6atYgWvPBl9R90MNq+wffaeK7Mr2GzVDbXfj1tLl9+DV4h4gCs9WHV3/4rRosdfzAIp8EsrKyqPpt7dQDjfwGJn5NKz/YOWD0bHUHjT/8vEexooUDf2HKAnTvA4PUhViju25Sd+AHjZsTvVBjYUjUB8Ejr2iNPnA7oA3t3X+A5i9dSZMGJ5bcHX2s8GreqKmLVX/4ZM7PFPGrc9Uvgs94kpY9Oii653/CzKXqO4PfQJQoH56XfJHG34f80HfOtyzxPvlEv3vNL1/g15fyxTO/CWzjpi106UVnq18k5u1Jq974kHq1v09JYaJ++MUEjTsOj24t437w3v/bmvahFxeMVOe9RPrwdyELUOue49RKM+8OyPn8VOQHCx8d013dnJi75CV6/+Ov1HN9ifD5t2OOt63yzQi+KcE3I3786VdiQWIZ5B8OxcceAUiDPfa+Z+a3ZcxcuFz9RkDxooWpQ4s71bYBXmHgB8pyPgzH7/XmLUB8955/4+jeNoOp4Z03BH5/ec43EfEX6snlT6DLq55DI6cspvJlS6tXsrIcsUjwhTX/P8tG5GFbfgsO/z1oz0LwdjO+I8MXMHyXkMfn5cWjifcls+Dxm6L4IVX+NXCWQd7KxBc39etcR3Vr/v3rzL5PsjgS8BuS3v3oC7UNhE8ELHSRt7nwHd1EfxA858N/vPWqY7/J6jcCXPnwfONf4+UtO7n9IjiPKa8c8S+CJ9KHtyfx6t7Rb1ly4e41X3zyF3taagpdVaejeulC5C08/B3KUjh9VGJcbB5rTvEvRrMA5XxDIK9q8nkg5w/fJdKc5LZG5uXRz0/xDxTyszY3XnWx6hJLxoU3tqT3nn/4iNWXIPf3WMcc34yY8tgydVMs8lpyfrkGrwYmwiu6g8xct22QBl2CCViff/tgyfSHos8y8IXotXU70+ShHdWdJn57yhPPraZ5k3olVO947yq/8jLyg2m8jWnFq+8qaeA797wvu3rVc9UJkn91k/eW12nej/gHu/gXVYP64aV4vjibOKhd9AFGFonCBQuod3zzcyr8Clpepeg26BF1Mc6rRYnw4TfV7P7jT3U3ie9O/9uD4KmpqTRm2uPqDneifFjcr6rTgd5+ZnKiNNlzO3m/8eKnX6WOLepGfxGct0rwrzHzL4Ln/DFKz0EDUDCn9Hm5e813fF9560P1HM5tN1YP/AXbxEeXqjct8bMnfHOi/+jHlETwW3kS+cM3TfhlBJG3XEVWy/lVprw/PtE/OZ+femrFG/Tcyneiz09x33hLEz+bwr+Dk2hbPHMecyy4tRr3Vj/cF1lV4P7wuaFLq7vUClmiHXOJPvdyth/S4NJoeuwLL7VPG9lFXWDzh08iP/y0hcYOeID4oVz+0Sp+wJG3wPCHpYJfYxf0D8tA6wfHqdd2XlD5jGhzI/tA+Ye4ePsBfwF16j9F3VU8/T8nJsTrB/ltSrzVil/Dyr/xkHO/+Mgpi9SFCv8wEC/58ofvAvPWq+SU5OidmiCOHwsR/6ryf04qqx6+P9aD4Cx+vArB72zneZkvX7r6Yacgy16E9/T5z6mtWEF+21Wsc4MfzuS388ye0FOtXDa+6ya1QskrfPzw7e03XxFryECWz+vuNT9XxKt+fAHOb1367MvvaOaY7oF/0J0ffuatgSx5vAWkV/v6geSv06h6DwyiBnVuiAqtTqwg1eXvzJvrd1c3+fj5Kf5ELrT5uYeLz/9vwm7x5L7w8cQ/gJfzxzD5+cqnX3xL/QZHoh5zQZpDOm2BNOjQS9C6fMIYO20J1bvtGvpt2061F5LfPFT2+FLE+5G37dil3rDBv2LM++aTkpOUNAzv1ZJOLn98oHvNDz/zcjvfdeKHu1mMeFmTt+/k/HEmFqVnXnybnp8/PHDPbBwLMD/czl+cvMLAP7LFghCRg/vaDaEOze9UD4TzCWTk1EX02tsfU1paGt12U/WE2V9+rAfBWYBYdvnim/fT85t7TjnphOgbmAI9KR1sXL9Rs6hk8aJqq0BuvwjuSpf/7e41v/7zzub91cPSnVvVVd8j/DwOb4+5+PyKCYHgzffW0rlnnZowbxaKBSr/RkWVc/6+eRRL3aCXjTw/FWknr/p99uUGdc5L9C2eLEV8ozLyDApvSarZ8EH1PCavIiX6MRf0uZVX+yANeRFy9N/5YeIPPvmKXn37Izrt5BPV3cGc773mg/buVg/RlGEd1Rcvv/WG7yjy3uzIjzsFGQ1fYEdescd7ymvdeDldc3kV1WReabi1US96oNFtCX0Xil8zO7x3S7U3md+mNG3us+oXQ/nHqjZv2U7jB7WlJEpSW5ZuuPIi9WB10D+5PQjOJwreV56ZmRn9Vdig98P19vHDz7zSkyhvJZMaj5x3r/nB8OTkZDqxbGn1o4zN6t1Ci55eRW2b3qFe4ZpIr7SW4oM45glEVv34LYF8Lsjrt3743H7wYKba2sofvkhv1WMMDevZgsqUKm6+A3lkHDvtCeI3uPGPFuKYsz88kAb7Y2C1BXwHnn91kvd85nzvNS/Lb/l9B+3bd4DaNbtDPZDLzz08N3doQmxVygmVVxX4gavIA1S8srLyjQ9o3qT/b++842u+vz9+dNhbVe0921pVVLXUiFHE3iKSWDEjy4osI5HYIyJBJWJvQQeaUqG+NlWlVbRqVdFqlbb6e7yO772/fI0iueTzuff1/kfL/Xw+5zzf934+n/N+n/M6o+5j/2nyAcmcMaPmTRp9YCUtZPJC7WR77sJlyZUju8qWQlqxXOmiUq5UURnQq7Vs3bFPc5ihKGWWkbIQ/EF55Wbxg3baF4GUq9fo9o00SKRiQUQChZso4EQTw70Hv36kpLV9kaE36UUAL/1ffv2dddf131I88eyLWrhOZXervV5WQnx6ycqN27X7u1EL4XH/R4CDnhX8zaXXt+z/r8ugIf3nwBAW3Kt73bizj8RG+mph2ZS5K/SlFGkIeCAiv3789EX6bz07NJEGdasbwoeHGYE6DdQD3Pj9pnbYREfipVFj7uvMi3QfdEx9JX9eyZkjq8rPWlR9jOog0naSdh3SBmKwd+OWXZL8n6OC+o3N276QeUs2ya1bt6V39xZaD2HG8aC8cjP6QZvtiwB296ZEL5e5kb7WXja4h1y8fPWRktb2RYLeGInAw1I8ka6KHcIFU/w1FXlFYpJcvHRV/8QOtRkK4fmbS/9vGoOG9J8DQ1rg7j1R0w+wzY5x5Ph3cvmnqxogIN0HOfXodhswcZ5UebWMePZ0NqQfKY3CNi4UKNDbAcoM947o+A3a9AgFZhhYxX+1fAnTNDyCzVCVmBqzQuKm31W+gnwkFG66tGl4XyEudlWyZMoktd+oZOi5uzev3NDG0jiHIoCGmXPi1kn9OtWkZ8cmuuDwKEnre7uBo+gTvXLcOjd3KHZ09ukQeFCKJ1KKUROG556l3ga779WdPLQmB+p1Zhm2+M2ZxVcj2smgwYizYgCb0PV1+Li5MsC1tcqTpuy6iTb2p8+e1xxDFN1i58FMDVewOn9v10zsorTzCJBlcwKl0Csv6QzALygTQY7QTGP4+LlatzHAtY0UK3xXIeveYdlVQSdRFFO/3+gtw++qmGkOaKvjEEC+NVZA69WuovfJR0lapySDF7y2bgEyfFBXU3UsdpzZNa+n96Z4eo6YqpkClmFpDrc5YaJ1pyylt5Asr1G1vCGL5NPymzPvjBrDcgYNxpgHQ1qBXgCQi0SDqthIP6v+NVKZ3IaFS6dWDUxdSJwSOl60IT2YcscEfR+QgoUGaigch+xblkwZpaVTHXkpby5DzpnFKNi6auN23WF4v2Ht+2zFrgpUtGZP8JI7/9wRv9BobRJklv4OhoZP4xyawL9JWt8LBt3Cv9h/TGaMG+LQzOj80yWAlDn0T9m0KFyf49hlcB06QXsVdXZu8D8Xh2rigmUfyrXrvz6w7u/pWpq6sz/Jby51V+BRFgIMGvhdeGwCyJVEWhLyIc9fvCJdB4TKlmWTrcHEY5/IYB9EMXhv30jZsHC8VX4Vf4ebLBoDnfnhggwcNU2LjLEqv3rTDgkf3dfaVdpg7jzSnMtXromz6yhVwsJcYuza+6XELtko8yb5PfJ4foAESODhBP5N0jrlUZDNhN4+lN2KFMyvixEWxTfyJQFbE8DzGwFB62Z1JSn5kJw686M+AyzN8CzXu/nHbWna1Vd74DRtUEtc2jcxRd+Rh8nIp+SILIOouPWya9+XUrJoQenTvYWULFbQ1qjt+nwMGux6em3r3L7DJyR48kLp3fV9yf9SbkGB6tYVkw3dPOxxCdyre93Pf7K8U6uydGz1nuaCIufTItkKDrGLN0pUmNfjnt5QnxsxPkb++vsviQjob7UL2t57Dh6XyDH9dRUKD5fMmTPKa+VLGsp2GkMCZiDwIEnre+0OnRInx06eEZ9+nbSmAV1+YyJ9JW/uHGZwkTaakMCxE6fl1JnzMid+vQR4uVhrFlO6AhUwfH+DfFzl46S92vtn35ET1uefUd1+nN/c4IDp8ueff6uSIlSZIPKCXT5Lkzyj+mYkuxg0GGk2TGDLTz9fl2XrtsnZHy9pE6Oqr5YxgdVPZiIaHkVELZXV80Jk195jErVwrSyeHWA9ydlzl6SvX6QgF9Rs48hXp8Q7eLa8XfN1CRzWU82Hbndb9zEyemgPqVCmmPT1m6SNuzJnelHQWGdK8EDJlTOb2VylvSSQ7gRSSlqnNAZNKD28I2T1vFDJlyen/hOkoXPnzC4uHZqku900wL4JoO9SxbLF73MSL96d+gbp99KSgou+PxlffNE0kt0P+819tuuQhM1MkDXzx1ozCi5c/lny582tuy0PqnW0729B6rxj0JA6bjzKjglAcx1KUaVLFJaNW3fL3kNfW1+w4TbqAbC1ixQlrBDOXrhWsFOB5mkIpIw6UBzddcBYlcndsmOfVCpXXCqVLSGzPlir6RETRvaWXl5h8maVCuLp2lrdQF3E4a++lWCfXkZ1i3aRgOkIuA+bqEWm/V3+X3VuwowEVV/q1bmZ+oMi6ecyPGf41BDTwafBDyUAafIyJQtblby+PX1O3L0jNHXX0qEZ6a0vvPC89k0w0xgdPk93FO4NyrGrjgwKSLMjgB/r564MOB5MgEEDvxkk8C8EsLPiOjRMoid6a7fNg19+IwNHTpP4GSPlz7/+Fvdh4dqlGC/gKB7LnCmj+A/oYkimiZ/skqXrtsmimaNU9SomIVEOHP1Gt59Rr4FUCe+gWbqDYslzxUqM65Aw+XDxRG1eVbNaRatknyGdpFEkYHACUKWB8AIWHSwpj1rf0N1Plsweo+ptEbOXaJ8VCDGgvwqaNEI20zIgH23ZoTC4uzTPRARqNu8nnyydZN1Z7u0TKU71a0iHFvWtXkByHY3hsPhkpoGg4Y3K5bQZo2VA5KWrZ6hEjOkvtatXkhOnftAmt8ujgyRb1sxmcu+Z2cqg4Zmh5oXMSgA7DSFT4uT55zLoakSQt6t2jO42YKw4N60rHVvevaFiJb9xJ29Zu2CcZM+W5YHuYgv0H5H7eiY8CzZQVCpfuuh9Te0s117/8U4NIixpS/j7DR8ny7qPd2qjvzZuoyVslHkLwJ8FY16DBB5FACkgSAkcOzVO64ogrjAsaLYWZI4c3E2QDnL+4s8SGdhfXnzhBW2kWSB/Hu2bYxmteo7UfjKQVMbixYsvPP+oy/LfSeCRBNBxGc8x1Nmc/uGCjIlYIGvnj7XudqHPUWDkAlm3YJzKC89fukneb/iWfj+NPpCS5Rc6R4J93bSTOwZ2VgoVeEkGurWxmo8+K6hnROYAx/0EGDTwW0ECj0kAq3vYkkVzpqvXf5X3ewyX7WumWwvBIUX7TutBsiFugq4CYpdi9/5jUrZkEavS0py49fr3qB8w2vjmu3MyMixGEmaO1gfCtes3pH2fQA2SKpUroUHDZ6unqdnwAzfhaaGDjOYG7SEBUxDYve+YBgQXf7oq7Zq/K159O8qFS1ekY58g+XBJhFVJCXr7qDPCfQUDPWXy5smh9x2sjOLFZ2VMsCl8ppHGJoCAYccXh6VGlQqyMjFJzl34ydr4DbvTHfsGyRCP9lK/TlXB86KtR4D+N76LSPsxeo0j0omnxa6S1yuU1BTcZt38JSbSR9NzLaP7wHGqqvRu7SqaWbBxyy7NJuC4S4BBA78JJJAKAtd//U0f7h8tibAejU6VCas/0a1NvBD4hkZJ3ZqV5ey5i9ogD5rY7TzGyIqYYJWzw8p/w3feeGBjnVSYZJNDPlj+oe4uvFG5vCQlH5AOLetrR2ykSuBhMtbfQ190UNOBdIl5kynRahPwPAkJiEjill2yc89RrS+yDMghT41ZKcuiA/Ve0mPQePlwcYRkyZxRa5CQvpQy5YIgScAWBBAw9PGN1Jfraq+WkWnzVsnPV3/Vl2wMD58I7W0EZcEz318Qn5AoXQwzU6PXnkMmqP0QAMH4fM8RCZg4T39fGV98QTr3C5EMz2XQZx3+f1Kgp+F7NNli7v/tHAwanjZhnt9uCfiPi5aCL+fTFZajx08JciajwoZJoVfyaR+EiQH9NE8SqzdegbN0h6JMicJ6E4aKkVfQLEmMm2BVcjAKKKxsHv7qlO6OWDSssSWNfNCk5IOSLWsWXanBCukgt7a664I811A/94d2oDaKb7SDBIxMYM+B4xK/8iNrszfsXqIJV9P3akm3to20nqr2G5Wke7vG8sn2vVqXhC72KesdjOwfbTMXARQ9J6zeIlgk04ahMcEqELJt5wGtcUMgi10GDHwXobYHOVOzDHTFDpr0gfTq1FRTj6Pj16taIJ518BeLaEjNzZ8vt+46lClRRA5+eVLq1nzdLC7a3E4GDTZHyhM6CgHkEscuTpRPPturUolDereXKpVK680Tsm/jhntYUUBOcd2HO2XjojDNYYaKkUt7J2nWoJYpcGEbF3mr2H7GQwG9Hpo3rCWvVyil3cFR24HCOCi+YDXq5ZdyW/0Kn7VE6tR4Td6p5bg3WlNMMo1MdwJYYBgyZoamQSKvGi8u6Jsya/xQ7RyNXb41C8bKnb/vSMueIyVsVB+p9trd/GwOEnhaBBAMIEht3bSuimi0ch0loX5u1l0FfG879AkS774dtd4PdTsfJe2R9+pUk+JFCjwts2xyXhRDQyUQ9YadnBuovag5auEyQmZP8LLuQuBieI6jTxOChiqVykjNahVsYoOZTsKgwUyzRVtNQQCr7ujyalFGwQ0VD3jPnq31RRvpP8s3JKkCkxkGHhIuQyZIi0Zv6WonhuWGCqUJPEigvoSULBSRZcz4oqpvTA0ZqFK02OLeGB/20OJwMzCgjSTwrAggSNi0dbfsP3pSKpUtbk09auMeIH6enfWFZe6iDZpTjt1M3F8gDY0ao5pVK0q9t6o8K1N5HQcksDLxM0nee1QmBw2weo/gdu2Hn8vCaSP073Df37Zzv0Bc49XyJbWw2kwD6YDXf7khgd6uVrPPX7yiwdIgtzZapxi/6mMpX7qYDPFoZybX0mwrg4Y0I+QJSOB/CWA1Ag9+yzZt3IqPdJUmfsYo3QJt6TJCZo4fYm2ug79DfrJZUgywVd25X7Dqdjs3eVu6tW0saHjXxTNEcz6RkoWCs7mLEuXGb7+LU703pX2LevyakAAJpJLA4jVb5fM9h3XlEykjbd0DtDaqwEt5ZFjQLPn7zh1p0aiObN62W0oVL6Rpgxwk8DQIIGUOK/GWvg3YhWjhMlxTc1EbgEL93Dmz6eIRAto2bgG6I2apG3gaNtnynPAPtUJTQwb9T3d2KJyVLVXY2lsFi2lvtfSUXYlRDqVexqDBlt82nosEtMPyLVU0ufH7TcmTK7t8lPQfWRo1RhWIoNxw5ep1CfF1E/RAQB0EVjAQMGA1BkoURh8ICLp4huqqp6WZHXYY0MfC0hQOPrh5hQsa5aEwHPUcHCRAAqkjgKChTo1XpUTRVzQ1sGjhl8Wzp7MsX/+phE6N01RIFERjscKpi49sig/TlzYOEnjaBCZHL5dfb/yuq/LewbPlu7PnJW+enFLklfzSo4OToJEhngEpU1aftk22Pj9SkvCMW//BOOvvCs9BZBVsTgg3zYKfLbgwaLAFRZ6DBB5AABKt0LXe+Z+jmv8JNYou/UO0jX3O7Fm1rgFa0O5dmut2bo/B4yUmwscUmtcIBuCDZdRrO0RWzA22PhiwEtWwwzDVkkdRGT5/4MhJzRfFiw8HCZDAkxNArVRv30jt0ItGksgjx/3j0LFv5diJ09K/p7N4jZmp0sgIGvA7vH37L8mdK7teDKuoff0nyYQRvbW4k4ME0koAQQK+Xzdv3tLFpC3LJqlk97dnftTvYpVXy+jzz6wDgTikZhGkN6hb3eqGu/dEfX6nbHxnVh+fxG4GDU9Ci58lgVQQQIEVHuDI/69csbT06txMkBe6aNUn2nm5bfN3pbNzAxkVHitN69fU3QYEEbjxZs2SKRVXfPaHNO/ur12zixZ6WS+OFK3T31+UyUGeguZ42FFB2hIeJGis49Wnw7M3klckATsggHsDaoYwmnb1U9lj7PIhoIDoAO4ZSBNEWmTUwnWSM0c27eAb4tNLVm7crlLKcyPuymZykICtCNz847a07jVKQvzcpFa1irpgBtXAtQvGmqovdVgAAAuSSURBVFqmFClWkGKFMIFloKv77IVrdaHM0XbRGTTY6hfD85DAvxDACt+02JWaa4xgAFudVV8roykFC5ZulqRdB1WDfeXcYNlz8LjMX7pZ8yTfrFpBX7ChuGTksX33IZkcvUK6tG4gl65c0xeW9R+Ml0yZMgq61/bu3kLVlXAD7uUVrtrYkHTlIAESSD2BmfPXyJVrv0jAUBfry8ut23/KpzsPaG+HBVP8pWCBfLIiMUkuXrqqf86f4i+lixdK/UV5JAk8hMAP5y/L9NhVmqKLwvxu7RqJW+fmdsULi4AoiB7r726qnhS2mgQGDbYiyfOQwBMQiI7foNJ1lvb1Fy9fVbUJ1AgMCZihOw/QY58Tv15On70g4aP7PsHZ0+ejkNnbe/C4+lG6eGH1DSovh4+d+m9R3B3x6d9ZwmYulg4t6mnHzflLN0nLxnWYKpE+U8armpwAJI4jo5apchlSJdCIEfVR2PlDSggWHTCQYlHdyUMlJRGwc5DA0yaAXa9hfTroIpk9jWvXb6gqFPozOeJg0OCIs06f050AcvxRKOxUr4Y+yHPluJtugPFp8gHdfcCKIBrn3Fs/kO7GP8IApEkUyJ9XFaFQtIngBypL+4+ckElzlss3p8/J1uWT5cKln6XbwLHi3KSuXL3+i3Rp3UhTlzhIgASejAAaMp46e17lWJFj7jliqhZoWgaaWA0aPU02J0w0VAf6J/OSnyYBEkhvAgwa0nsGeH2HJYAiRQQH6K6JLpRonmZJQxo3LV6yZ8tqeg1o6HdjFdSyU4IVz+PfnFElKQ+fCG2KN9i9rVy+cl3QZAc9HzhIgARSTwC7li6Dx8umReFaM4XfHLpKN29YW3cw7x2Qg278bo3UX5BHkgAJOAwBBg0OM9V01OgExkTMl8bvvqmdk1FU1rCDl6qgmHl7F+kTQZEfCF5kurRpqAVy2bJm1kBp1oI1siw6UHdTOEiABGxHALUO2Nlr3ayuJCUfklNnfpRVsSEaRKQcu/cfE/+x0ZpqUfDlfOJUvwZ/j7abBp6JBOyOAIMGu5tSOmRWAmiK4xsaJcUKF1Dp0m2f75fV80LtQgN6z4HjsmXHPunn0kpyZMuihWTIua5RpbxZp4t2k4ChCUCC9dSZ81oXFeDlogF7ygFxhnYeY6RypVKaIoj7zbGTpyUm0peBg6FnlsaRQPoRYNCQfux5ZRJ4IAG8YCNVp0HdapInVw67owS52eS9R2Vy0AC7840OkYDRCEDFpmLZ4veZtXTdNvnks70SO8nXujCBOqs+PVqqPDIHCZAACdxLgEEDvxMkQALPlABWOFHPkSNFc7hnagAvRgIOTgDiCi1dRsiCqcOlVLGCSgNSrU26+ErCrNHa9+HGbzfl8FffSpGCL0uxwnf7r3CQAAk4NgEGDY49//SeBEiABEjAwQhMmJGguwvDB3a1ej4nbr3WPkwM6KcNGVHrgG7u0N5/rUIp/ayjNbJysK8F3SWBRxJg0PBIRPwACZAACZAACdgPgYNffiOliheyyq9CqKB97zGyIiZYFdxa9xqtimeWNCX/cdHaEbdFo7fsBwI9IQESeGICDBqeGBkPIAESIAESIAH7IYBdhRLFXpH+Ls7acPHkqXMyYWRvq4MbPk7WTvUQL+AgARJwXAIMGhx37uk5CZAACZAACUhMQqLKrmKXYXT4PHn7zdekWYNaVjIBE+dL0UL5pU/3loLO7+i/kiVTRmnpVEdeypuLBEmABByEAIMGB5loukkCJEACJEACjyKwZO1WrW0YNaSHfvTA0ZMyePR0WTN/rKDz9MBR06RHeycNMFZv2qFpTOVLF33UafnvJEACdkCAQYMdTCJdIAESIAESIAFbEEBDRr/QOaqeBBWlT5MPyvgRHvJm1YrSvLu/jBjUTRq8XU0vte/wCYldvFGiwrxscWmegwRIwOAEGDQYfIJoHgmQAAmQAAk8awJffn1afjh/SWpWq6j9YnZ8cUSiFq6VxbMDrKacPXdJ+vpFyuaEifp3kFK+ffsvyZ0ru/4/5JX7+k+SCSN6S/58uZ+1C7weCZCAjQkwaLAxUJ6OBEiABEiABOyNwMatu1WKNXBYT6tr0fEbNJUJKUpxKz6SqIXrJGeObFLt9bIS4tNLVm7cLknJB2RuhI8ec+LUD1KuVBF7Q0N/SMBhCDBocJippqMkQAIkQAIkkDoCP/18XVyHhkn0RG9NW4Js68CR0yR+xkj5+tvvZWrMSlkwxV8KFsgnKxKT5OKlq/rn/Cn+Urp4Idm6Y7/MiV8vK+YGpc4AHkUCJJDuBBg0pPsU0AASIAESIAESMD4B7DSETImT55/LIL/fvCVB3q5Sq3olrXWAHOubVSuoE3fu/CPVnTykk3MDrYG4fftPce41SsYN95Dqr5czvqO0kARI4IEEGDTwi0ECJEACJEACJPDYBK5c/UXrHNAh+ruz58VzxFTZnBBuPX7/kZMyaPQ0rXXImT2rFkt/dfKMTAr0fOxr8IMkQALGI8CgwXhzQotIgARIgARIwBQE0E3aZfB42bQoXJ5//jndZXAdOkGaN6wtnZ0bCNKa2roHyLI5gZq6xEECJGBeAgwazDt3tJwESIAESIAE0p3AzPlrZP+RE9K6WV1JSj6kxdGrYkM0iBgVFiuFCuSTAb3ayPFvzsr0eavk+i+/iXOTt6Vjq/fS3XYaQAIk8PgEGDQ8Pit+kgRIgARIgARI4AEEjp04LafOnNdi5wAvF6lVraIc/fo7GRowQzbEhcn3P16SPr6RWtdQtmQRmTJ3hZQvU1RcOzYlTxIgAZMQYNBgkomimSRAAiRAAiRgdAKoXahYtria2W3AWOnatpG8j1Sl/iFy7foN6dCyvri0d5JLV66Jd9AsWTon0Ogu0T4SIIH/EmDQwK8CCZAACZAACZCATQmc+eGihM1crN2iUdfQ0mWEbFs5VZat2ybo+VClUmk5f+mKzBo/VI58dUpWb9oupUsUlrbN35WsWTLZ1BaejARIwDYEGDTYhiPPQgIkQAIkQAIk8AAC2GFo7TZati6frHUOP1/7VabHrpKG71SXd2pVlsadfSTYx1VrHjZ8nCwzxw/VXhAcJEACxiLAoMFY80FrSIAESIAESMDuCARPXijPZcgg3v063beT0L53oPZ5QFrT7n3H5I9bt6V+nap2x4AOkYDZCTBoMPsM0n4SIAESIAESMDgBSLHGJCTKqo2fSSunt2WgWxurxeguHRA+T+sbsmXNbHBPaB4JOC4BBg2OO/f0nARIgARIgASeKYG//74jN/+4JdmzZZHELbukRaO39Ppz4tbL1eu/agdpDhIgAWMSYNBgzHmhVSRAAiRAAiRg1wSGBc2W/PlyyWD3dloMPXvhWombPtKufaZzJGBmAgwazDx7tJ0ESIAESIAETErgn3/+kWXrP1XlpFu3/5QxXj3ljcrlTOoNzSYB+yfAoMH+55gekgAJkAAJkAAJkAAJkECaCDBoSBM+HkwCJEACJEACJEACJEAC9k+AQYP9zzE9JAESIAESIAESIAESIIE0EWDQkCZ8PJgESIAESIAESIAESIAE7J8Agwb7n2N6SAIkQAIkQAIkQAIkQAJpIsCgIU34eDAJkAAJkAAJkAAJkAAJ2D8BBg32P8f0kARIgARIgARIgARIgATSRIBBQ5rw8WASIAESIAESIAESIAESsH8CDBrsf47pIQmQAAmQAAmQAAmQAAmkiQCDhjTh48EkQAIkQAIkQAIkQAIkYP8EGDTY/xzTQxIgARIgARIgARIgARJIEwEGDWnCx4NJgARIgARIgARIgARIwP4JMGiw/zmmhyRAAiRAAiRAAiRAAiSQJgIMGtKEjweTAAmQAAmQAAmQAAmQgP0TYNBg/3NMD0mABEiABEiABEiABEggTQQYNKQJHw8mARIgARIgARIgARIgAfsnwKDB/ueYHpIACZAACZAACZAACZBAmgj8H9/Akqf8Yp6yAAAAAElFTkSuQmCC", "text/html": [ "