master-thesis/EvolutionaryAlgorithm/InitializationPlots.ipynb
2019-12-27 11:52:10 +01:00

7841 lines
570 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADvCAYAAADFG66PAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8VFXex/HPmWTSywQIvXdCCR2sI0EQEWPBhoq9PO4+u66ru4u77hPjunZ3bWtXUGxrFyJYgwGUIhJqSKgBQhoJ6ZnJtPP8cQdMYAJJmJk7mZz365UX4d47M7+B5JuTc08RUkoURVEU/Rn0LkBRFEXRqEBWFEUJECqQFUVRAoQKZEVRlAChAllRFCVAqEBWFEUJECqQFV0IIWr1rkFRAo0KZEVRlAChAlnRjRAiRgjxvRBioxBiqxDiEvfxx4UQv2l03YNCiHubu15RgoVQM/UUPbi7LExAlJSyWgjRBVgLDAHGAs9IKc3ua3OAWUChp+ul+iJWgkSo3gUoHZoAHhFCnAu4gF5ANyllthCiqxCiJ5AIVEgpDwghjJ6uB4p1ql9RvEoFsqKn69ACd4KU0i6EyAci3Oc+Bq4AugMftOB6RWn3VCAreooHSt3hOg3o1+jcB8BrQBfA3ILrFaXdU4Gs+J0QIhRoAN4FlgohNgCbgNyj10gptwshYoFDUsoi9+Fmr1eUYKBu6il+J4RIBl6TUk7WuxZFCSRq2JviV0KI/wHeBx7QuxZFCTSqhawoihIgVAtZURQlQKhAVhRFCRAqkBVFUQKEGvamBLzHsu0C6AsMc3/0ARLQpl4nuD9i0SaJNP4AqAGqgGoPH0ePlwJ5wI4F44yH/fKmFMUDdVNPCRiPZdvj+DV0G38MASL9VEY5sOO4j1xg/4JxRvXNoviUCmRFN49l2zsB04DpQApa+AaqemAz8J37Y82CcUa7viUpwUYFsuI3j2XbY4BzcAewlHKsEELoXFZb1QFZaOH87YJxxm0616MEARXIik89lm0fAVwDnC+lnOResS0YFQPfA98CGQvGGct1rkdph1QgK173WLY9AZgnXa6bhcEwUe96dGAHvgIWA0sXjDNada5HaSdUICte8Vi2PQSYJV2umxHiYiFEmN41BYgq4CPgjQXjjGv1LkYJbCqQldPyWLZ9lJTyJild8w2GkK561xPgNgOvAu8sGGes1rsYJfCoQFba5LFs+0Uup+MBQ0joVL1raYfq0JYSfXTBOGO+zrUoAUQFstJij2XbQ1xO51UupyMtNCw8kIeotRd2YCHwzwXjjAf0LkbRnwpk5ZQey7YbnA77fCnlP0KNYX30ricI2YA3gUcWjDMe1LsYRT8qkJVmPZZtF/YG6zXAI8bwiP5619MB2IDX0YL5kN7FKP6nAlnx6OF1NTOlSz5vjIgcqnctHVAD2s2/RxeMMxad6mIleKhAVpr4e2ZhN2EIWRgV3+lCvWtRqAXuB15cMM7o0rsYxffU8pvKMX9Ztvu+8OjYfSqMA0YM8Dyw6rFse5LexSi+p1rICn9ZtntUWGTM+9GmzqP0rkVplg14BK0bw6Z3MYpvqEDuwBYs32tEiKfjunT/jSEkNETvepQW2Q7cpmb9BScVyB3Un5funBll6rwwIiaup961KK3mAl4E7l8wzlirdzGK96hA7mAuvPsRw8iUy17u3HvgbcJgaK9LXyqaA8C1C8YZf9S7EMU7VCB3IJcseG7g8HNmL03o2U/dIAoeduDuBeOML+ldiHL6VCB3ENc/9eElAyed91ZUXEK83rUoPvEG8NsF44wNeheitJ0K5CCXZJ4Tcua1v3u4/7iz7ws1hqlNbYPbeuByNcuv/VKBHMTOvv7uuAkX3/BZj6FjUvSuRfGbEuDKBeOMq/QuRGk9FchB6oq0V8cMOWPG0vhuvfvqXYvid3bgjwvGGV/QuxCldVQgB5kk8xyRNO2Sy0dNv3xRRExcjN71KLpaBNyhdsduP9TU6SCSZJ4TOnDSeX8YPeOKxSqMFeAm4IvHsu2ReheitIxqIQeJJPMc44Dx56RNufJ/7g2LjIrQux4loPwAXKwmkQQ+FchBIMk8J2zQpGkPT77i9t8bwyPD9a5HCUjrgAsXjDNW6F2I0jzVZdHOJZnnRAyeev4TU668824VxkqzpBw7LXvpq1Xp6Z30LkVpngrkdizJPCdy6Fmznp489/bfhoaFh+ldjxKYpMvpmJa9dMvwg1uvAL6pSk9Xk4MClOqyaKeSzHOih5970bMTUm+8MSTUqCZ8KB65nE45dMViy4z6wqhGh9cBM+LT0mr0qkvxTLWQ26Ek85yYIWfMfHZC6k03qTBWmuNyOeWgH945PowBpgDLq9LTo/WoS2meCuR2Jsk8J67H0OTHJl568/UhoWoNY8Uz6XLJAT+8Z5lVd+j4MD7qLGBJVXq6+oEeQFQgtyNJ5jkR8d373H/ODffcYAyPUDfwFI+kyyX7Zr1XP7v2YHNhfFQK8C9/1KS0jArkdiLJPCckIib+zmm33n9bREx8rN71KIFJulz0WvmBZU7NgZZ2R/yuKj39Rp8WpbSYCuR2IMk8RwBXGEJDzxAGg0Xvenytsvggr90xg39dPpp/X5HMj+89f+zcTx/8h6cvG8m/r0hm+TMLWvXY5c/ez7NXjefDv9987NjGjHeaXNOeSSnpserDukuq80/VMj7ey1Xp6RN8UpTSKmqURSDIFX0AGC4PejqdZJ5zDnA7sN8YHsn5d6WlJvYfNsaPFfpV9eEiasqK6TViHA11NTx/3RTm/+tjastLWfHGY9z03BeEhoVTe6SUmE5dW/TY+MRevHX3pdz55go++NsNnHfTn+jcZzBv3X0pN7+QQYjRqNO79Q4pJd1WfVQ/t3J3a8P4qIPAhPi0tMPerEtpHdVC1luuiAS+ANaTK6Y0c9XR/6dwe4PFufyZBZ/t3ZCVGaw/TOMSe9BrxDgAwqNj6TpgONWlhaz7+BXOu/lPhIZp3efHh/HJHisMBhwOG1JKHFYLhlAjK99+mjPn/bbdhzFAl9Wf1J1GGAP0AT5UN/n0pQJZJ6kpQqSmiGvzD5EFjAO6Az+QK645/tqcrIws4FmgE5AAsPqdZ1ZtWvbeh06HI6hX8qoozKcwbzN9Rk2mbP8u9m1czX9uOItXb5vOwe0bWvzY8OhYRqVcxvPzJpHQawARMfEUbN9A0nmpfnonvpOw+pP6qyp2emMI23nAU154HqWNVJeFTlJTxLQ7ruKpOecx3sPpdCCd4U3/c5LMc/oDfwAigGKAvsln9Djzmt/OC4uMDrobfQ31tbx623Sm3bqAUdMv45krxzJw0jQu/tO/KNi+gfcXXMefluYhxIl7tR7/2ON98tCdnHHV/3BoRza71n5L9yGjSbntr/54W14V/+NnddeW7/D2eOL58Wlp73j5OZUWUC1kHaSmiKEpU1gw28y4Zi5JA953d2cck5OVkQ88BBQBfQFxYPOaoq+e+9urdRWHC31atJ857Xbeve9qxs6edyxQ47r2ZlTKpQgh6DNqEsJgoK6yrEWPbawwNxuALv2GsjHjHa59/H1Kdm+n7MAu374pL4td80W9D8IY4NWq9HRPDQXFx1Qg+1lqiujSKZ77bruSMw2CE5t2v7oarQuje+ODOVkZR4DHgZ+BAUBoZdH+2qVP3LOw/MDuHN9V7j9SSj556A4SBwznnOv/cOz4yGmp7Pl5BQCH9+/EabcRberSosc29s2L6cy4Kw2nw450OQEQBgN2a72P3pH3Ra/NqL/+8PbT6TM+mUjg06r09AQfPb/SDBXIfpSaIozAb+65kXNjomjJAvKTgZ/JFWMbH8zJyrACrwCforWUI2yWOseX//7zR/s3/bTS64X72f5NP5H95bvs/XkFz10zkeeumUju6uVMuOQmjhTs45krx/LB/ddzZfobCCGoPlzIwt+lnvSxR21f8QW9R04gLrEnkbEm+o6ZyjNXjQMh6DE0Wa+33CqR65fV3VC6xVdhfFQ/4DEfv4ZyHNWH7EepKeKiWedwz2/mMb2VD60D5jNcfnb8iSTznKnAHUCV+4Oxs68bPWr6pamGkFB1xzzIhP/8Vd0tRRv9tQaFBM6KT0tb46fX6/BUC9lPUlNEn84mrr3pUpob2nYy0cAn5IoTZkLkZGWsBf4JhALdADYte3frj+89/5bdaqk7raKVgGLc8E29H8MYQKBNGlE/2P1EBbIfuLsqbr/3ZiZGRbaoq8ITATxKrlhErmiy9nFOVsYetJt9ZWjjSdn3y8qCb178v9fqq46UnE7tSmAI+eW7+tsKN/i6m8KTMWgjexQ/UIHsH7PmnMfZo4Yw1AvPdSPwPbmiyd2snKyMw8CjwGa0m30h5Qd2V2U8+cc3Kwrzd3rhdRWdGLJX1N1xaL0eYXzUg1Xp6X10fP0OQwWyj6WmiP6JnZg3P5XJXnzas9Fm9o1sfDAnK6Me+A/wJdpNmXBrbZUt46l7PyjYvuEnL76+4i+bs+rvPLhG73WLo4HgWPAjwKlA9qHUFBEG3H7fLUyKjMDb31QDgJ/IFRc2PpiTleEEPgJeA3oAcdLlkpmv/fPbnBVfLHG5nC4v16H4ypZV9Xfmr9azZdzYJVXp6ZfoXUSwU4HsWxedfwaTRgxksI+ePw5YSq64u/HBnKwMmZOVsQqtCyMCSATY8MWi7HUfvvK2w2YN+hXj2jvX1h/r79y3MsrgYRaijp5Tu4z4lgpkH0lNEQMEXHLtHHy9KlsI8Ay54mVyRZO74TlZGXloN/uqgd4Au9Z+u/+7l//xmqXGwxQ3JSA4t6+pv2vvD4EWxqCNeX9Q7yKCmQpkH0hNEQbg+rkX0KNLgjYUzQ/uBL4iVzSZXZWTlVGMNixuB1o3h6F0b07Fl0/d93pl8cE9fqpNaSHHjvX1d+3OjAzAMD7qD1Xp6SNPfZnSFiqQfWN0aAhDLp3ORD+/7nRgLbliSOODOVkZtWirxX0D9AfC6qvKGzKe/OO7hXmbf/ZzjUoz7Lkb6u/a+V1kiKfVkgJHKND+VmFqJ1Qge1lqiggFrpmfSs+4GDrpUMJQtFCe1vhgTlaGA3gPWAT0AmJcTof87qUHl+Wt/mqZdLnUzT4d2XdutPwm75vI0JOvbxIorqpKT++vdxHBSAWy902MjKD3BWd7dZhba3UCviZX3NH4oPtmXybwBBALdAFY9/ErP6//7I13HXZbg/9LVWy7Nlnu2rE8op2EMWit5D/qXUQwUoHsRe5hblffOpe+UZHovT6xEXiFXPEMuSKk8YmcrIztaDf76oGeAHmrlu1d8dojr1vrqiv8X2rHZdu92XJXzrIIY2B3U3hya1V6eme9iwg2KpC966yEOLqaJ+naOj7e3cASckVc44M5WRmHgIeBPWiTSAxFOzeXLfvXX16rPly0X4c6O5yGvdss/7P9y/Cw9tMybiwK+F+9iwg2KpC9JDVFRAFz77iKAeFhROhdz3Fmo00i6d/4YE5WRjXwbyAL7Wafsba82LL0iT+8XbInJ9vfRXYkDfk5lru2LQ0PF+36e/B/q9LTA2XiSlBoz18MgWaaKZb4yWP8PrKipUaiTbc+q/HBnKwMG/AW8C7aWOVop93m+vr5vy3ZvS7zWyldan1WL7Puz7XcufmL8HBke//+6wLconcRwUSth+wFqSkiDnjyzqvpf5GZmXrXcwoNwO0Ml4uPP5FknpOM9muoBTgCMDLl0qFjZ187NyTUGHb89UrrWQ/stNy56ZOwKGTIqa9uF/KBwfFpaU69CwkG7f0ndKA4CzCeMZaxp7xSf+HA2+SKR8hteiMpJytjM/APwIG2DgbbMz/fmbXwyTcb6mur/F9qcLEW7LbesenTYApj0Lq6rtK7iGChAvk0uccdX3DuJIyd4umqdz2tcD/wMbmiSR9gTlbGAbQRGAdxb6RasP3nkq+evf+1mvKSAh3qDArWQ3ust2/82BiNK5jC+Kg/611AsFCBfPqGA/Gzz2W03oW0weXAanJFr8YHc7IyKoEngbW4N1KtKimoy3jinkWH83du1aHOds1auM966y8fh8YEZxgDjK1KTz9P7yKCgQrk0ze9UzyOof1pr/P7x6FtpNrkZmROVkYD8DraUp59gUh7g8W5/Jm/fLrvl1Ur1L2HlrEW7bfesuHD0Dicwb4N0rV6FxAM1E2905CaIjoDT/5mHj1mncMsves5TRbgRobLj44/kWSeMxG4C6gBKgHGXHB10piZV1ymNlJtnrXkoPWmde+HJuDoCP9GR4Du8Wlpdr0Lac9UC/n0TAWYMoYJehfiBZHAf8kVfz/+RE5Wxga0SSQG3Bupbvn6vzmrFj+z0Gapr/Fvme2DtfRQw43r3g/pIGEM2nT9QB9hFPBUILeR+2beTPMkwhLitQXgg4AAHiJXvEeuaDK5JScrYx+QDpTivtm3f9OPhV+/8MBrdZVlRTrUGrCshwsb5q97z9AJh1HvWvxsnt4FtHcqkNtuBBA329wub+adyjxgBbmiyVrOOVkZ5cBjwAa04U4hFYf21WQ88ceF5QV7d/i/zMBjLStuuG7tu6KLtHe0MAZtm6dIvYtoz1Qgt930cCPWQX0YrnchPjIVbWZfkx1PcrIyLMArwBK0NTAiGupr7F8+fd+HB7asXaVDnQHDWl7ScO3ad0RXae+ok2hiUN0Wp0UFchu4b+aNmXEWsWFGgvmbry/wI7ni4sYH3Rupfgq8hNanHI+U/PDm45nbvvv0M5fT2eFmbTVUHLZd89Ni0c1lC+avh5a4+NSXKM1Rgdw2IwEmj2ao3oX4QQzwObniT40PutdWXgM8grbUZ1eAjRmLt/z0wQtv2Rssdf4vVR8NlWW2K1e/LXvIDh/GABdVpae3x9XrAoIK5LaZCtQM7tchAhm0r5MnyBVvkCua9I3mZGXsQpvZVwH0Adj78w8Hv30x7bX66opS/5fqXw1V5ba5q9+WvWRDuN61BIjuwCS9i2ivVCC3UmqKiAaGTR5DREwU8XrX42e3AN+RK5osTJ6TlVGK1lLeijazL6Rs/66qL5/84xsVhft36VCnXzRUH7Fduupt2cdlVWHcVKreBbRXKpBbbyhgOHMsA/UuRCfnAuvIFSMaH8zJyqgDXgCWo93sC7fUVNoynvrj+4dyflmrQ50+ZauptF+y6i3Z32VRYXyii/QuoL1Sgdx6EwDrkP4dNpABBgFryBVN7qi7N1L9L/AG2mpxsdLlkt+/+vDXO7IylrpczqDYSNVWW2Wfs3KRa4BThXEzRqvhb22jArkVUlOEARgXGU51j0T66l2PzuKBZeSK3zY+6L7Zl4U2XjkK90aqP3/2xsb1H7+62GFrsPi/VO+x1VXbZ2ctdA5y1qswbl4IkKx3Ee2RCuTW6QlEmCfRLTSEjjIl9mRCgBfIFf8hVzT598jJyshFu9lXB/QC2PnTN/nfv/rw69aaqnL/l3r67PW1jguyFjmHOOsDbYuuQDRe7wLaIxXIrTMIEOOSOnR3hSe/QWstN7nJmZOVUYS2BkYe2sw+Q8nubUe+fPq+16tKDu3zf5ltZ7fUOab/sNA+3FGrwrhlVCC3gQrk1pkA1PXuRk+9CwlAM4C15IpBjQ/mZGXUAM8CmWihHFZXWWZd+uQ97xTt3LLB/2W2nt1S50hZsdAx0lGj+kVbTgVyG6hAbqHUFGFEW4y+srOpXe0M4k/D0UZgmBsfzMnKsAOL0TZT7QlEuxx217cvpn2586dvvpKuwN1I1WGtd5z3wyLHKEe1ahm3zsiq9HQ1UaaVVCC3XCIQ0rUTxqhIYvUuJoB1Br4lV9za+KD7Zt/3wFNoNwQ7A6z98KV1G75Y+J7Tbmvwf6kn52iwOM9escg+xl6lwrj1woBRehfR3qhAbrmugBgzTLWOW8AIvE6ueIpc0eRrLCcrYxvazb4G3Bup7sjK2L3ijcfeaKirqfB/qZ45bFbnmSsW2sbZK1U3RdupbotWUoHccj0AOaivCuRWuBdtHYyYxgdzsjIK0Ha3zkebRCIKc7MPL/v3X16vKSs64P8ym3LaGpxTMhc1TLCpMD5NKpBbSQVyyw0G6nt1U4HcShejrRjXZNx2TlZGFfA0sApturWxpqyofukTf3y7dO+OTTrUCYDTbnNNXLHINtl2JOrUVyunoAK5lVQgt1x/oK5bJxXIbTAGbW3lMxofzMnKsAELgQ+A3kCUw2Z1fvXcX7/Ys37Fd1L692af025zjVuxqGFqQ7lqGXvHmKr09GDdadsnVCC3QGqKiETbM8zaSY2waKtuaLuQNNmd2H2zbxnwbyDB/cGP7z33Y3bGu/91Oux+2TTT6bC7kle8bT3LWqbC2HsiocPPaG0VFcgtkwg4+/ciNjwM9Q3bduHAu+SKf5ArmqyZm5OVsQltEokLbQlHtn3/ad7Kt55+02apq/ZlUS6H3TVqxdvWc6ylqpvC+zqf+hLlKBXILdMVEKOGqNaxlzyAtsN1kx9uOVkZ+9FGYBTi3kj14NZ1xV89+9fXao+UHvJFIS6nwzV8xWLreZYSFca+0UnvAtoTFcgt0xuQ3bt0uPWPfelKYCW5osmsx5ysjArgCWA9Wr99aGXxgdqlT9yzqOzAru3eLMDldMqhK96xTrcUqzD2HdVCbgUVyC0zCKiLiVLdFV42Ee1mX5O78TlZGVbgVeATtJZypN1a71j2rz9/nJ/94w/eeGGXyykH/fCuZUZ9oQpj31It5FZQgdwyXQFrVCRqxpb39QJWkSsub3wwJyvDlZOVsQRt0fsugAlg5VtPZW3++r8fu5wOR1tfULpccsAP71lm1RWoMPY91UJuBRXILRMNOKIiVCD7SBTwMbnib8efyMnKWA/8E+1rtSvA5uUfbF/97rOL7FZLbWtfSLpcsu8P71lm1x5UYewfKpBbQQXyKaSmCIEWGI7IcNVl4UMCeJhcsZhc0WTx95ysjL1oN/vK0DZSFfkbVx/6+oUHXquvLC9u6QtIl4teKz+wzKk9oMLYf1SXRSuoQD61o+EgI8JVC9kPrgcyyRVNRrTkZGWUoe1CsgntZl/IkYK91Uuf/OObRwr25Z7qSaWU9Fj1Yd0l1fkqjP1LtZBbQQXyqUUAEiA8TAWyn5yJdrOvyWphOVkZ9cCLwFK0NTAiGuqq7RlP3/vfg1vX/9jck0kp6bbqo/rLqvZG+7RqxRPVQm4FFcinFsmvgay6LPynH/ATuaLJDsY5WRlOtNEXr6DN/otDSla88eh3277/7HOXy+k8/om6rP6kbm7lbtUy1odqIbeCCuRTO9YqVi1kv4sFlpAr7ml80D3d+kfgUbQupUSAjUvf3rzmgxfftjdY649em7D6k/qrKnaqlrF+VAu5FVQgn9qxEA4zqkDWgQH4F7niVXKFsfGJnKyMnWg3+6rQJu+wZ33mge9eevC1uiOlVfE/fl53zZE81TLWlzj1JcpRKpBPLRIQkeGEGAzq30tHtwNfkyuatLhysjJK0IbFbce9keqR3ds7F381v+7K0q3hJz6N4metHprYkamAObUIQFgacMqA3fmtw5iGNt26yZKOOVkZdcDzwDcGl2N8Yqf6qRPmVibmhRcU6FKl0pgK5FZQgXxqRtz/Tg4nflkKUjmpjxguT7hxl5OV4Qhl7ZJw256I8+dXdwkJE8ZdU3K7OF2uE65V/EoFciuoQD41B9qSkDhVIOuq3sIe4JHmzgscc8enOmITB4eYAOydGmL2GIp9skqc0mIqkFtBBfKp2XEPe1MtZP04XbjyD3E7w6XH/4NksykpoatxzvjzTcmNj++YuCNWStXZpCMVyK2gAvnUbEc/sTt+/Vzxr4Ii3kuaI1d4OpdsNkUBt86c321CqNHQ5EZeQ4+6hP3ysGol60cFciuE6l1AO3CsReZw+L6FfLAIblgAxWVgEHDHVXD3Ddq559+BF96F0BC4yAxP/OnExz/7Nrz2EUgJt18Jf7hRO/6Xp2D5Khg7HN5+XDu2+As4UvXr8weqqhpKrTZuP8kll0yYbpqQ2Dt8gKeT25J3RPTfGth7C1jtdmYvXEiD04nT5SI1KYm/TptGfkUFt378MRUWC8k9evDKZZcRFnrit+224mLuycigpqEBgxBk3n47Qgiuff99CquruXXSJG6bPBmAu5cs4ZZJk0ju0cMfb63GHy8SLFQgn9qvXRZ+COTQEHj6zzB+JNTUwYS5MONMKCmHL76HLV9AeBiUlp/42G07tTBe/yGEGWHW7Vpwd+0MP23SHnvdn2DrThjcFxZ9Dl+96ut3dHpcLuShUm5OukhaPZ1PNpuGxHUKvWTizITJzT1Hff+qLoXZFUU9QxP8kkBtER4aypIbbyQmPBy708msN99kxuDB/GfNGn4zdSpzR4/mnqVLWZydza2TJjV5rMPp5I5PP+WVyy9ndPfuHKmvxxgSwtc7dzK2Z08+uu46zn3lFW6bPJmtxcW4pPRXGINqIbeK6rI4tWMhbPNDIPfoqoUxQGw0jBgEh0rgpQ9gwe1aGIMWssfbsRemJkNUJISGgnkSfPYdGAxgs2utZosVjKHw5Bvw++vBaDzxeQJJQQmfJl0kl3k6l2w2RQC3zZzfbYIxzHDSae1bRuwI6AkKQghiwrXeFrvTid3pRAjByn37uCQpCYB5Y8fyZe6J6yhl7tnDqG7dGN29OwCdoqIIMRgwhoRgsdtxuFzHrv1nZiZ/nTbND+/oGBXIraAC+dT82mXRWP4hyN4BU5JhZz6s+gWmXA3m+fDz1hOvHzUEVm6A8gqot8CylXCwWAv2uTNg3OUwoDfEx8DP2+CS6f58N61XU8eRegs3neSSi5LPjZ/YvX/E4FM9V/Xwsu6H7TWl3qvO+5wuF2e/9BJDnnySaYMGMSAhgfiICEJDtGHXPePiKKo+cb/X3eXlIASXL17MuS+/zLOrVwMwbeBASmtrmf7669x91lksy81lbM+e9IiL8+fbUoHcCqrL4tSO3chrsPvvpl5tHcz9PTyzAOJiwOGAimpY+4EWxlfdA3u/hcZ7N48YBH+5DWbcCjFRkDxc6wIB+PNt2gfAbQ/AQ7+D1z+Cb36CMUPhgbv89c5aRko4VMIdw2dLj9/QyWbTwOj4kMunXNhpSkufc8ugXPv0A5NOfaFOQgwGVt91F5UWC9em0M0DAAAgAElEQVT/97/klZWdcI0QJzb0nS4Xaw8cYMXttxNpNHLJ228ztmdPzAMH8voVVwBaq/vyxYt5f948/vrVVxRUVXFNcjKzhw/39dvy6Y7hwUa1kE/Njns+flWNf7647HaYezdcdzFcPlM71rs7XD5DC+DJY7RuiLKKEx976xWw8VNY+Q50ioch/Zqez87R/hzaH97+Aj78N2zbBbvyffmOWq+ghC+Hz5afeDqXbDaFAbfOvL7bhLAIQ4sXDiobXdir0l7v4V8tsJgiIzm7f382FBRQZbXicC9gV1hdTffY2BOu7xkXx1n9+tE5OpqosDBmDBnC5qKiJte8/vPPzBs7lp8LCggLCWHhlVfy1MqV/ng7+/3xIsFCBfKpHQvkw0eo9PWLSQm3PgAjBsIfb/r1+KXTIXOt9vnOfVqfcJeEEx9/9GbfgUL49FuYd1HT839/Dh76Pdgd4HR3LRoMUO/xlpk+6uqpqq3n+pNcMitpauzkXoMjh7XmeYVBsKXXzoC8619WV0elxQKAxW4na+9ehnbpwjkDBvBFjvZT9P1Nm5g97MS3PH3wYLaXlFBvs+FwOvkxP59hiYnHzldaLHy9cyfzkpOpt9sxCIEArG3flrA18vzxIsEiILoshBBOYCtaPTuAG6WU9c1c2x84U0r5nvvvNwETpZT/66Py6gEnYDhUis9bVz9uhMVLYPRQGHuZduyRP8Atl8MtD8Coi7URFG89qrWWC0u1Lohl7tESc++G8krtxt1//g4J8b8+9+ffwaTR0NM9AuyMsTA6FcYM07o3AkVBCf87Yrb0+MMv2WzqGxljuOqs1M7Njqo4meIJB3rXLh1RHRMa7teO1FMprqnhrs8/x+lyIaXk0pEjmTVsGMMTE7nl4495ODOTMT16MH+8tkH3stxcsgsL+VtKCqbISH57xhmkvPYaApgxZAgXDB167Lkfz8rivnPPRQjB9EGDeH39es586SVunjjR12+rAdVCbhURCJOYhBC1UsoY9+fvAr9IKf/VzLXnAfdJKee4/34Tvg1kUlPEo0DIiEGEP34vv/fV6yhwqITMXmbp8XZjstlkBB5IvbPH3L7Do0a29TX6rBq0/4zKkf1OfaVymnLi09Ja9P90XKNsHzBfSs8/lBs9Jh/te//EzvZ2KhC7LFYBg4UQ/xBC3H30oBDin0KI36Ptq3aOEGKTEMcWLu8phPhKCLFLCPFEo8fME0JsFUJsE0I83uh4rfv5Ngsh1gohup2ipiIgYvd+qlwuXKe4Vmmjeiu1tfVcc5JLzh82IWbq6YQxQMHkvb2sDrvH38AUr9rZimstUsqxUspRwBHgtz6qKaAFVCALIUKBC9F+Ur4B3Og+bgCuAd4FFgCr3P95/3Y/dCxwNTAauFoI0UcI0RN4HEhxn58khLjUfX00sFZKmQyshJPOAgM4BETYHbhq6nzfbdFRHSzi3mEXysOeziWbTb3CIw3XnH1ZlzZ1VTQmw2Xo9rj8gB4CFyROuflsM9YAvUD7jVgIkXH0hBDiBfdvxUf9SQix3v0xWAgRK4TYJ4S2mYEQIk4IkX/074EuUAI5UgixCdgAHADekFLmA+VCiHHATCBbSulhfhoA30spq6SUViAHbT+2ScAPUsrDUkoHWpif677eBhz9T/4FbWHzkynB3d9eXonHwFBOT2EpPw67UHqcN5hsNoUAN59/bddxkdHaSm6na9/UXd3tTqdam8S3Nrf2AUKIEGA6sKSFD6mWUk4GXgCekVLWAD8AR29nXwN8IqXnRakCTaAE8tFfV8ZKKX8npTz6jfI6cBNwM/DmSR7f0OhzJ1p4nmxmlr3RCmBHrz+ZctxLcJaUq0D2NksDlspqrj7JJecNSo4+s//IqNHeek1XtCNiR8SBQm89n+LRplZce7RRVo62D9+3LXzc+43+PMP9+etomYH7z4WtqENXgRLIzfkMmIXW2v3afawGbfPLU1kHmIUQXdw/decBWW2soxR3wB8sVoHsbQeL+GvSHOlxRbZks6mbMVxcb57bZYqnSRGnY9fUvES1gL3P1NGGPmS0327D+LUP2UHTnDp+X0t5/OdSyh+B/kIIMxAipdzWmsL1FNCB7G4prwA+lPLYLhFbAIf7htw9J3lsEXC/+/GbgY1Syi/aWEoFWgs5ZFc+qu/Ri4rL2DB0lnzG07lks8kA3JhyddexUbGhXt+92GmyRe8KKVTbPPnGlvi0tFbfAJdSVgG/B+5z9/vuB5KEEOFCiHi07ozGrm7055pGx99GazW3m9YxBMg45KND3o7nvpk3Fbiy0bV2TvxPWdTo/JxGn78HvHey15NSfgx8fLL6lmRKV2qKOATEZu/gsN2B3RhKu7hJEMgabDSUV3J19+YvOaffiKhzBydHJzd/yenJnZRrGrqulzR4u/mttKa7ogkpZbYQYjNwjZRysRDiQ7SG2C4g+7jLw4UQ69Aal/MaHX8XeJhfuzTahYAIZE+EEEloN94+k1Lu0rseIB+YYrNTU3SYA317MEjvgtq7g0U8NHKO3OvpXLLZ1CXUKOanXJ04WRh8F5a2bvXx+bL04EDRrY+vXqODWt+ai49vlEkpL270+Z+BP3t4TH/3p+kenvJs4ONTjWUONAHbZSGlzJFSDpRS3qt3LW47gXCA3fvZp3Mt7V5pOVsHXyA97o/n7qq4wXxl4tjo+NBET9d40/bxOVG+fo2OxH3DfLlery+EeB5tvsI/9KqhrQI2kAPQPtw3DTZsU4F8Omx2bKVHfu2G8mBqr8GR5w2bEDPOH/VY+tR0LnAcUSMuvGdDfFpaiV4v7h6pNVhK2ZqbigFBBXLLFaOtaxH+0yaKGmwE0HI87cvBIp4YdbH0uOhMstmUYDBww/nzEicZDMJvX59bR+WE+Ou1gl3jiRxK66hAbqElmVKijdYwuVzIwlK1aEpblFWwc/1W/s/TuWSzSQDXnTu3y7jYTsaT3OvzvpohR7qV2qvVCBrvUIHcRiqQW2cL7n7knfmq26K17A4cJeVcNe/eZle0mtC9f/j5SVPixvu1MLctg3f4ZT3KYCalLIxPS9uodx3tlQrk1tmHe4LI+i0qkFvrYBHPjZwjPU6nTTab4oXg5vOv7TbJECJ0Gf1zZExJzwp7XXPT85UWEEJ8qXcN7ZkK5NYpAyqBiA3bKbVYqdO7oPaivJJ9hYf5k6dz7q6Ka866pPN4U6Kxp59La2Jznzy1CtzpUd0Vp0EFciu4+5GzgQQpoaCEfJ1LahccTpyl5Vxz9rWyuZlbYxJ7h80cfVb8BL8W5kHp+IO9a+zWKr3raI/ci3t9p3cd7ZkK5NbbBtosvY3b27y8YIdysIhXR1wkPU4USDabYoBbZ1zfbVJIaAAskRgixNauu9rVZIJAIYRYEZ+Wpn7DOA0qkFvvWN/xZ9+Ta7M3WWlOOU5FNQVOl+ddVtxdFVdOnd1pfKduYQEzU65gcn5vi8OuuqNaT3VXnCYVyK20JFNWoK3ZHF9vwZG3j+161xSonC5cRaVcN3imbG70QlKn7sbZY8+L9/nmbq0SJkO2mfaqVf1awT07b6nedbR3KpDb5jvABPDdmrYvohLsDhaxOGmO9LjXfLLZFAXcNvP6bhNDjYZwP5d2SvlTd/e0OR3qt5+WWxaflnZQ7yLaOxXIbbMZ93KcK9ZxsKqGI3oXFGiqaiiprefOk1xy2cSZCeO79Arv76+aWkNGOsNyIg8U6V1HeyGEeE7vGoKBCuQ2WJIpa9C2m+oCsClXtZIbc7mQh0q4YdTF0mMLM9lsGhbfJTR14nTTae+P50t7zsjr6nC51GSRU7A7nbvj09K+0buOYKACue1W4t694Ivv2eySNDf7rMM5WMxHSXOkx2/QZLMpArht5vxuE0LDDMfv/hBQnHH2qJ3GQx53MlF+FWowPK13DcFCBXLb5aFtUxO++wDVhaVqTDJAdS1lNXXccpJLLh57XvyEbn0j2sV60nmTchNcstnx0x2e0+WqFkK8rXcdwUIFchstyZQOtO2hEgHWblLdFlLCoRJuH3Wx9DhkLNlsGhRjCp07eVangO6qaMyeaInbS4na5qkZEl5TY4+9RwXy6Tm6dQyffceOjj4muaCYJSMukp97OpdsNoUDt82c33VcWLgh2s+lnZacCTkxstn1kDouKaUr1GB4Xu86gokK5NNzyP0RV1OH/Zftrdu2JpjU1lNpczD/JJdcOOqsuEk9B0YO9VtRXmLtVdvpoKtc9SUfx+FyfRmflqaWofUiFcinwb22xTdAAsCbn7Cmo7aSC4q5a9AMWe3pXLLZ1C8qNuSKMy5qP10Vx9s6OidM7xoCjTEk5Cm9awg2KpBP3y+ABYgoKcfSEVvJBcV8M3y2/MDTuWSzyQjcNuO6ruPDI0Ni/Vya19QNqkwstlcW611HoLA7nTnxaWkeJ/0obacC+TQtyZT1wOdAVzjWSrbpW5X/1Fmoqarl2pNcMnP4pJjJfYZFjfBbUT6yZViuGm3hFmIweNygVjk9KpC9YzVg5ddW8jq9C/KXgmLuHjlHelzUPdls6h0eZbj67Eu7TPF3Xb5QObK0Z7m9tkzvOvRmsdu3GYR4T+86gpEKZC9wt5K/wN1KXvhpx2glF5ayctiFcqGnc8lmUyhwy4xru46LiAqJ93NpPrOlX16H3txWSomEO+LT0tSwEx9Qgew9q3C3kovLsGzMCe6+ZIuV+qparj7JJSmDx0af0S8papTfivKD0nEFvartlg67XnKFxbKkx8MPr9G7jmClAtlLjm8lv/kJP9kdwdtKPljMX0bMlh5vciWbTT3CIsQ889zEKUIIf5fmU8IgxJYeuzyOJgl2dqfTGh0WdrIFo5TTpALZu1YBDbhbycE64qLoMOuGzpIveDqXbDaFADelXNN1XGRMSIKfS/OLwon5veodtlq96/C3Sqv1qa7/+IcaaeJDKpC96PgRF6/8l9X1VoLqG7fBhrWi+qRdFef0Hxl19qAx0WP8VpS/GQnZlrCnQ93cq7PZChOjox/Su45gpwLZ+461kssraVi6gq/1LsibDhaRlnSR9Dg7K9lsSgw1ivnTrkqcLIKtr+I4+6fs6dngdHSYG3xWu/138Wlpdr3rCHYqkL3M3Ur+COgO8O5SthUUs1ffqryjpJzNgy+QT3g6l2w2GYAbpl2VODY6LrSLn0vzOxnpCsuJzu8Qv75XWixrBj7xxKd619ERqED2jZVo++51Bnj5A5Y5nTj1Len02OzYyiu48iSXnNFnaOR5Q8bHjPVbUTrbM3VXN7vLGdStRqfL5RRC3Kx3HR2FCmQfcC/NuQiIBUK27KT8p2xW6VvV6TlYxKNJc+QuT+eSzabOhhBuSLmm62SDQXSYrylXrD0yz1hQqHcdvnTEYnm976OP5uldR0cRqncBwWpJptybmiK+A84DCp5dzKqkwYzobKKbzqW12uEj7BjUl3RP55LNJgFcb74icXxsQmjX032tRen72bqqithOoTz4YdKx45kflLLiw8MYQgSjz47jirt7N3nckWIbb/5fPtXldoRBcO5lXZh+rVbOJ88dYtuPVfQZFsUtD/UHYM2X5dRXOY9d01a7puR1GrG6jzPEYAg5rScKQJUWywGny/V7vevoSDpMa0YnnwP1QIzNjuuV//K5y0W7Wg/B7sBx+AhXMbzZBYEn9RgQkTJicuw4b7zemRd34vfPD25yLPfnGjZlVfF/H4wg/aMkZs4/8WeaIURw5T29eeiTkdy/aBgrPjpM4V4L9TVO9myuJe2/SbickoJdFmxWF2uWHsF8ZeJp12vvbI3dYygOuqU5bU6nfWdZ2ZXDnnoqaMfSByIVyD60JFPWAm+iDYMTazdTvGYzq3Uuq1UOFvGvpDlym6dzyWaTSQhuOv+6rpMMBuGVFuLQ8bFExzd9qqyPDzPrpm4Yw7Qv17hOxhMeZ0o00m9EFAAR0SH0GBBBZakdgwEcdomUEnuDi5BQwTdvl5ByTSKhRu8MBMmdsCNOBtkK9ttLSp6a8frrQTmOPpCpQPa9zcCPQE+AZ99iZXklJfqW1DLllewpPMz9ns65uyrmnX1Zl/HxnY09fFlHyYEGdmfX8sgNuTx5+07yt3vcIeqYssIGDuTWM2BUNBHRIYyfbuIf1+bSpWc4kTEh5OfUMfY8k9fqs/asM+13lQVNK3l/RcXPj//ww9/0rqMjUoHsY+5F7N9HG5scbbXhfOpNPmywEdBjWB0OnCXlXHX2tc1u8Dm2a5/wmaPOjJvg61pcTkl9tZP73xrGFXf34pUF+2iuQWqtd/Lyn/Zy9X29iYzRWtqzbuzO/70/giv/2JslLxWS+j89WfVZGa/8ZS9fvl7klRq3jc0J6B20W6rKaq3cWlx8yfK8vKBq8bcXKpD9YEmmrAbeALoBhu27ObJ4CZ+4JAH7RX+wmBeTLpIbPZ1LNptigVtmXN91YkiI8PmN4YSuYYxLMSGEYMCoaISA2krHCdc57JKX/7SXKRd2YnzKibO2D+Rqe3F26xfO2i+PcOfjAzm0x0rJgdP/2Vjfv6pLoaPCO+muE5vT6Vh74MC1133wQbt+H+2ZCmT/2QR8DfQFWJLJ7pU/s0Lfkjw7UsWB2nru8XTO3VVx9ZkXdxqf0DWst6drvG3sefHk/lwDQMl+K06HJMbU9OeAlJK3/7GfHgMimHG954EsX7xUSOpdPXA6JC6X9rPQIMBm9c591q0jdrTr2Ylr9u9/6qp3312udx0dmQpkP3F3XXwI5AE9AP61iFV7DrBD18KO43TiKi7j2tGpsrmJLCM79wiblXyuaaIvXv+1v+7jsZvyKM638ucLt7L68zLOuqQzZYcaePCqHF69fx83P9gfIQSVh2089/vdAOzeVMfaL4+Q+3MND83bwUPzdrB1ddWx581eUUn/kdGYEsOIig1l4OhoHrwqBwT0GRrlldqrhpd1L7PXHPbKk/nZ1qKizJfWrn1A7zo6OhFkN4cDXmqKSADS3H+tjI8l7Lm/cltCPKc/BssL8g/xRv/p8jZP55LNpmjgn/P+3PvSzj3C+/m5tHah86YeBdMPTvLLbw7ecqiq6sALa9aMfnHNmg65rGggUS1kP1uSKSuA54A4ILyqBtsTb/BBINzkq6ymyGDgrpNcMnfyBQnjVRg3r2xMYe8qu6VC7zpa6nBd3ZHleXkXqTAODCqQdbAkU+4FFgK9cN/ke2cpn+p5k8/lQhaVMb/vNOlxbYZks2mEKdE4Z/x00yR/19aeCINgS6+dNXrX0RLl9fVVizZsuPreL7/0OM5c8T8VyPpZDXyD+ybfF9+za9UG/W7yHSzm/RGz5feeziWbTZHAbTPnd5sQajQExfAuXyqasL93naMhoEO5wmKpeXHNmnt+OXTI4/+5og8VyDppdJNvJ+6bfE8vZNWGbfh9v7LqWg47HHjsN3a7ZHyKaULXPuED/VZUexaKYUvn3Uf0LqM5VVZr7X/WrPnz9pKSRWq8cWBRgayjJZnSBryEtjlqJ4CHXuSbX7az1l81uFzIQyXcPGimtHg6n2w2DY5NCL1k0swE1VXRCgVT9vayOuz1etdxvJqGhrqX1659YFtx8asqjAOPCmSduW/yPYW28l4CQPp/+DrbT7tWF5Tw2YiL5JeeziWbTeHA7TPnd5tgDDd4Z2xYByHDZej2uPxSvetorNZms7yybt1D2YWFzy/Py2tXi1x1FCqQA8CSTHkQeBwIA0wAaS+wfFMuP/vydWvqqGho4KaTXDJnzDlxE3sMiBjiyzqC1b6pu7rbnc6AWC2t3mazvrZu3SMbCgqeVmEcuFQgB4glmXI/WihHcDSUn2fZljw2+Oo1C0q4c8gs6fHmU7LZNCA6LmTu1NmdJ/vq9YOdK9oRkRtxUPcF7C12e8PrP//81LqDBx9bnpfXrneuCXYqkAPIkkyZjxbKkUC8lPD35/hy6048rilxOgqKWT5itvzI07lksykMuG3G9d3GhUUYYrz92h3Jrql5iU6XS7cQrLfZrAs3bHj2p/37H1qel3fiAiBKQFGBHGCWZMp9aKEcjTuUH3iWpdt2ke2t16irp7reynUnueSCpCmxk3sPiRzurdfsqBymhuhdIUW6LM1ZUltb/ugPPzy+ct++vy/Pywvqvf+ChQrkAOSeOHI0lOOOhvL6LfzojecvKOF3Q2dJj7PJks2mPpExhqvPSlVdFd6SO2lHvMvPaxRsLynZ+7evvnpyV1nZo8vz8gKiH1s5NRXIAWpJptwDPIG2UWqcy4V8+GW+++grPnU4afOvnodKWDHsQvm2p3PJZlMocOv513YbGx4VEtfW11CasnWrj8+XpQX+eC2XlPKrvLyN//j++/Ram+3fy/PyGvzxuop3qEAOYEsy5W60UI5A2waKxUvY+u9FLKy30OqZYPVW6iprmHeSS6YPHR8zte/wyJFtq1hpzvZxOT4fNtjgcDS8tn79d4t++eVeYLFqGbc/KpAD3JJMuQt4EDgC9AHEql8o/MvTvFpaTqv6Jg8Wcd/IOdLj9lHJZlPPsAjDvHMu7zJFiHa9rG9AsvSt6VzgOOKzERdH6usrHs7M/GjFnj3/uzwv7wc16aN9UoHcDizJlKXAI0A20B8I3V9I7e8eZuGOPWxuyXMUHWbNsAvly57OJZtNIcDN51/bdVxkdIj3NptTmtg6MscrG8Eeb3d5+cG/ff31K7vKyu5Znpe30xevofiHCuR2YkmmrEebZv0Z2oJEkZYGnH95ms+/+4lvXK7mV4qzNmCprOGqkzy9eeDo6LMGjIoa7eWylUZqhh7pVmqv9uoGt1l7925N++abf1ZYLOnL8/LKvPnciv+pBerbodQUMRH4H6AerSuD1GkMnn8Jl4eHEXn89bv2c++QC+S/PD1XstnU1RguHpv/t76XRMWGdvJp4QqdtnQ7dP7+Kb1O93mqLJaKtzZuXP/T/v3PAl+r2XfBQQVyO5WaIvoBdwMxQCFA3x7E3HcLqf17cWyqc0kZG7udLT3uDJ1sNhmAe2fO7zpv6PjYcf6ou6OTLsnMz2eUJxijOrfl8U6Xy7k6Pz/7zQ0bNjU4HM8tz8vb6u0aFf2oLot2yj3V+iFgH+5+5QNF1P7+n7z3xfcssdmxNdhoOFJ10q6Ks4BRSCpcrmb30FO8SBgEW/rktWkVuKLq6oPp33239KW1az9tcDj+rsI4+KgWcjuXmiKMwGzgUqAGrQvD0K8nSTddxtcT5srXPD0u2WzqjHajsAKw9h0emWi+IvHi+M7GPv6qvcNySjn7i1k1McbwFo31bnA4rBk7dvz88dat2yW8C/ykuiiCkwrkIJGaIgYAdwDdAQFkLsn0PAEEtL5j4AG02YCHABcCps7uNHr0WXHnh0eqiSG+1Hv1wP1nVow65d6EuaWluf9Zs2bL4bq6TOC/y/PyKv1QnqITFchBJDVFhAOpwBjgsSWZsu5k1yebTbHAXGAaUIX7BmFElMFoviLxzIGjo88KCRVGH5fdMdmE4+IvZ9kiQ40eJ4zUNDRUvpOdvS5r797taPsvbldji4OfCmSFZLNpGDAfbeJJCdroDbr0Cos1z02c3r1/eLKaLOJ9AzKH5U+qG9a/8TGrw1H/Y37+lnc2btxlcTi+AJYtz8vzuJuLEnxUICvAsckhU4F5QBRQBNgB+o2I6jr5goRzuvYNHylUMnuNoS6kIfXbCwgLCQ232u31aw4cWP9udnZhrc2WByxanpd3QO8aFf9Sgaw0kWw2RQEXABcBEigGnAC9Bkd2njo74Zxu/SJGGwxCjdDxgn5fD9tZtyP00LvZ2QV1Nlst8BGwUi0k3zGpQFY8SjabEtFC+VzAhdZidgJ07xdumnpR57N7DIxIDgkRoTqW2W7Vl7sshescq3I+spU4rFQDnwM/qu6Jjk0FsnJS7mCeCaTwa4vZARBjCo2YNDMhecCoqIlRsaFddCyzXZAuKcuLbbt2rK3ZeWApgyKs4T8IxCdow9hUECsqkJWWSTabOgHnAzPQdsg+jPvmH8DIM+L6J02NnZjYO3yE6s5oylrvrDqQW7/xl+8q95UX2QxARZjN+H1CZfz33+zYbdW7PiVwqEBWWiXZbIoHJgMXAgmABS2cJUBCV2P06HPiR/QdFjUqvkto3456E9BhdzWUFdp27vylJmfr6upaKQlBm1X5JbB5c1al2t9OOYEKZKVN3KMyhqO1mpPdh8uBY2OfO/cIixl9dlxSn6FRI+M6h/YN9my221yWwwcbcvdurdux7afqCoddRgNW4AfgR+DQ5qxK9Q2nNEsFsnLaks2mLmhD5sxAZ7TWcjmNujQ6dQ+LGTYhZmDPQZEDO/UIGxgeYYjVp1rvkVLKuipncVlhQ37+9vpdOWurq1wujr6v3cDXwNbNWZVqGyWlRVQgK16TbDYJoDcwFjgPrUtDApVArftzAPoOj0wcODpmYPd+4QNiOxt7toeAllJSX+0sLS+y7SvYbdm3a2PtwZoKRyTainsSLYRXATmbsyrLdS1WaZdUICs+4Q7nvmjTuCehBTVoIzQq0Pqej+ncIyym7/Conl37hPdI6GbsGZsQ2iM8MkS3kHY5paOu2nm4+oi9+Eixrahkf0Pxgdz60voaZwTQeJ2PHWjdETs2Z1WqdSaU06ICWfGLZLMpDhgAjAImACa0VqVE63eugaa7aUdEGYzd+kUkdO4ZlmBKNHaKNYUmRMeHJoRFGmKNYSLKGG6IMhhEq7dFklJKp0M2OOzS2lDvqrbUOivrqh1VtRWOysoye+WRYntVcb61wumQRrTWb+P1JvKBX9Baw/tVd4TiTSqQFb9zt567AD2BfsAwYBBwdCEjA9CA1oq2AM3unhwRZTBGm0IjomJDwsMiDEYhEBoQBgQgpERa65wN9TVOa12Vs8FS57Q12vDKAISj7ewd4a7B5T5eCewBdgIH0QJYjRdWfEYFshIQ3LuXdAZ6oIV1L7TA7gnE8mtrGrSwFGgzBx1oATb7H+UAAAGXSURBVHr03PFf0CFo46aPzig8fh3hozcgS9Amvex3/1myOauy1gtvTVFaTAWyEvCSzaYwtBuEMWjrN0cBkWhBHeP+HLSQNjT604XWHXK0S8SC1vK2AtVoS47WbM6qVIu9KwFBBbKiKEqAUFNcFUVRAoQKZEVRlAChAlnxOSFEdyHEB0KIPUKIHCHEMiHEUL3rUpRAowJZ8Sn34kKfAT9IKQdJKZOAvwLdGl1zkxDiwVM8T74v61SUQKAWF1d8bRpgl1K+fPSAlHKTjvUoSsBSLWTF10ahzWxTFOUUVAtZ0YUQojPwvfuvnYAwIcSl7r/Pl1JuFUL8BzjLfaynEOJoy/ojKeU//ViuoviFGoes+JQQYjqQJqU89yTX3AT0l1I+eJJr8qWU/b1eoKIEENVlofhaJhAuhLj96AEhxCQhhFnHmhQlIKlAVnxKar+CXQbMcA972w48CBTqWpiiBCDVZaEoihIgVAtZURQlQKhAVhRFCRAqkBVFUQKECmRFUZQAoQJZURQlQKhAVhRFCRAqkBVFUQLE/wPtaqurkdhrmQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"# Data to plot\n",
"labels = 'Python', 'C++', 'Ruby', 'Java'\n",
"sizes = [215, 130, 245, 210]\n",
"colors = ['gold', 'yellowgreen', 'lightcoral', 'lightskyblue']\n",
"explode = (0.1, 0, 0, 0) # explode 1st slice\n",
"\n",
"# Plot\n",
"plt.pie(sizes, explode=explode, labels=labels, colors=colors,\n",
"autopct='%1.1f%%', shadow=True, startangle=140)\n",
"\n",
"plt.axis('equal')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialization Plots for Thesis"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
" <script type=\"text/javascript\">\n",
" window.PlotlyConfig = {MathJaxConfig: 'local'};\n",
" if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}\n",
" if (typeof require !== 'undefined') {\n",
" require.undef(\"plotly\");\n",
" requirejs.config({\n",
" paths: {\n",
" 'plotly': ['https://cdn.plot.ly/plotly-latest.min']\n",
" }\n",
" });\n",
" require(['plotly'], function(Plotly) {\n",
" window._Plotly = Plotly;\n",
" });\n",
" }\n",
" </script>\n",
" "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" <script type=\"text/javascript\">\n",
" window.PlotlyConfig = {MathJaxConfig: 'local'};\n",
" if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}\n",
" if (typeof require !== 'undefined') {\n",
" require.undef(\"plotly\");\n",
" requirejs.config({\n",
" paths: {\n",
" 'plotly': ['https://cdn.plot.ly/plotly-latest.min']\n",
" }\n",
" });\n",
" require(['plotly'], function(Plotly) {\n",
" window._Plotly = Plotly;\n",
" });\n",
" }\n",
" </script>\n",
" "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/jonas/Dokumente/gitRepos/master_thesis/EvolutionaryAlgorithm/EvolutionaryAlgorithm.py:58: TqdmExperimentalWarning:\n",
"\n",
"Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console)\n",
"\n"
]
},
{
"data": {
"text/html": [
" <script type=\"text/javascript\">\n",
" window.PlotlyConfig = {MathJaxConfig: 'local'};\n",
" if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}\n",
" if (typeof require !== 'undefined') {\n",
" require.undef(\"plotly\");\n",
" requirejs.config({\n",
" paths: {\n",
" 'plotly': ['https://cdn.plot.ly/plotly-latest.min']\n",
" }\n",
" });\n",
" require(['plotly'], function(Plotly) {\n",
" window._Plotly = Plotly;\n",
" });\n",
" }\n",
" </script>\n",
" "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import EvolutionaryAlgorithm as EA\n",
"import ea_tools as ET\n",
"import plotly\n",
"plotly.__version__\n",
"import plotly.graph_objs as go\n",
"from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot\n",
"init_notebook_mode(connected=True)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def forward_normalized_score(key, matrix):\n",
" sum_key = matrix.get_fw_sum(key)\n",
" keys, values = matrix.get_forward_adjacent(key)\n",
" normalized_values = EA.np.array([(values[i] / matrix.get_bw_sum(keys[i])) * (values[i] / sum_key) for i in range(len(keys))])\n",
" sort = EA.np.argsort(-normalized_values)\n",
" return keys[sort], normalized_values[sort]\n",
"\n",
"def backward_normalized_score(key, matrix):\n",
" sum_key = matrix.get_bw_sum(key)\n",
" keys, values = matrix.get_backward_adjacent(key)\n",
" normalized_values = EA.np.array([(values[i] / matrix.get_fw_sum(keys[i])) * (values[i] / sum_key) for i in range(len(keys))])\n",
" sort = EA.np.argsort(-normalized_values)\n",
" return keys[sort], normalized_values[sort]\n",
"\n",
"def normalized_score(key, matrix):\n",
" sum_key = matrix.get_sum(key)\n",
" keys, values = matrix.get_adjacent(key)\n",
" normalized_values = EA.np.array([(values[i] / matrix.get_sum(keys[i])) * (values[i] / sum_key) for i in range(len(keys))])\n",
" sort = EA.np.argsort(-normalized_values)\n",
" return keys[sort], normalized_values[sort]\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"linkText": "Export to plot.ly",
"plotlyServerURL": "https://plot.ly",
"showLink": false
},
"data": [
{
"histfunc": "sum",
"type": "histogram",
"x": [
"bread",
"cheese",
"rye bread",
"cucumber",
"prosciutto",
"onion",
"ham",
"swiss cheese",
"wheat bread",
"tomato",
"avocado",
"salt",
"bacon",
"banana",
"steak",
"pork tenderloin",
"apple",
"egg",
"country bread",
"red apple",
"bagel",
"baguette",
"butter",
"leaf lettuce leaf",
"mozzarella",
"red onion",
"olive oil",
"sourdough bread",
"mushroom",
"chicken breast",
"loaf",
"eggplant",
"potato",
"sugar",
"strawberry",
"flour",
"mozzarella cheese",
"lettuce leaf",
"black pepper",
"lemon",
"arugula",
"goat cheese",
"roast beef",
"cucumbers",
"nectarine",
"green tomato",
"green apple",
"radish",
"turkey breast",
"peach",
"carrot",
"salami",
"sandwich bread",
"pork loin roast",
"duck breast",
"clove garlic",
"orange",
"beef tenderloin",
"zucchini",
"muenster cheese",
"basil leaf",
"pepperoni",
"pepper jack cheese",
"dill pickle",
"loaf bread",
"lettuce",
"avocados",
"jack pepper cheese",
"pepper",
"red pepper",
"sirloin steak",
"garlic clove",
"salmon",
"green onion",
"turkey bacon",
"iceberg lettuce",
"dough",
"mushrooms",
"cream cheese",
"peaches",
"beef brisket",
"sausage",
"water",
"garlic",
"fennel bulb",
"strawberries",
"flour tortilla",
"roll",
"sponge cake",
"almond",
"black olive",
"bananas",
"green onions",
"kielbasa",
"milk",
"vanilla extract",
"pear",
"tofu",
"lime",
"olive",
"roast red pepper",
"cinnamon",
"croissant",
"parsley",
"pork loin",
"lemon juice",
"pineapple",
"sauce",
"vidalia onion",
"shiitake mushroom",
"hamburger bun",
"ground black pepper",
"red bell pepper",
"salad green",
"grapefruit",
"basil",
"eggs",
"apples",
"lamb",
"mango",
"jack cheese",
"chicken breast half",
"pork",
"red",
"scallion",
"kosher salt",
"cream",
"plum tomato",
"orange juice",
"grape tomato",
"squash",
"bread flour",
"vegetable oil",
"ground cinnamon",
"pastry",
"fontina cheese",
"leek",
"mint",
"onions",
"rosemary",
"crust",
"artichoke",
"russet potato",
"pancetta",
"ginger",
"spinach",
"shallot",
"green olive",
"daikon radish",
"pita bread",
"yeast",
"cherry tomato",
"cilantro",
"turkey",
"chicken breast fillet",
"thyme",
"lime zest",
"orange marmalade",
"potatoes",
"celery",
"soy sauce",
"dijon mustard",
"beet",
"cornmeal",
"walnut",
"cake",
"mustard",
"green",
"asparagus",
"lime juice",
"fig",
"portobello mushroom",
"honey",
"oregano",
"green pepper",
"canola oil",
"bread dough",
"cabbage",
"dill",
"cake flour",
"ground pepper",
"baking soda",
"mint leaf",
"chorizo sausage",
"chicken breasts",
"cremini mushroom",
"bread crumb",
"monterey jack cheese",
"roast",
"tortilla",
"hot",
"pie crust",
"dress",
"tomatoes",
"red potato",
"sprout",
"caster sugar",
"vanilla",
"pistachio",
"pecan",
"polenta",
"tuna",
"veal",
"apricot",
"ketchup",
"tablespoon butter",
"sage leaf",
"nutmeg",
"vinegar",
"lemongrass",
"okra",
"hazelnut",
"walnuts",
"salmon fillet",
"ricotta cheese",
"raisin",
"almonds",
"chive",
"cocoa",
"leaf",
"red wine vinegar",
"beef",
"chicken",
"tart apple",
"red wine",
"spaghetti sauce",
"breadcrumb",
"shrimp",
"chocolate",
"buttermilk",
"ground beef",
"carrots",
"peanut butter",
"ear corn",
"wheat flour",
"extra-virgin olive oil",
"dressing",
"sauerkraut",
"lemon zest",
"salsa",
"biscuit",
"meat",
"vanilla ice cream",
"egg yolk",
"soda",
"chocolate chip",
"cranberry",
"tomato sauce",
"date",
"rice",
"ground nutmeg",
"topping",
"orange zest",
"water chestnut",
"scallop",
"butternut squash",
"almond extract",
"maraschino cherry",
"sesame seed",
"broccoli",
"season",
"coconut",
"spinach leaf",
"salad dress",
"ground cumin",
"paprika",
"margarine",
"garlic salt",
"beef stock",
"pecans",
"fruit",
"caraway seed",
"cherry",
"salt butter",
"green bean",
"wine",
"flaked coconut",
"cayenne pepper",
"ice water",
"gingerroot",
"thyme leaf",
"sage",
"pie shell",
"nut",
"black peppercorn",
"mushroom soup",
"flat-leaf parsley",
"cracker",
"molasses",
"fish sauce",
"applesauce",
"ground ginger",
"chocolate chips",
"apple juice",
"raspberry",
"allspice",
"vanilla bean",
"marshmallow",
"vanilla pudding",
"maple syrup",
"vegetable shortening",
"oil",
"parsley leaf",
"caper",
"juice",
"apple cider vinegar",
"clove",
"bean",
"rhubarb",
"celery rib",
"seasoning",
"oat",
"syrup",
"hot sauce",
"chili",
"corn syrup",
"sesame oil",
"chicken broth",
"pumpkin",
"rice vinegar",
"ground allspice",
"blueberry",
"corn",
"graham cracker crumb",
"pea",
"ground clove",
"rum",
"hot water",
"noodle",
"chicken stock",
"roll oat",
"peanut oil",
"all-purpose flour",
"curry",
"cumin"
],
"y": [
0.0026991014202120615,
0.001356918157056977,
0.0010230530800835727,
0.0009864878008613367,
0.0009750900945432229,
0.0009337388395964211,
0.0009293989795348573,
0.0008922834507078139,
0.000891097487936137,
0.0008526644502733097,
0.0007997064053646741,
0.0006825453955595456,
0.0006653779498966055,
0.0006633597290002522,
0.000643543547317847,
0.0006346993178090827,
0.0006184111109180587,
0.00059515470257716,
0.0005769508149430262,
0.0005288715803644406,
0.0005288715803644406,
0.0005002021108564692,
0.0004961442552933756,
0.0004807923457858551,
0.000471176498870138,
0.0004640487106741826,
0.0004469391088428624,
0.0004394392217441701,
0.00043615116940057486,
0.0004270914510020739,
0.0004256277503220044,
0.0004223692671666697,
0.00040779167123968174,
0.00039871500407682385,
0.00036070725401525164,
0.00034379445104975107,
0.00032988838540387496,
0.00032756786923167136,
0.0003264758312129011,
0.0003254120511948922,
0.00028618592011062804,
0.00028052713854604186,
0.00027817271434753043,
0.00027702797066708794,
0.00027702797066708794,
0.00026702467204414417,
0.0002644357901822203,
0.0002590537863114831,
0.00025904228630321233,
0.0002284169717099185,
0.00022837171801378382,
0.00022537141208711956,
0.0002251515375387419,
0.0002225890489749329,
0.00021166589857157767,
0.00020796653487445473,
0.0002069712993692224,
0.00020182097305662057,
0.00020108908238464565,
0.00020033014407743962,
0.0001919309811560277,
0.000191718441618343,
0.00018711918322476524,
0.00017643755808655233,
0.00017288065199533938,
0.0001659072179120204,
0.00016159964955580133,
0.0001593213851721755,
0.00015891464412228648,
0.000157041778808351,
0.00015372702634995104,
0.0001482973742051404,
0.00014596510138528655,
0.00014401430204836847,
0.00014278075723337514,
0.00014233983921291762,
0.00014213204382720532,
0.00013913109164624747,
0.00013900458976801936,
0.00013869009974591974,
0.00013851398533354397,
0.00013490855741430833,
0.00013392129962157457,
0.00013178592250433734,
0.00013093919204380734,
0.00012821129220956135,
0.00012607702433077025,
0.00012529022212843217,
0.00012377845497891165,
0.0001231256276620217,
0.00012277590076925578,
0.00012019808644646377,
0.00011875981874539497,
0.00011872627314303769,
0.00011733100949699372,
0.00011702946155774838,
0.00011660428507392303,
0.0001139307198826702,
0.0001133959445266555,
0.00011116586029730754,
0.00010980257626731015,
0.0001089166135641452,
0.0001081782778018174,
0.00010722398434118088,
0.00010586589556732351,
0.00010577181259803372,
0.00010364639218436824,
0.00010010832128968938,
9.926035525901526e-05,
9.924927709436579e-05,
9.884711056452613e-05,
9.812088689507247e-05,
9.777501608985665e-05,
9.751281379318751e-05,
9.673084099739227e-05,
9.400967655030685e-05,
9.390922795913682e-05,
8.97000645122864e-05,
8.9242198753755e-05,
8.740949324888083e-05,
8.570373976312965e-05,
8.430844835991614e-05,
8.411837733897647e-05,
8.218194747734965e-05,
8.073947264508822e-05,
7.988999729326114e-05,
7.873944797277623e-05,
7.626957715523816e-05,
7.531994973146555e-05,
7.512380402903986e-05,
7.481294690891968e-05,
7.481294690891968e-05,
7.444111190067952e-05,
7.392614495238599e-05,
7.387412551122345e-05,
7.32017175115401e-05,
7.22005636873524e-05,
7.075672960186933e-05,
7.066484275763878e-05,
7.029127862366302e-05,
7.020916264396248e-05,
6.96169912450107e-05,
6.839658854566519e-05,
6.798534301270576e-05,
6.588987769103033e-05,
6.426167514606491e-05,
6.315836725703211e-05,
6.202588277695382e-05,
6.0859790605804444e-05,
6.06372436103056e-05,
5.979184009061232e-05,
5.928651536613458e-05,
5.869356672708587e-05,
5.7647070846363944e-05,
5.75998750891965e-05,
5.7550706883608434e-05,
5.7221060871696836e-05,
5.576053241066722e-05,
5.563860704825323e-05,
5.525381196297451e-05,
5.391713827215534e-05,
5.386758853158367e-05,
5.319404676779673e-05,
5.2821452605944505e-05,
5.05349842252332e-05,
4.9831109522744495e-05,
4.979208220648872e-05,
4.97579186865218e-05,
4.957865477561258e-05,
4.7913607294112025e-05,
4.774765365045734e-05,
4.646583744507593e-05,
4.636470118652424e-05,
4.610294246338551e-05,
4.6011566062353706e-05,
4.5637286998409044e-05,
4.4873952273346476e-05,
4.448418607157647e-05,
4.4130032884451455e-05,
4.336345846997565e-05,
4.2960851839853025e-05,
4.2693092978348585e-05,
4.1988334241136665e-05,
4.145607471316812e-05,
4.102244369688989e-05,
4.001970970703071e-05,
3.9844669540264234e-05,
3.973490461040125e-05,
3.852706876827051e-05,
3.8023446954306185e-05,
3.799810474759177e-05,
3.758670958799686e-05,
3.756190201451993e-05,
3.7102240382561416e-05,
3.705306344856323e-05,
3.7047355411581296e-05,
3.6855690859925174e-05,
3.6336747204134286e-05,
3.591103323462251e-05,
3.556832859480756e-05,
3.556049048076513e-05,
3.49667160571531e-05,
3.479100391616238e-05,
3.3823182465167715e-05,
3.379919190722164e-05,
3.369821857690674e-05,
3.329869249965639e-05,
3.282136746972551e-05,
3.222300642721341e-05,
3.1964765846202455e-05,
3.190511419039776e-05,
3.172905716297225e-05,
3.147004445143779e-05,
3.129224759013023e-05,
3.1046680624736835e-05,
3.101831986594717e-05,
3.0908079371947826e-05,
3.0423343411569062e-05,
2.9996183530559106e-05,
2.9929710014193426e-05,
2.9503166673222928e-05,
2.9493250975611438e-05,
2.90364165240509e-05,
2.9019252299217682e-05,
2.8656497430945008e-05,
2.7953043359642738e-05,
2.7535311078563513e-05,
2.7368832150585577e-05,
2.7306231951454005e-05,
2.6444405405890966e-05,
2.6040093199121067e-05,
2.59717734452546e-05,
2.5660016238617193e-05,
2.5632147141264828e-05,
2.557406094605612e-05,
2.552691684380708e-05,
2.5238990819994998e-05,
2.5084818041001138e-05,
2.4510323082369818e-05,
2.3940143010854303e-05,
2.362032163889811e-05,
2.314926109339302e-05,
2.246037235787936e-05,
2.2160414167858366e-05,
2.2005202767504745e-05,
2.1529353576612213e-05,
2.146734648290872e-05,
2.1439361760652395e-05,
2.1184654134454203e-05,
2.091856708083254e-05,
2.0834334984053718e-05,
2.0813521462591127e-05,
2.052475328861708e-05,
2.048446261974946e-05,
2.037255702482437e-05,
2.024388824361495e-05,
2.0154888259654192e-05,
1.9624177379014492e-05,
1.9456524784499532e-05,
1.873723891560572e-05,
1.8544847623168696e-05,
1.848064059754978e-05,
1.780712391799463e-05,
1.761144123757711e-05,
1.750771941923411e-05,
1.74355262000078e-05,
1.7244677372896323e-05,
1.716489977668991e-05,
1.7060373560143247e-05,
1.7060373560143247e-05,
1.6694178673119966e-05,
1.6522073738345537e-05,
1.627552673126556e-05,
1.6133971335095808e-05,
1.602641152619517e-05,
1.5585038369253423e-05,
1.550943050922113e-05,
1.5454856193591917e-05,
1.525190093199243e-05,
1.507493625933386e-05,
1.501920636558401e-05,
1.481894216463252e-05,
1.4501109624908498e-05,
1.4135294966104138e-05,
1.4064970115526506e-05,
1.3829532642829092e-05,
1.3312556942812006e-05,
1.3282162977189147e-05,
1.278100418473444e-05,
1.245576025351956e-05,
1.2448593533005454e-05,
1.21290032724454e-05,
1.185349682692171e-05,
1.1800380089267439e-05,
1.1775928469247755e-05,
1.169120955939705e-05,
1.1657142004506185e-05,
1.1209730466409737e-05,
1.1209224246645176e-05,
1.103993293991977e-05,
1.0834757088131948e-05,
1.0665757410847391e-05,
1.0660584163766189e-05,
1.055823481671297e-05,
1.0295339310189616e-05,
1.0287384516071788e-05,
1.0220748348593014e-05,
9.989754553052527e-06,
9.974944933316496e-06,
9.940432465614726e-06,
9.76847940644277e-06,
9.630895189450619e-06,
9.528341736504306e-06,
9.06166259191409e-06,
8.823529941388352e-06,
8.624077951315786e-06,
8.47792145782268e-06,
8.405460590661804e-06,
8.183097051361137e-06,
8.026583402101086e-06,
7.947523748645965e-06,
7.63664534189939e-06,
7.385788801221008e-06,
7.009141426516683e-06,
6.640965452715123e-06,
6.6407782567107054e-06,
6.464434901322422e-06,
6.418160066177686e-06,
6.326215076129672e-06,
5.330569100094366e-06,
5.312622605368565e-06,
4.896052401077954e-06,
4.845194182338074e-06,
4.39883207489346e-06,
4.137686617360488e-06
]
}
],
"layout": {
"autosize": true,
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"xaxis": {
"autorange": true,
"range": [
-0.5,
334.5
],
"type": "category"
},
"yaxis": {
"autorange": true,
"range": [
0,
0.002841159389696907
],
"type": "linear"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABCkAAAHCCAYAAADCTZOBAAAgAElEQVR4XuzdCbyMZf/H8e/MIft2rNGijZRdhISQcEhKRakn+bc6abW22pIWUWnR074qpce+VFKKtKi0oFJahIQiJGfm/7ruOXPM4Zwzc85vZM70uV+v5/XozH3dy/u65l6+c93X7QsGg0ExIYAAAggggAACCCCAAAIIIIAAAgdYwEdIcYBrgNUjgAACCCCAAAIIIIAAAggggIAnQEhBQ0AAAQQQQAABBBBAAAEEEEAAgYQQIKRIiGpgIxBAAAEEEEAAAQQQQAABBBBAgJCCNoAAAggggAACCCCAAAIIIIAAAgkhQEiRENXARiCAAAIIIIAAAggggAACCCCAACEFbQABBBBAAAEEEEAAAQQQQAABBBJCgJAiIaqBjUAAAQQQQAABBBBAAAEEEEAAAUIK2gACCCCAAAIIIIAAAggggAACCCSEACFFQlQDG4EAAggggAACCCCAAAIIIIAAAoQUtAEEEEAAAQQQQAABBBBAAAEEEEgIAUKKhKgGNgIBBBBAAAEEEEAAAQQQQAABBAgpaAMIIIAAAggggAACCCCAAAIIIJAQAoQUCVENbAQCCCCAAAIIIIAAAggggAACCBBS0AYQQAABBBBAAAEEEEAAAQQQQCAhBAgpEqIa2AgEEEAAAQQQQAABBBBAAAEEECCkoA0ggAACCCCAAAIIIIAAAggggEBCCBBSJEQ1sBEIIIAAAggggAACCCCAAAIIIEBIQRtAAAEEEEAAAQQQQAABBBBAAIGEECCkSIhqYCMQQAABBBBAAAEEEEAAAQQQQICQgjaAAAIIIIAAAggggAACCCCAAAIJIUBIkRDVwEYggAACCCCAAAIIIIAAAggggAAhBW0AAQQQQAABBBBAAAEEEEAAAQQSQoCQIiGqgY1AAAEEEEAAAQQQQAABBBBAAAFCCtoAAggggAACCCCAAAIIIIAAAggkhAAhRUJUAxuBAAIIIIAAAggggAACCCCAAAKEFLQBBBBAAAEEEEAAAQQQQAABBBBICAFCioSoBjYCAQQQQAABBBBAAAEEEEAAAQQIKWgDCCCAAAIIIIAAAggggAACCCCQEAKEFAlRDWwEAggggAACCCCAAAIIIIAAAggQUtAGEEAAAQQQQAABBBBAAAEEEEAgIQQIKRKiGtgIBBBAAAEEEEAAAQQQQAABBBAgpKANIIAAAggggAACCCCAAAIIIIBAQggQUiRENbARCCCAAAIIIIAAAggggAACCCBASEEbQAABBBBAAAEEEEAAAQQQQACBhBAgpEiIamAjEEAAAQQQQAABBBBAAAEEEECAkII2gAACCCCAAAIIIIAAAggggAACCSFASJEQ1cBGIIAAAggggAACCCCAAAIIIIAAIQVtAAEEEEAAAQQQQAABBBBAAAEEEkKAkCIhqoGNQAABBBBAAAEEEEAAAQQQQAABQgraAAIIIIAAAggggAACCCCAAAIIJIQAIUVCVAMbgQACCCCAAAIIIIAAAggggAAChBS0AQQQQAABBBBAAAEEEEAAAQQQSAgBQoqEqAY2AgEEEEAAAQQQQAABBBBAAAEECCloAwgggAACCCCAAAIIIIAAAgggkBAChBQJUQ1sBAIIIIAAAggggAACCCCAAAIIEFLQBhBAAAEEEEAAAQQQQAABBBBAICEECCkSohrYCAQQQAABBBBAAAEEEEAAAQQQIKSgDSCAAAIIIIAAAggggAACCCCAQEIIEFIkRDWwEQgggAACCCCAAAIIIIAAAgggQEhBG0AAAQQQQAABBBBAAAEEEEAAgYQQIKRIiGpgIxBAAAEEEEAAAQQQQAABBBBAgJCCNoAAAggggAACCCCAAAIIIIAAAgkhQEiRENXARiCAAAIIIIAAAggggAACCCCAACEFbQABBBBAAAEEEEAAAQQQQAABBBJCgJAiIaqBjUAAAQQQQAABBBBAAAEEEEAAAUIK2gACCCCAAAIIIIAAAggggAACCCSEACFFQlQDG4EAAggggAACCCCAAAIIIIAAAoQUtAEEEEAAAQQQQAABBBBAAAEEEEgIAUKKhKgGNgIBBBBAAAEEEEAAAQQQQAABBAgpaAMIIIAAAggggAACCCCAAAIIIJAQAoQUCVENbAQCCCCAAAIIIIAAAggggAACCBBS0AYQQAABBBBAAAEEEEAAAQQQQCAhBAgpEqIa2AgEEEAAAQQQQAABBBBAAAEEECCkoA0ggAACCCCAAAIIIIAAAggggEBCCBBSJEQ1sBEIIIAAAggggAACCCCAAAIIIEBIQRtAAAEEEEAAAQQQQAABBBBAAIGEECCkSIhqYCMQQAABBBBAAAEEEEAAAQQQQICQgjaAAAIIIIAAAggggAACCCCAAAIJIUBIkRDVwEYggAACCCCAAAIIIIAAAggggAAhBW0AAQQQQAABBBBAAAEEEEAAAQQSQoCQIiGqgY1AAAEEEEAAAQQQQAABBBBAAAFCCtoAAggggAACCCCAAAIIIIAAAggkhAAhRUJUAxuBAAIIIIAAAggggAACCCCAAAKEFLQBBBBAAAEEEEAAAQQQQAABBBBICAFCioSoBjYCAQQQQAABBBBAAAEEEEAAAQQIKWgDCCCAAAIIIIAAAggggAACCCCQEAKEFAlRDWwEAggggAACCCCAAAIIIIAAAggQUtAGEEAAAQQQQAABBBBAAAEEEEAgIQQIKRKiGtgIBBBAAAEEEEAAAQQQQAABBBAgpKANIIAAAggggAACCCCAAAIIIIBAQggQUiRENbARCCCAAAIIIIAAAggggAACCCBASEEbQAABBBBAAAEEEEAAAQQQQACBhBAgpEiIamAjEEAAAQQQQAABBBBAAAEEEECAkII2gAACCCCAAAIIIIAAAggggAACCSFASJEQ1cBGIIAAAggggAACCCCAAAIIIIAAIQVtAAEEEEAAAQQQQAABBBBAAAEEEkKAkCIhqoGNQAABBBBAAAEEEEAAAQQQQAABQgraAAIIIIAAAggggAACCCCAAAIIJIQAIUVCVAMbgQACCCCAAAIIIIAAAggggAAChBS0AQQQQAABBBBAAAEEEEAAAQQQSAgBQoqEqAY2AgEEEEAAAQQQQAABBBBAAAEECCloAwgggAACCCCAAAIIIIAAAgggkBAChBQJUQ1sBAIIIIAAAggggAACCCCAAAIIEFLQBhBAAAEEEEAAAQQQQAABBBBAICEECCkSohrYCAQQQAABBBBAAAEEEEAAAQQQIKSgDSCAAAIIIIAAAggggAACCCCAQEIIEFIkRDWwEQgggAACCCCAAAIIIIAAAgggQEhBG0AAAQQQQAABBBBAAAEEEEAAgYQQIKRIiGpgIxBAAAEEEEAAAQQQQAABBBBAgJDC2AbW/rbDuASKI4AAAggggAACCCCAAAIIJItA9YolkmVXDsh+EFIY2QkpjIAURwABBBBAAAEEEEAAAQSSSICQwlaZhBQ2PxFSGAEpjgACCCCAAAIIIIAAAggkkQAhha0yCSlsfoQURj+KI4AAAggggAACCCCAAALJJEBIYatNQgqbHyGF0Y/iCCCAAAIIIIAAAggggEAyCRBS2GqTkMLmR0hh9KM4AggggAACCCCAAAIIIJBMAoQUttokpLD5EVIY/SiOAAIIIIAAAggggAACCCSTACGFrTYJKWx+hBRGP4ojgAACCCCAAAIIIIAAAskkQEhhq01CCpsfIYXRj+IIIIAAAggggAACCCCAQDIJEFLYapOQwuZHSGH0ozgCCCCAAAIIIIAAAgggkEwChBS22iSksPlp2vy/spZwQuOAcWkURwABBBBAAAEEEEAAAQQQKMwChBS22iOksPlpzIRd+na1T106BdS8GSGFkZPiCCCAAAIIIIAAAggggEChFiCksFUfIYXNj5DC6EdxBBBAAAEEEEAAAQQQQCCZBAgpbLVJSGHzI6Qw+lEcAQQQQAABBBBAAAEEEEgmAUIKW20SUtj8CCmMfhRHAAEEEEAAAQQQQAABBJJJgJDCVpuEFDY/QgqjH8URQAABBBBAAAEEEEAAgWQSIKSw1SYhhc2PkMLoR3EEEEAAAQQQQAABBBBAIJkECClstUlIYfMjpDD6URwBBBBAAAEEEEAAAQQQSCYBQgpbbRJS2PwIKYx+FEcAAQQQQAABBBBAAAEEkkmAkMJWm4QUNj9CCqMfxRFAAAEEEEAAAQQQQACBZBIgpLDVJiGFzY+QwuhHcQQQQAABBBBAAAEEEEAgmQQIKWy1WWhCikAgqLETn9esN5aoaJEiuvSCburVvd0+e5/XfHl9NuvN9zXpmena/PtWpVYoq2EDzlfTBsd6y3/4mWl65OlpSklJ8f679lGH6rmJN3n/HjNhl75d7VOXTgE1bxaw1QalEUAAAQQQQAABBBBAAAEECrUAIYWt+gpNSPHKzLe9gGLimGu0fcdfuvCq0Rp78+U6vlbNbAJ5zZfXZy6IOL3jSapetaI++HSFrr/tQS18dYJ8Pp9uv+9ZNalfW6e1bbqPNiGFrQFSGgEEEEAAAQQQQAABBBBIJgFCClttFpqQ4vLB43Rhz45q2bSut8fPTJmndb9u0sAremUTyGu+WJfhFtg87QrNe/FulS1TSjeMeEi9z2ivJvVrEVLY2hulEUAAAQQQQAABBBBAAIGkFiCksFVvoQkpOp8/WI+NG+T1dHDToqXL9dyr8/XQHddlE8hrvliXsXrNWvUfNkGznxvrLfvKIffqux/Xaffu3apaOVUD+p2pZo3qeJ+Fe1Kkucc9TuRxD1tzpDQCCCCAAAIIIIAAAgggULgFDk4tUbh34ABvfaEJKU7peY1eeXSEN16Em9wjGQ88PlVPTRiajTCv+WJZRkZGhv7vhrvV56xT1b5VY2/ZO//apSIpKUpJ8evDT1fqutsm6uVJw1WtSqrGPbhbX64MqteZKWrf2n+Aq5PVI4AAAggggAACCCCAAAIIHEgBn+9Arr3wr7vQhBRd+gzWw2Ov02E1qnrqC95dpsnTFnh/i5zymi/aMtzAmkNuf8RbR3rfHrnW7sCRD6tN8wbqemoLBs4s/N8B9gABBBBAAAEEEEAAAQQQiJsAj3vYKAtNSNF/2Hid062t2rRo6O3x4y/O1oaNmzUk/bxsAnnNl9dnwWBQt939pEqWKKbBey1zb2LXk6JL++bqcHITQgpb+6M0AggggAACCCCAAAIIIJBUAoQUtuosNCHFjPmLNXX2O1lv9+iTPkojB/XzBrN8YvJsNTjuKDWuV0t5zZfXZ2Puf04uqBg2oM8+ogsXf6JWzep5ryB1j5kMHjVJUx8bqXJlSxFS2NofpRFAAAEEEEAAAQQQQACBpBIgpLBVZ6EJKdxujnvkJU2ds0juEZ+Lzu2si3t19vb+yqHj1a5VI/VMa+P9d27z5fbZ9z+uU9oFQ5Tizz6mxNWX9FS/3l109c336+PPv1bRIkVUo1olDbqyl+rVOdJbF68gtTVASiOAAAIIIIAAAggggAACySRASGGrzUIVUth2df+UJqTYP64sFQEEEEAAAQQQQAABBBAojAKEFLZaI6Sw+dGTwuhHcQQQQAABBBBAAAEEEEAgmQQIKWy1SUhh8yOkMPpRHAEEEEAAAQQQQAABBBBIJgFCClttElLY/AgpjH4URwABBBBAAAEEEEAAAQSSSYCQwlabhBQ2P0IKox/FEUAAAQQQQAABBBBAAIFkEiCksNUmIYXNj5DC6EdxBBBAAAEEEEAAAQQQQCCZBAgpbLVJSGHzI6Qw+lEcAQQQQAABBBBAAAEEEEgmAUIKW20SUtj8CCmMfhRHAAEEEEAAAQQQQAABBJJJgJDCVpuEFDY/QgqjH8URQAABBBBAAAEEEEAAgWQSIKSw1SYhhc2PkMLoR3EEEEAAAQQQQAABBBBAIJkECClstUlIYfMjpDD6URwBBBBAAAEEEEAAAQQQSCYBQgpbbRJS2PwIKYx+FEcAAQQQQAABBBBAAAEEkkmAkMJWm4QUNj9CCqMfxRFAAAEEEEAAAQQQQACBZBIgpLDVJiGFzY+QwuhHcQQQQAABBBBAAAEEEEAgmQQIKWy1SUhh8yOkMPpRHAEEEEAAAQQQQAABBBBIJgFCClttElLY/AgpjH4URwABBBBAAAEEEEAAAQSSSYCQwlabhBQ2P0IKox/FEUAAAQQQQAABBBBAAIFkEiCksNUmIYXNj5DC6EdxBBBAAAEEEEAAAQQQQCCZBAgpbLVJSGHzI6Qw+lEcAQQQQAABBBBAAAEEEEgmAUIKW20SUtj8CCmMfhRHAAEEEEAAAQQQQAABBJJJgJDCVpuEFDY/QgqjH8URQAABBBBAAAEEEEAAgWQSIKSw1SYhhc2PkMLoR3EEEEAAAQQQQAABBBBAIJkECClstUlIYfMjpDD6URwBBBBAAAEEEEAAAQQQSCYBQgpbbRJS2PwIKYx+FEcAAQQQQAABBBBAAAEEkkmAkMJWm4QUNj9CCqMfxRFAAAEEEEAAAQQQQACBZBIgpLDVJiGFzY+QwuhHcQQQQAABBBBAAAEEEEAgmQQIKWy1SUhh8yOkMPpRHAEEEEAAAQQQQAABBBBIJgFCClttElLY/AgpjH4URwABBBBAAAEEEEAAAQSSSYCQwlabSRFSbP59q4be/qiWf7VaFcqX0chBF6tR3WP2kQkEgho78XnNemOJihYpoksv6KZe3dt58+W1jFlvvq9Jz0z35kmtUFbDBpyvpg2O9cqNmbBL3672qUungJo3C9hqg9IIIIAAAggggAACCCCAAAKFWoCQwlZ9SRFSDBk9STWqVVL/vj30+crVuv62BzX96TEqXuygbDqvzHzbCygmjrlG23f8pQuvGq2xN1+u42vVVF7LePiZaTq940mqXrWiPvh0hbf8ha9OkM/nI6SwtT9KI4AAAggggAACCCCAAAJJJUBIYavOQh9SuN4RLU/vr7emjFfx4qFQYsBN9+mstNZq06JhNp3LB4/ThT07qmXTut7fn5kyT+t+3aTrLzs35mW4cs3TrtC8F+9W2TKlCCls7Y/SCCCAAAIIIIAAAggggEBSCRBS2Kqz0IcU6zdu1gXpo73QIDyNm/SyypctrYt7dc6m0/n8wXps3CCvR4SbFi1drudena/bbugb8zJWr1mr/sMmaPZzY71l8LiHrQFSGgEEEEAAAQQQQAABBBBIJgFCClttFvqQYs1P65V+4wRNf+r2LIkHn3xNgWBQ6X17ZNM5pec1euXREd64Em5yj2488PhUjRh4cUzLyMjI0P/dcLf6nHWq2rdq7C3j7om7tWJVUGef4VfbVj5bbVAaAQQQQAABBBBAAAEEEECgUAsUK+ov1Nt/oDe+0IcUGzZuUa/Lh+vNKfdmWY6d+IIqpZZTv95dsvl26TNYD4+9TofVqOr9fcG7yzR52gIvpIi2DPdYyZDbH/HKRoYfY+/bpa+/9en0tKBOah480PXJ+hFAAAEEEEAAAQQQQAABBA6gQMWyxQ7g2gv/qgt9SBEMBnVS93TNff4ulSld0quRK4aMU8+ubbN6O4Srqf+w8TqnW9ussSoef3G2NmzcrMH9e+e5DLeO2+5+UiVLFNPg9POy1TqPexT+LwF7gAACCCCAAAIIIIAAAgjES4DHPWyShT6kcLt/611PqGJqWaX3PdN7u0e6N2bEnSpVsriemDxbDY47So3r1dKM+Ys1dfY7WW/36JM+SiMH9VOT+rXyXMaY+5+TCyqGDeizjzYhha0BUhoBBBBAAAEEEEAAAQQQSCYBQgpbbSZFSLF123YNHfOoli3/2utNccu1F2a9wePKoePVrlUj9Uxr40mNe+QlTZ2zSG70iIvO7Zw1uGZuy/j+x3VKu2CIUvzZnyu6+pKe3uMkhBS2BkhpBBBAAAEEEEAAAQQQQCCZBAgpbLWZFCGFjcBWmpDC5kdpBBBAAAEEEEAAAQQQQCCZBAgpbLVJSGHzoyeF0Y/iCCCAAAIIIIAAAggggEAyCRBS2GqTkMLmR0hh9KM4AggggAACCCCAAAIIIJBMAoQUttokpLD5EVIY/SiOAAIIIIAAAggggAACCCSTACGFrTYJKWx+hBRGP4ojgAACCCCAAAIIIIAAAskkQEhhq01CCpsfIYXRj+IIIIAAAggggAACCCCAQDIJEFLYapOQwuZHSGH0ozgCCCCAAAIIIIAAAgggkEwChBS22iSksPkRUhj9KI4AAggggAACCCCAAAIIJJMAIYWtNgkpbH6EFEY/iiOAAAIIIIAAAggggAACySRASGGrTUIKmx8hhdGP4ggggAACCCCAAAIIIIBAMgkQUthqk5DC5kdIYfSjOAIIIIAAAggggAACCCCQTAKEFLbaJKSw+RFSGP0ojgACCCCAAAIIIIAAAggkkwAhha02CSlsfoQURj+KI4AAAggggAACCCCAAALJJEBIYatNQgqbHyGF0Y/iCCCAAAIIIIAAAggggEAyCRBS2GqTkMLmR0hh9KM4AggggAACCCCAAAIIIJBMAoQUttokpLD5EVIY/SiOAAIIIIAAAggggAACCCSTACGFrTYJKWx+hBRGP4ojgAACCCCAAAIIIIAAAskkQEhhq01CCpsfIYXRj+IIIIAAAggggAACCCCAQDIJEFLYapOQwuZHSGH0ozgCCCCAAAIIIIAAAgggkEwChBS22iSksPkRUhj9KI4AAggggAACCCCAAAIIJJMAIYWtNgkpbH6EFEY/iiOAAAIIIIAAAggggAACySRASGGrTUIKmx8hhdGP4ggggAACCCCAAAIIIIBAMgkQUthqk5DC5kdIYfSjOAIIIIAAAggggAACCCCQTAKEFLbaJKSw+RFSGP0ojgACCCCAAAIIIIAAAggkkwAhha02CSlsfoQURj+KI4AAAggggAACCCCAAALJJEBIYatNQgqbHyGF0Y/iCCCAAAIIIIAAAggggEAyCRBS2GqTkMLmR0hh9KM4AggggAACCCCAAAIIIJBMAoQUttokpLD5EVIY/SiOAAIIIIAAAggggAACCCSTACGFrTYLTUgRCAQ1duLzmvXGEhUtUkSXXtBNvbq322fv85ov2jLW/LRe/YeN1zmnn6ILe3bMWvbDz0zTI09PU0pKive32kcdqucm3uT9e8yEXfp2tU9dOgXUvFnAVhuURgABBBBAAAEEEEAAAQQQKNQChBS26is0IcUrM9/2AoqJY67R9h1/6cKrRmvszZfr+Fo1swnkNV9eny1d9pVGTXhGxxxxiBocf3S2kOL2+55Vk/q1dVrbpvtoE1LYGiClEUAAAQQQQAABBBBAAIFkEiCksNVmoQkpLh88zgsOWjat6+3xM1Pmad2vmzTwil7ZBPKaL6/Pvvn+Z5UpVUIvTX9L5cqWzhZS3DDiIfU+o72a1K9FSGFrb5RGAAEEEEAAAQQQQAABBJJagJDCVr2FJqTofP5gPTZukKpXrejt8aKly/Xcq/P10B3XZRPIa75YlnHfY6+ofLky2UKKK4fcq+9+XKfdu3erauVUDeh3ppo1quOtl54UtgZIaQQQQAABBBBAAAEEEEAgmQQIKWy1WWhCilN6XqNXHh2h1AplvT3+4NMVeuDxqXpqwtBsAnnNF8sycgopdv61S0VSUpSS4teHn67UdbdN1MuThqtalVTdef/fWvWNdEZX6eSWtsqgNAIIIIAAAggggAACCCCAQOEWKFeqaOHegQO89YUmpOjSZ7AeHnudDqtR1SNb8O4yTZ62wPtb5JTXfLEsI6eQYu86GjjyYbVp3kBdT22hux74Wyu/ls463afWJx3g2mT1CCCAAAIIIIAAAggggAACB1SgVPEiB3T9hX3lhSak8N660a2t2rRo6Jk//uJsbdi4WUPSz8tWB3nNF8syYgkpXE+KLu2bq8PJTXjco7B/A9h+BBBAAAEEEEAAAQQQQCCOAjzuYcMsNCHFjPmLNXX2O1lv9+iTPkojB/XzBrN8YvJsNTjuKDWuV0t5zZfXZ2HGnEKKhYs/Uatm9bxXkLrHTAaPmqSpj41UubKlCCls7Y/SCCCAAAIIIIAAAggggEBSCRBS2Kqz0IQUbjfHPfKSps5ZJJ+ki87trIt7dfb2/sqh49WuVSP1TGvj/Xdu80X7zH2eU0hx9c336+PPv1bRIkVUo1olDbqyl+rVOdJbFwNn2hogpRFAAAEEEEAAAQQQQACBZBIgpLDVZqEKKWy7un9KE1LsH1eWigACCCCAAAIIIIAAAggURgFCClutEVLY/OhJYfSjOAIIIIAAAggggAACCCCQTAKEFLbaJKSw+RFSGP0ojgACCCCAAAIIIIAAAggkkwAhha02CSlsfoQURj+KI4AAAggggAACCCCAAALJJEBIYatNQgqbHyGF0Y/iCCCAAAIIIIAAAggggEAyCRBS2GqTkMLmR0hh9KM4AggggAACCCCAAAIIIJBMAoQUttokpLD5ZYUUnToGVP3goLe0cuWkCuVD/2ZCAAEEEEAAAQQQQAABBBD49wgQUtjqmpDC5pctpJgzz+8t7doBGYQURleKI4AAAggggAACCCCAAAKFUYCQwlZrhBQ2P0IKox/FEUAAAQQQQAABBBBAAIFkEiCksNUmIYXNj5DC6EdxBBBAAAEEEEAAAQQQQCCZBAgpbLVJSGHzI6Qw+lEcAQQQQAABBBBAAAEEEEgmAUIKW20SUtj8CCmMfhRHAAEEEEAAAQQQQAABBJJJgJDCVpuEFDY/QgqjH8URQAABBBBAAAEEEEAAgWQSIKSw1SYhhc2PkMLoR3EEEEAAAQQQQAABBBBAIJkECClstUlIYfMjpDD6URwBBBBAAAEEEEAAAQQQSCYBQgpbbRJS2PwIKYx+FEcAAQQQQAABBBBAAAEEkkmAkMJWm4QUNj9CCqMfxRFAAAEEEEAAAQQQQACBZBIgpLDVJiGFzY+QwuhHcQQQQAABBBBAAAEEEEAgmQQIKWy1SUhh8yOkMPpRHAEEEEAAAQQQQBYmIWkAACAASURBVAABBBBIJgFCClttElLY/AgpjH4URwABBBBAAAEEEEAAAQSSSYCQwlabhBQ2P0IKox/FEUAAAQQQQAABBBBAAIFkEiCksNUmIYXNj5DC6EdxBBBAAAEEEEAAAQQQQCCZBAgpbLVJSGHzI6Qw+lEcAQQQQAABBBBAAAEEEEgmAUIKW20SUtj8CCmMfhRHAAEEEEAAAQQQQAABBJJJgJDCVpuEFDY/QgqjH8URQAABBBBAAAEEEEAAgWQSIKSw1SYhhc2PkMLoR3EEEEAAAQQQQAABBBBAIJkECClstUlIYfMjpDD6URwBBBBAAAEEEEAAAQQQSCYBQgpbbRJS2PwIKYx+FEcAAQQQQAABBBBAAAEEkkmAkMJWm4QUNj9CCqMfxRFAAAEEEEAAAQQQQACBZBIgpLDVZlKEFJt/36qhtz+q5V+tVoXyZTRy0MVqVPeYfWQCgaDGTnxes95YoqJFiujSC7qpV/d23nzRlrHmp/XqP2y8zjn9FF3Ys2PWssdM2KVvV/vUqWNAc+b5vb9fOyBDFcoHbTVDaQQQQAABBBBAAAEEEEAAgUInQEhhq7KkCCmGjJ6kGtUqqX/fHvp85Wpdf9uDmv70GBUvdlA2nVdmvu0FFBPHXKPtO/7ShVeN1tibL9fxtWoqr2UsXfaVRk14RscccYgaHH80IYWtzVEaAQQQQAABBBBAAAEEEEhaAUIKW9UW+pDC9Y5oeXp/vTVlvIoXD4USA266T2eltVabFg2z6Vw+eJwXMLRsWtf7+zNT5mndr5t0/WXn5rmMb77/WWVKldBL099SubKlo4YUXbsEVLJEqCdF3ePpUWFropRGAAEEEEAAAQQQQAABBAqPACGFra4KfUixfuNmXZA+WvNevDtLYtykl1W+bGld3KtzNp3O5w/WY+MGqXrVit7fFy1drudena/bbugb0zLue+wVlS9XJltIcceEXfpmtU9dTgto1tzQ4x6npwU0baZfVasENeDKgK2GKI0AAggggAACCCCAAAIIIFBoBKpWKF5otjURN7TQhxRurIj0Gydo+lO3Z/k++ORrCgSDSu/bI5v5KT2v0SuPjlBqhbLe3z/4dIUeeHyqRgy8OKZl5BRS3PPgbn21Mqie3f2a8r9QING7p18vTAmo+sE+3TooJRHrnW1CAAEEEEAAAQQQQAABBBDYDwIpft9+WOq/Z5GFPqTYsHGLel0+XG9OuTer1sZOfEGVUsupX+8u2WqyS5/BenjsdTqsRlXv7wveXabJ0xZ4IUUsy8gppMhp4Ez3uMeMWX5VqRLUoTVCj3uUKCF17ECvin/PV4s9RQABBBBAAAEEEEAAgX+jAI972Gq90IcUwWBQJ3VP19zn71KZ0iU9jSuGjFPPrm3VvlXjbDre2zm6tc0aq+LxF2drw8bNGty/d0zLKEhIUf1g6ZNPfWrVMqAffwolah3aBXT4YYxVYWu6lEYAAQQQQAABBBBAAAEEEk+AkMJWJ4U+pHC7f+tdT6hialml9z3Te7tH+rAJmv3cnSpVsriemDxbDY47So3r1dKM+Ys1dfY7WW/36JM+SiMH9VOT+rXyXEaY2BpSfPyJX9u3S/0uyiCksLVbSiOAAAIIIIAAAggggAACCSlASGGrlqQIKbZu266hYx7VsuVfe70pbrn2wqw3eFw5dLzatWqknmltPKlxj7ykqXMWyfVpuOjczlmDa+a1DEIKWyOjNAIIIIAAAggggAACCCDwbxEgpLDVdFKEFDYCW+loY1JEPu4R7knRLS2g1atDj37UqbNnnIr6dXkExFYblEYAAQQQQAABBBBAAAEEDqwAIYXNn5DC5qeChhTTZ/pVvJjUrFlAb7/jV4N6QZ3VI8O4NRRHAAEEEEAAAQQQQAABBBA4kAKEFDZ9QgqbHyGF0Y/iCCCAAAIIIIAAAggggEAyCRBS2GqTkMLmF9eQonjx0OMelSsFtWNH6HGQli0CKlrUuJEURwABBBBAAAEEEEAAAQQQ+EcECClszIQUNr+4hhTrNkjr1/vUtXOGZsxO8bbs5qG7CSmMdURxBBBAAAEEEEAAAQQQQOCfEiCksEkTUtj8CCmMfhRHAAEEEEAAAQQQQAABBJJJgJDCVpuEFDa//R5SdOoY0PoNoY3scfqeN4EYN5viCCCAAAIIIIAAAggggAAC+0GAkMKGSkhh8/tHQoo58/w68oigLrqAt38Yq4viCCCAAAIIIIAAAggggMB+FSCksPESUtj8CCmMfhRHAAEEEEAAAQQQQAABBJJJgJDCVpuEFDY/QgqjH8URQAABBBBAAAEEEEAAgWQSIKSw1SYhhc3vHw0pShQPbeyhhwS9V5MyIYAAAggggAACCCCAAAIIJJYAIYWtPggpbH7/aEhRJEVa9Y1PnU4NEFIY643iCCCAAAIIIIAAAggggMD+ECCksKkSUtj8CCmMfhRHAAEEEEAAAQQQQAABBJJJgJDCVpuEFDY/QgqjH8URQAABBBBAAAEEEEAAgWQSIKSw1SYhhc2PkMLoR3EEEEAAAQQQQAABBBBAIJkECClstUlIYfMjpDD6URwBBBBAAAEEEEAAAQQQSCYBQgpbbRJS2PwIKYx+FEcAAQQQQAABBBBAAAEEkkmAkMJWm4QUNj9CCqMfxRFAAAEEEEAAAQQQQACBZBIgpLDVJiGFzY+QwuhHcQQQQAABBBBAAAEEEEAgmQQIKWy1SUhh8zsgIcVpHQJ6+12/t+WXXpyhihWDxr2gOAIIIIAAAggggAACCCCAQDwECClsioQUNr8DFlLMfT0UUnTrEtCaH3zevyPDilPaBIx7RnEEEEAAAQQQQAABBBBAAIH8ChBS5Fcs+/yEFDa/hAgpps/yewFFzcOC+miZXy1bBHRq+z0hRUooz2BCAAEEEEAAAQQQQAABBBDYzwKEFDZgQgqbX8KGFJ995te2P6VuaQEddFDocZAG9XgsxFjdFEcAAQQQQAABBBBAAAEE8hQgpLA1EEIKm1+hCCmmz/Sr2EHSFZdmZO1taiqBhbHqKY4AAggggAACCCCAAAII7CNASGFrFIQUNr9CFVI0bx7Qwrf9qnt8UOectSewMBJQHAEEEEAAAQQQQAABBBBAIFOAkMLWFAgpbH6FNqQ44vBQT4qDigV5DMTYBiiOAAIIIIAAAggggAACCIQFCClsbYGQwuZXaEOKTZuktb/41L1bhtezIjy5x0KYEEAAAQQQQAABBBBAAAEECiZASFEwt3ApQgqbX6EPKdI6Z2jm7BRPYdjg3SpezAhCcQQQQAABBBBAAAEEEEDgXyxASGGr/EITUgQCQY2d+LxmvbFERYsU0aUXdFOv7u322fu85svrs82/b9XQ2x/V8q9Wq0L5Mho56GI1qnuMt/yHn5mmR56eppSU0M187aMO1XMTb/L+PWbCLn272qdOHQOaMy/0rs+uXQKaMcuvKlWCqn6w9MmnPrVqGdDHn/i1fXvojRtuMEsXCDRrFtDb7/i9Ry7WbZDWr/epa+cMzcgMDsLLPfKIoIqkSKu+8em0DgHNfT20rm5dAsrpFaSRb/cID5wZOSZFuCcFIYXtC0RpBBBAAAEEEEAAAQQQQCBSgJDC1h4KTUjxysy3vYBi4phrtH3HX7rwqtEae/PlOr5WzWwCec2X12dDRk9SjWqV1L9vD32+crWuv+1BTX96jIoXO0i33/esmtSvrdPaNt1Hm5DC1gApjQACCCCAAAIIIIAAAggkkwAhha02C01IcfngcbqwZ0e1bFrX2+NnpszTul83aeAVvbIJ5DVfbp9df9m5anl6f701ZbyKFw8NyjDgpvt0VlprtWnRUDeMeEi9z2ivJvVrJXVI0blTQBm7921QrhcIEwIIIIAAAggggAACCCCAQHQBQoroRnnNUWhCis7nD9Zj4wapetWK3v4sWrpcz706Xw/dcV22/ctrvtw+u+2GvrogfbTmvXh31rLGTXpZ5cuW1sW9OuvKIffqux/Xaffu3apaOVUD+p2pZo3qePMmU08KF1LMnuPX4YcFVby4tHKVTx07BLxHVZgQQAABBBBAAAEEEEAAAQSiCxBSRDdKipDilJ7X6JVHRyi1Qllvfz74dIUeeHyqnpowNNv+5TVfbp+NGHix0m+coOlP3Z61rAeffE2BYFDpfXto51+7VCQlRSkpfn346Updd9tEvTxpuKpVSdU9E3frq1VBndXNr1emh27me5/l1wuvBFS9mk+HHSIt+TCojqf49N7SoLb9KZ3X06/npwRUorjUtpVPs18PqlkTn35eK/38S1C9zvTrxVdDy+p5ul9TpgV07DE+FSkiff5VUGd28+vVvdZVpbJ0zJE+vft+UB3a+LT046D+2Cr17unXC1MC3vgX7Vr7NGt+UE0a+vTrRumHn4I6t4dfk6eG1nX2GX69/FpARx/p87Zt+ZdB9ejqV5VKIZYqlXyqWiX078zhOWytj9IIIIAAAggggAACCCCAQJIJFC0SGj+QqWAChaYnRZc+g/Xw2Ot0WI2q3p4ueHeZJk9b4P0tcsprvtw+cyFFr8uH680p92YtauzEF1QptZz69e6yj+zAkQ+rTfMG6npqC91x3y59861PaZ2CmjnH583bvWtQ/5sRuqGvUT2ojz/xqXWroD762Kc/t0tndAvotel+r7dCi2ZBLXjbp0YNgvplnU/r1kundw1q2ozQssLLPerIoBdSuN4NnU8Lavbc0OdndAvqtek+VaooHVEzqA8+8unklkEt+8ynbdv2fF6smHRS86DeXOhT/bpB/bYpFIp0Swtq+szQsrp2DmrGbJ9qHi6VKB7UVyt96twxqNnzsu9XxVTphmvoXVGwrxylEEAAAQQQQAABBBBAIJkFKpfjlYmW+i00IUX/YeN1Tre23hgRbnr8xdnasHGzhqSfl23/85ovt88G9++tk7qna+7zd6lM6ZLe8q4YMk49u7ZV+1aN9/F1PSm6tG+uDic3+Vc87jEv800i4beWpKYGdWTNoL751q9jawfU9IRgllHlSnv+bWmYlEUAAQQQQAABBBBAAAEECqMAj3vYaq3QhBQz5i/W1NnvZL3do0/6KI0c1M8bzPKJybPV4Lij1LheLeU1X16f3XrXE6qYWlbpfc/03u6RPmyCZj93p0qVLK6Fiz9Rq2b1vFeQusdMBo+apKmPjVS5sqX+1SHFhx/71bxZQF+u8OuPP0KvQ/3x51CvizO7Z9haJqURQAABBBBAAAEEEEAAgUIoQEhhq7RCE1K43Rz3yEuaOmeR3G3wRed29ga1dNOVQ8erXatG6pnWxvvv3ObL67Ot27Zr6JhHtWz5115viluuvTDrTSJX33y/Pv78axUtUsR7TemgK3upXp0jvXX9GwbOzK0nRU4hxfRZfu+xlDNO3xNSuMdLmBBAAAEEEEAAAQQQQACBf4MAIYWtlgtVSGHb1f1TmpAie0+KcEjRplVAb7zl1/F1gtryR8i+Yb2Afv8j1NPi5JMCKlFi/9QJS0UAAQQQQAABBBBAAAEEDpQAIYVNnpDC5kdPir0e98gtpPj5Zze4aIZmzknxxLucFtDi930qU0YqWVLasUM65qigdu0OVUi944KqWpUeGMbmSXEEEEAAAQQQQAABBBD4hwUIKWzghBQ2P0IKQ0gxa65fhx0a9EKKFSt96nBKQAsW+pURCI1v4f7fTW7cCyYEEEAAAQQQQAABBBBAoDAIEFLYaomQwuZHSLEfQwrXK6N8Oal2rYDWb3CvdA0qrTOBhbHJUhwBBBBAAAEEEEAAAQT2owAhhQ2XkMLmR0jxD4UU73/g14lNA4QUxvZKcQQQQAABBBBAAAEEENi/AoQUNl9CCpsfIQUhhbEFURwBBBBAAAEEEEAAAQSSSYCQwlabhBQ2P0KKfzikWLnKr11/S2f1yPAG2mRCAAEEEEAAAQQQQAABBBJJgJDCVhuEFDY/QooDEFJs+V3qmhbQD2tCrzPteWaGsRYpjgACCCCAAAIIIIAAAgjER4CQwuZISGHzI6Q4gCHFjJl+pfilU9oE9NvmUEVWq5JZoX6pZIlQTwu/XypePPR3el8YGzzFEUAAAQQQQAABBBBAIE8BQgpbAyGksPkRUiRISPH6Ar+OrR3U9u3SDz/61LlTQLPn+L3a7dIpQ7PmpKhGjaAu60evC2OTpzgCCCCAAAIIIIAAAgjkIUBIYWsehBQ2P0IKQgpjC6I4AggggAACCCCAAAIIJJMAIYWtNgkpbH6EFIUspGhxYiCrxuvXZeBNY/OnOAIIIIAAAggggAACCOwlQEhhaxKEFDY/QopCFlKULyt98ZVP7dsG9N77ocdBOrQL6LPloUE4D64W1NZtPpUoHtSOnaG/NawfUO1aBBrGrwrFEUAAAQQQQAABBBD4VwgQUtiqmZDC5kdIUYhDioWL/Nq9W+qWFtD0mX6VLSsdd2xAS5b6dULjgFZ/79OmTT517ZKhN99K8VpKq5YBfbvapyJFpIYNQr0y/v5bKlo01JAOOySoMmWMjYriCCCAAAIIIIAAAgggUGgFCClsVUdIYfMjpPiXhBQzZoVCio4dApr3ut/rWbFzp7Tmh+yDdA68djchhfE7RXEEEEAAAQQQQAABBAqzACGFrfYIKWx+hBSEFNneJHLNVbtVpvS+jSrc08LY3CiOAAIIIIAAAggggAACCS5ASGGrIEIKmx8hBSFFtpAirVOGZs5JUfWDg0pNlT7/wqc2rQNasTI0vkWzJkF9tCz075o1g/prZ6gBdu+2Z0BPY5OkOAIIIIAAAggggAACCBxAAUIKGz4hhc2PkIKQIqaQYskSv/7aJXXrEtD0WX6VLiXVrx/Qe4v9atIooHUbQsFF4wYB/b419O8SJaTQ0J5So0Z7QozixYyNluIIIIAAAggggAACCCCw3wQIKWy0hBQ2P0IKQoq4hBTf/+DTb7/51K1LhqaHx784NaB58/2qdXRQuzOk1d/51KljQHPmhaKLtM4Zev2NFJWvENQpbfaEGP5QxuEFIYccwltJjF9xiiOAAAIIIIAAAgggkC8BQop8ce0zMyGFzY+QgpDigIYUM2enqGrVoKpVkT5d7lPrkwNautSvnX9Jp6cFNHue33vzyMUXZmS19CpVCC6MX3uKI4AAAggggAACCCCQqwAhha1xEFLY/AgpCCkSOqSYNtOvkiWlxg0DWvSeXw0bBLX2F2nHDp/anJyhokVC3S5qHRNQSpHQl4HHSYwHBYojgAACCCCAAAII/KsFCCls1U9IYfMjpCCkKJQhxYYNPnXtkqHwq1XDj5EcdWSol8WvG31q2TygpR+GQoyWzYNamTn4pxvwMzyd0HjPYyZuDA0mBBBAAAEEEEAAAQT+7QKEFLYWQEhh8yOkIKRIypDi29XZx7/o2iWgGbP8co+KVD9Y+uRTn1q1DOjjT/zavl3qlhbQwndCY2U0bBDQDz/4VK6sFMzMMw47NKCffwkFHlWrSL/+GvriHXZo6P/dfH5/aOa///apWPHQv8Pja7h/hwMU928CEeOBi+IIIIAAAggggAAC+02AkMJGS0hh8yOkIKQgpMgMKabP9HuPijRrFtDb7/jVoF5Q6zZI69f71LVzhmbMTvG+beFeG0ceEVSRFGnVNz6d1iGgua+HQo7wG1AqVgyq5mHula1+tWwR0Gef+bXtz1AgMnNWaKyN5s0D+mqFT1UqS3/8Efoy16sb8AYhdVOFVKlI5itSwsGH+7sLUNz053afKpQPBSJFMh93cf+uXIlxO4yHRoojgAACCCCAAAL/WgFCClvVE1LY/AgpCCkIKQ5ASOECkWIHhUKKhW/7Vff4oDZtktb+4vPeeuIGFHVT504BzZ7j1+GHBVW8uLRylU8dOwQ0LzMQCfcQSU0N6siaQX34sV/NM9u06yHSuWNA7y4JBR6N6ge17DOfDq7qwo3QgeP4OgGtWBVKQWofE9S334XmrX5wKORI8Uv+0KZ421suMxApU3rPgcdtl5t27pTKlwuVo6eI8cBMcQQQQAABBBBA4AAKEFLY8AkpbH6EFIQUhBRJGlK4nhnhXh2ul0WbVgG98ZZfx9cJassf0s8/+5TWKUMz54RSiC6nBTRrrl+HHRr0BitdsdKnDqcEtGChXxmBPcsqX06qXSug9z/w68SmAa1c5deW36WuaQHNmOn3gg33StnXF/h1bO2g9zjN5i0+tTopoHffCwUirVpmeOXc5HqkhKesQU9dVpL558geIuHeJNu27elNEg5RvHCkWGhJ7vGbGpmvrw24R3EyX2sb+fiN8dBJcQQQQAABBBBAIGkFCClsVUtIYfMjpCCkIKQgpNjvIcUPP/qytbMunTI0a06KatQIqnxZ6YuvfGrfNqCFi/zavTv0SIzrbVK2rHTcsQEtWeqXG+R09fc+bdqUfdDUcM+S2rWCXm+ONT9kX1c4iHG9Q1JT5S3fvfY2/EjNEYcH9fvW0IG0Qvk9B9QyZUIpyR9b9wQiFVMlX2bgUbbsnnDFBTNMCCCAAAIIIIBAsggQUthqkpDC5kdIQUhBSEFI8a8KKT7/wqc2rQNassSvv3bt6SFSupRUv35A7y32q0mjgL7/wecFGd26ZGj6rFBvk46nBjRvvl+1jg5qd4a0+rvQAK1vLAilFB07ZOjd91K8gVOrVZG3fDdY69bMEOTQGtLPa0MHbfdIzN9/Zz+AV64c1KbNoRSkbBlp+47Q5+FgpERxKZD5QpqDDpJSMh/FiQxMwr1F3HKqVN53bBJXzk3ukZ+qmZ+7nidujJTwdhlPKxRHAAEEEEAAgUIuQEhhq0BCihj8Nv++VUNvf1TLv1qtCuXLaOSgi9Wo7jFeyTETdqkgb0L4JwcZ/Cee30+krvGJ9Kvz/rihmzMvdEMXHnvB/artbug+Xe5T65MDWrrUr51/SaenBTRtpt979KBxw4AWvedXwwZBrf1FivYKUtq03xuIM1Ee96BNF642/dNan05uGdDyL0KBSZNGQW88FDe5HiYZAZ9KlgxmPUZToYL0e+bAr1mP7GhP8OGe3TmoaKh8kaLu3/ueuHyZvVG2bfWpXObYJq4nTXgKhy8u8ClfIRS+lCmT8wmQni0xXBgwCwIIIIAAAnkIEFLYmgchRQx+Q0ZPUo1qldS/bw99vnK1rr/tQU1/eoyKFzuIkIKeFPSkoCeFdxTZn2NSEFIUrpCiIG+sSaQwee7rmT1f2gf05luhVw+7sNONj+J6wbhHgtzkxkxxY6+4yQ0+u3mzTxUqBLXl99DfjjkmqF83hE6ybrDYPzN7trheN6HARcrYnfnvIkEFA6Fy4cDF/TsrMPFJxYrt+yae8JgrLuSpUilzWZk9ZNx/hcdc2bVL3uNPbvrrr6BKZw5eGzlmS2RAFMOlAbMggAACCCCQqwAhha1xEFJE8QsEgmp5en+9NWW8ihcP9fMdcNN9Oiuttdq0aEhIQUhBSEFI4R0XCCkK/rgHvYNCY4js7zfW0Dsosxda5oC34XFWInu8uUeI0joHNHte6JXK7hGmDz70q37d0CNMgQw3cG1onBc3NWoU1LJl7lXG8h5hcuO61K8X1GfLM98K1DCg5Z+H5nXzuEFyDz88qDVrQp+7VzV/9nno34fUCHq93EqWknb9Fbo4OfLIgH74IVS+evWg1q4NzVu0aCiwqVxZ2rgxNG+1aqExYPaessaBKSPtyHwzUWQ4c1DmgLmBjKBSioSWHwzseRzK5wutyz3WlJL5qua/doZ6A7kpMlTK6rGzzacypUOfhx+Fcv8Or9cFXqUywyr3CFb4MarIbXevqHbTpi0+pebwquiDMkMrF0CFl5Xb4L6R27CvEH9BAAEE4i9ASGEzJaSI4rd+42ZdkD5a8168O2vOcZNeVvmypXVxr86EFIQUhBSEFN6xgZCCkMK9acXdWBX2nhT/xBtr6B1E76B4vCo61uAtt95B33/vyxY6uTcruTcyuTDFvYXpiy/9Ov640FuY3Fua3Hg8ixaFQiM3GPFHy3yqWjXUy8g9Ztmk8Z6AqkG9UHk3ud5D7vOahwX1y7pQEHTUUXvCKhf47Njh88InFwa56eCDg1qXOa8btNi9ZttN4bF0UitKW7aE/uZCnM2ZPZjCF6sumHGhmpvcW6VcQOamyFApK8AqHdS2PzMDMPd7XOY2ZIU+vj1BUkbGnsfPIi+hw6HRju0+lc4MqCI/D69r2597HjVzYVi4t1N4XRkZe/Zx+449YZc/YoDlcA+rXzf6vJ5ee0/hUMo93hZ+rM0tt2hmyBbellDwtmeQZzeWkZsiw65wsObCsBIl91nVnt5eESHcvnPxl3+jACGFrdYJKaL4rflpvdJvnKDpT92eNeeDT76mQDCo9L49NO7B3fpyZVDnnJGil14LnQ3OPztFz72coRoH+3T4oT69tzSgTu39WrQkIHdwvuCcFD3zUobcIG7tWvs1c15AzU/w66e1Qe9/5/dM0XNTQss694wUTX4tQ3Vq+byT5vIvgzq7e4pe/l/o8z5np+jZlzNUtYpPtY7y6Z3FAXU8xa8lHwa8X1T6nJOiZ1/K8H4R6tDWrxlzA2rayK8NG4Na82NQ5/VM0fOZ6+p1ZopefDVDxxzlU8kS0qefB9Xz9BRNmZZ9XVUq+XRsLZ/efi+g9q39+vizoDZvCWaty50c0k5N0WuzMtSkoV+bNgf13Zqgep+VohdeCS0rvK6jj3AnM58+WR5Qj7QUTZuTIXciCW93xVSfGhzv05vvBNTuZL8+/SKo3zYFs/bbnaxP75SiqTMz1LCeX9u2BfXNd8Gs5bt1hdd7xOE+pVbw6aNPAjqjS4pmzs/wBt4LG1Yo71Pj+j698XZArVv6tWJV0HMKf+6WFfZoUNfnDcr39bfZ13XeWSl6/pUMr96d0wfLAup6ml+vvxXwLlDC++VOhK7O5y0I6OQWfq36Nqj1G7KvK1zP9Y7zeW9U+GpVUOf0SNFLU0OG4bo7pLpP7n+uztM6+vXm0tzpQAAAIABJREFU2wHt2LmnnbmLo1bN/ZrzRkAtm/m9ev/5l+ztLNx+j6sdukihTdOm3bHAa2e0aY7THKc5TnPtwbUH1x5Rr6fD17jnumu11zJU+2gXsvi0YpW7PkvR/IUB7d4dzLzeDah0SenYWn4t+yygZo39+mpVQC4M6djOr3lvhkZ5dteI7tr+6CN9XtDkroE7tEnR6wtD52g3r/u8fDnXu8kNLh1Ui6Z+7/rTXU+3OcmvRe8HvJ56Rx7u14qvAzr2GL9WfhPwAjF3ffj+R267pKaN/d61v3t0btcun/7YGlTjhj59ujzoLcvdPyxbHlDxYqHeYxt/C3rb7/bPhXiN6vm8ewJ3v+Kug3/4Kaga1Xxau15yIVO9Oj599XUoFDr2aJ9Wrwl69xtukGzXo+qomj6t/j7oBXFH1PTp+zWheV1PqR07pOrVpA2/hm7H3PJ/Xhf6d4VyoXGd3P676193JVu9qvTrby6UC6piBWeXPcxy1/xb/wz9rWwZn7ZsCXoBXjgMc2M/Fc3sWVa8uE87d+77uGE47CpWXFLmoNxeCJi5KndvxlRwAUKKKHYbNm5Rr8uH680p92bNOXbiC6qUWk79encpuDwlEUAAAQQQQAABBBBAAAEEEEAgmwAhRZQGEQwGdVL3dM19/i6VcZGnpCuGjFPPrm3VvlVjmhMCCCCAAAIIIIAAAggggAACCMRJgJAiBshb73pCFVPLKr3vmd7bPdKHTdDs5+5UqZKufw8TAggggAACCCCAAAIIIIAAAgjEQ4CQIgbFrdu2a+iYR7Vs+ddeb4pbrr1QLZvWjaEksyCAAAIIIIAAAggggAACCCCAQKwChBSxSjEfAggggAACCCCAAAIIIIAAAgjsVwFCiv3Ky8IRQAABBBBAAAEEEEAAAQQQQCBWAUKKWKWYDwEEEEBA7u1Gg/v3RgIBBBBAAAEEEEAAgf0iQEixX1gTe6EZGRla8e2P2rjpd1WpWF61jjpUKeEXAyf2pif01t310Iu64fJz5Qu/ODmPrd29O0MrvvlBv23+XRUrlNOxRx+mIkVS/rH9275jp+a+9YG37tbN6+d7vZ98/o2qVUn1/uem1WvW6oefN+jkE+spxb3gOoZpf7TDh576n674T/cY1p4Ys8TT4KdfftXsN9/XrDeWaOrjo3LcwW++/1kTHn1FNQ+tqmsvPUd+f+gd3ps2/6E1P6/X4TWqKrVC2Txx2vW81lt+ubKloiK6tyNF+z780wZ7b7Tbxi+/XqONv21RlUoVoh4P42F44YDb9fR9w3L02/LHNq8OX5vzrl565Naoxgd6hoIcS+JhGI9lxNPuQB/T47Ev+f0uRK6zIO1g7222Hgus5SO3x9Xn8hWrtXTZCn3wyQr9956B8SCOugzrPljqsKDn9X/iu2g9t1vLR624BJ4hlmuDeH4XC9qOEpiQTTtAAoQU+YDvecmt3s2YOwmEJ3cBXrRoEf399+6svy+b/99cl9ro1P/b5zO3DHdjt3v37qzPcluGdRtWffujBtx8v0oUP8i7IN+wcbN2ZwR036gBOuLQalE1ctp+V6hiajm9PvmeApffu2B+Da3bcNBBRVU5tZxmPHNH1H2Y//aHeuSZ6dq0ZasU0RZ+2/KHjjumptIvPkMnNa2X63I+/fJbXT/8QZUvW1qVUst5deAGZ713eLrqHntE1PVb24BbwSUD71aRFL8XVJ17ejv17NpGq1b/pC9WfqcenU+Oug1pFwzRsw/cqArlysidkAaPfkR1jjncu3EdfkPfqOWt7fCqG+/LcR0fLV+pExsdp5qHVtN5PdqrcsXyOc5XUMNw+3ff2YOKFtGuiO99eEXuezX3hbv2u4Fbgau/OQuWeje17t+ntjlBp7Vtqvp1jspx/f+5eoz+c85p+nr1z/rki6+1YeMWdW53op5/9XUdfcQhWvPTOi/kOaNTq1y3/6mX5mjSszO0Y+df2Y6Fexd4aOx1uvXuJ7zXN+c2WdtBQQwit+X7H9fpqpvu874Lrt5+/W2LMjKPh4cfUnW/GZ523kD99+6BOrR6FW8d7sbk7SWf6X9zF2nZ59/olJMaqWuHFjqhQe2o7Si3Y3Ksx9SCfhfCyy/IsSQe7TAeywjvg9WgIMf0eB5LItuAu5Zw1yiBQGCftpPXebUg34XIFRSkHUSWtx4LrOXdtiz7/OusUOKrr9fomCMOUZP6tdS4/jF5ntPj1Y6s+2Ctw4Ke1+P5XbSe2wtSfn99FyPbd6zXyK5MTsf0/FyjWs+L1nZYkHYUjzqIxzLCdRaPOoh68maGqAKEFFGJ9szw+IuzvV8cL+h5qlLLl9Xm37fp2VfnezebF/fqnI8lhWYNBILejcXTL8/VEYcdrLPSWkddhnUb+qSP9m5STm19Qta63E3O5GkL9MS9g6OuP3IGdyEU+tXvfe36+2/1PTf/BvlaYQ4zW7fBlV/z03rd99gr6nZqS+/mINrU7uzrdOdNl+momtWzzdrvujv12LhBKlGsmIoXPyjXxZzZ72YN7n+eTmxcJ2ue9z78Qvc8PFmv/HdEtNXL2gbcCjr2usG7kd62faduGP6gHrnzev2x9U+dnz5a05+6Peo2nNZ7YNaN+KUD71HfXp3UvPFxcienWc+OjVre2g4XLv4kx3Xc8cALGnjlufrq6x+0+MMvvCAlpykehm4Z7qb2P2efpsoVy+mPbds1Y/5i/b71T6X37bHfDVx7+23zH2rdooFOPbmJ6tU5Muo6z718uCY/fKvcr4RNO1+mN16+V+ddOVLPP3izUsuX8YKHvteO1YsP3RJ1WbHM4EIcF+bkNlnbQUEMIrfF9Wi4sOdp6tC6SdafXdt66uW5enxczsfDeBguXPKpRox7Sm1bNPR83lm63Av5Op3STK1PrO8F3//UZP0uFORYEg/DeCwjbGw1iMcx3XIsCe+HOx+f33+Urr/8HLU7qXG+mlBBvguRKyhIO4gsbz0WWMu7bTm+7UU6rtbh+s/ZnbywN7/fQ2s7su6DtQ4Lel6P53fRem63lree1+N9jVyQa1TredHaDgvajiKPx9bjYbzrMb/3Cfk6+DJzrgKEFPloHKdfNEz/e2L0Pt2X3a9ief1aGG0V7iDU+fzBmvP8ndFmlXUbWvcYoLen7vsrdJszr9bCVydEXX9uM1w26B7vRjeWydIdMa/l52cb9l7Otj93qHvfG/XGS+Oi7kKPfjdr6mMj95nvomvu0JPjh0Qtn1t7cTf4M2PoyWFtA24De18xUk9OGKJiBxWVCxkm3RWqO3ehOe/Fu6PuQ9cLh3pd0b//cb1uvOPRrMcL2p9zXUyG+6sdhoMitwORJ8q9dygeht3+M0zTntz3eBDpmRek1eCiq+/Q1j+3q23LhurYpqlqH3Vo1HrrdcWIrACiedoVWjLzIa/+Hx57XdajH90vulH/e3J01GW5GaxdvA+EQeSOuUdX3pxy7z77euq512t+Lj3D4mX45/admvn6Ys14fbHcv9u3auz1hHG/3sZzivbIjfW7UJBjSTwM47GMsLPVwHpMtx5L3H64XlE33/mY/t69W7t27Vb7kxvn64eDgnwXIttpQdpBZHnrscBa3m3Lt9+vlQsQ3178qTZu2uK9ar5NiwZq2rBOnmFrvNqRdR+sdVjQ83o8v4u5HftiPbdby8fju5jTNliuT93y8nONWpBrg3h+FwvajsLbEI86iMcyLPcJ8TyH/5uXRUiRj9p3F66vPjZSZUqXzCq19c8dOvPim3K9oI1l8e7Xy7QLhurNl6PfIFu3wV1MvfLoCJUuVSJr037/40/1vOSWAu+DSzz7XnNHTI9KWLsj5uaZn23IbRlDb5+kMcMujaXKTPO47ojpF/fIdlPpHrN4cvIc3XXLFVGXbW0DbgWz3nxf8xd+qDM6t9KDT76mq/+vp5Yu+0pLPv4ypl/RXc+b/z43Qzt3/a0xQy9Rq2b15J57HHP/c5p4+zVR9yEe7TAjENDXq3/yLs6rVCqvWkcemnWj7XopvTr7bfVMa5PjtsTDsMO51+ulR27zeiCEp51/7dIFV43Wy5OG/yMG63/dpNlvhh732LZ9hxdWuF8A3a/yOU2uW+4dwy71wqlzLh/uPaL1zJR5Xq8T1635i1Xfe2OVfPHWk1G3381g7eIdj3aQX4PIHetx8U0aP+IqRT7a4X4xueaW+3Md1yPehm571m3Y5H0nXWjhep+4OnS9Ko6uWSNqPeT1uEcsj9xYvwsFOZbEwzAeywjjWg2sx3TrscTVwV0PvuCFEhf07Ki/dv2tIaMnqUL5Mrr1uv9EbUNuhoJ8FyIXXJB2EFneeiywlt8byV3bvfXeMu+87I4JH855JKqjtR1Z98FahwU9r8fzuxgNOdq53Vre+l3Maf3xuD51y83PNarlvGhthwVtR2G7eNRBPJaRU13mpw6itUU+jy5ASBHdKGuO/z4/0+vO3aNzK+9Zd9fVeursd5TWvrn6nZcW05JGTXgm23zu+edly79W8ybHaUj6eVGXYd0GFxK4G7qSJYpnrcvd7P348wbvOf5okzsJR06BYOiRFTdgpLs4ijZZuyO65Vu3wS3D0pvjh5/Xe2NSuIEiXbf5yOmFh26ORuD92uXaUeN6tVS2TClv8Ew3rkO7Vo2zDZ55dy6BhbUNuA28ckj2X499fp8OrlLRexQo/Jx8tB3Z/PtWr1eRe9wpv5O1Hf64doM3torrKu9+/Tq0RhUFA0FNGJn9hjO37YqHoVvGlBkLvfE8nJ3zmDb3Xe/RgUv7dItKYjXYewXuQtqFFTPfWKIZT4/Jcf3usaJb7npcRYsUUZd2J+qqfmd687m/f75itffY2egJz+qtV8ZH3X43g7WL94EwiNwx96vp8LufVMe2Tb1juruYdGPOjBjYN9dn0ONtuDf0dz/84vWucI/RzX4u+qNT0Soq2iM31u9CQY4l8TCMxzLCdlaDeBzTLceSsy+9VXcMy/4IojvH3fXQZA26sle0JuJ9XpDvQuSCC9IOIstbjwXW8uFtcct5+/3P9M6ST/Xtml/UrOGx3uDSXdo3j+pobUfWfbDWodvBgpzX4/ldtI4F4HqjxDLl1KPYlbOe1+NxfWrtoViQawPrd9H9SHXIwZWzFpNTO3I/iMYy4La1DuJRj24ZlvuEWNog80QXIKSIbpRtDvdL84J3l3kBRcUKZb0xDNyz+LFOLmGMnFJS/Kp5SLWYBkgLl7Nuw8/rNnq/ov+6aYuqVqqgDq1PUPWqFWPaBRdIRE5uwEf3RoESJYrF1LXU2h3Rrdu6DdbeHOenj1KXds1Vr84R+7wV5fja0Qe+nLfwg5is3a/iuU3WNpDbct2YK9He7uDKukE2n5w82/sO9O/bQ8WL5T4GR07rcgPN5TY1OC7nQR8j53ePKLiw0A362PWCIV4vHneB9vgLs/TUhKEx+cbDMHIZrkeFG2PAdRGOZbIaRFtHbt38XbdRdwGRWxj1yRffqOHxR0dbvPe5tYt3PAzy6lETy0644+Eb73yU1SPHfe/Cb63JrXw8Dd06rPsQy37mNU88vgv53YZ4GMZjGfE4r8b7mJ7fY4kLy8Nvh9q5c1eeYyLlVU8F+S7kt95zmz+vY0FkmdzOD9bybh2dzhukkiWKeT3STmpaV+58Hn4DUqz7afkuxeN4aK3DX9b/pvnvfKRfN25W5UoVdFqbE1S1cugtXnlN8fwuhtdTkPEY3LktlskN+p3bZDmvW69P3TZZeyhazykF+S516TM4x/HI3KDQ77y/XK/NWeS9JefdaQ/EUj1er97wvVZ+j4c5HdPzuwzrfUJMO8lMUQUIKaISxX8GlziWLV3S+xW9IJOlvBtUaPg9T3m/9rqA4tdNv3u/HN52/UU6+cT8v4oyvP3uGTg3xkG0ydodMa/lx7oN1t4crmtjrDfC0TwK+rmlDey9Ttet1d2kuV/gv1z5fUwnkTP63qRuHVt6j3iUK1NK11zS0+sNMuvNJRo2oE/U3XJ1lXUhoqDXk2fnrl1q27KRbh+y7xtw9l5g27Ouyfq1PxxSuHncRWYsY7tE3cB8zlCQGwOrgbWbv/u1Irfp/2LsGWbt4m01sPaoyWc17zN7Xoauh92C95bpvB4d8lyNdR+sb1yK3LiCtOMXXntDzRrWyRpI+NVZ78i9ktD1ynLnmGhTPNphPJYRbTsT+XP3y+u4R172euC4m0X3OKd7O8x1l52drdfk/tyHgtzYRG5P5LEgEAx4P0a43opNGx7r9ZILT7ldZ1jLu+Xf8cDzen/ZV3Lfg0Z1j1bj+rXUpH7tmN58Fg9b6/HQug2LP/pCN9/5uDqf0sy7qXS9R9wPWrfd0DfmV5Xvj+9ifsZjiHcvBKtpfq+R3fzWHorWc0pkO8xr/yO/i643V7/ead5jim5ybwiZOmeR5i5YqtpHH+oNTO8G881rUPl4We+9nIKc16z3CftrX/5tyyWkyEeNu19vc5vCAw9GW9xdD73odQl3v5xNGHGVdwJ2z9S758diGZ3fWt4NJnP/qAHZHu0IH9ByGgwy2v64z92gb33SR+X6DHfkMuLRHTGnbcrPNlh7c1w+eJz3WIF7rr8gk/VxEWsbcNvsxk5YuPhT7/EA99o1N6aEew6+5Ql1YxrRPBwMuJTceTx690DvNYpubJWChATuOdMHn3rNe3yk/0VnRGV1XTrdQK9ufrctbqDH/819z3um371hJdqU13c5smxe3+t43xjk1yDaPkbr5j/xydeyFhH+xer9j7/UFRd2V+8e7aMt3vvc2sV775Xk18Dao8Z6TI803Htfup3awns9bLRHf6z7ELnegrztyNqO3bO/7o0+7tGrafPe05QZb+m0ts305qKPY/ouxqMdWpdhbQf7s/yAfmfqicmzdc+tV+b6nRw+7inP34XFZ19yq/e2HveaYPcoYazjLFmPiQW5sYl2kHG/pL774ee66eoLos2a4+cFLe/ekvLhJyu9wML9+rtpyx85Dji+90rzMoylHuNxPLRco571f7fojhsv9QbvDZ/j167/Tf2H3hvT9Z1bt/W7mNv2xzoWgLUXQrzrML/XyG5+aw/FeJ5TYv3iufsI98rxX3/73TsWlSpZ3Asm3A+iefVayWn51mtkt0zrec16nxCrG/PlLUBIkY8W4k5W4Sl8Uf/S9AW69pKzY+7i7Rr+zGfv8AZKG//oFO9m130hB416JKYBC63l3QWlGyxv7ymv0ewj53UHz8jJ/eKxdt1GuV9e/3NOp5g0rd0Rrdtg7c3x8NPT9Oa7y9SxzQmh8Rh8e3Y7t4EaI2Gsj4tY24DblmZdLveCiTO7tNaJjerEFExE7oM7CY4e0s97jj/8NgsXUpx23qAc21csDcOVb3XGAC2ePjHq7CPvfVp9enb0fuE6+Yyr5HqDuF9z3VgC0brqu4VHfpfzWpkLEXOb4nFjsPey82Pgyrpu3iu++cG7GalYoZyOPfqwbOOaRIXca4Z33v/MG2fDHZcO1JQfA2uPmr2P6Zu2bNX0+e+pVdN6MQc1VifrPuS2/lhHk7e2Y/dmqvDYGe7YOu62/t7YJrG+rSin7Y9HO8zPMqzn9niW39vDDYK7avWP3hhGuU3utdjzXrjL++5H9iyLrJto7TS8D+658bsfnqwrLjxd1atV2qdYXsfEaOsoyOe5XbPEuixrebced1yIHCA5t3XndV6JpR5zWm5+jofWdhj5dpFwO8rP2+dyc8nPdzG8DLffuzMC2RYZyw9D1l4I1jq0Xp+6Hbb2UIzHOaWgj4WHx1RyA3BXSi3nXSef2voE71ox1sl6jezWYz2vWe8TYt1X5stbgJDC2ELcYHXX3TZRr/x3RExLckl1eN7IVxXG+hpTa/m+145Vn7NO9V53F57eWPSxnn/19Zh+9XI3RJGTG1OjWpWKKhPxtpBoENZHFazbYO3Nsffgp5H7G8svPtbHRaxtwG3vA09M9X7ldRde7gTiTiSxPHca3lf3Dmr3i6nrvvf6Ox95Y0N89NlKpZYvq/Ej0qM1gVw/Dw8el58FuG7B7pGT/L7TPj/ryGneeNwY5LTcWA1c9+rrhz/oBWXuYmDDxs1yY8TcOzxddY+NPjZKbvt/YtoVen/mQzHzuGOg+8XS1YMblLf9yU1UI4ebm5gXKGUNSBqtjLVHTY43BYGA+g8d772WNdoUj67N+2Mf8jOavLUdn3PpbRo1uJ/3Zhh3THGvov77793q3GdwgQNL557fdphTXVmWkd9z+97rt5aP1vYiPz+5xwC9k/lq8fDN5eo1a3X9iIdyfF12bst2PTyfeHG2np/6hjc2w8hBF6tR3WNi2pR4jKeQk+GlA+/W3BfuimkbrOWtvUkKtJExFIr1nJDTovLTDt0rxF2vKBcGuIDLhf5ucHg30PLwgX1j2NLcZ4n1u+iuz0aPf0a/bflDvshfgKSY3rBi7YVg2knJ+9EgcirINbK1h6L1nBKvx8I/X/Gd17t17sIPdWj1yt6jIL3PiN5L03qN7Pyt5zXrfYK1HVE+JEBIEYeWcFrvgTGfRF+Y+ob3erBzu5+iq29+QA+OucZ79ePI8c/ENJK7tfx3P67TgJvuU9EiKapSqYJ3Y+OS8vtGDYj5rQ6OzJVxr06NfEtILJTxeFQhvJ6CboMrb+3NEcu+5jaP9XERaxuI3C53Y+Ee+XA3F9Uqp3qPfFx49mlRd891P46c/D6fF1a1O6lRzGGBS9rdW042/LZZVSpWUNdTW3jrj2WyXhC7XyrGPfKSN/DnPbdcqUOqV5Z71OCPbX/G/LaSeNwYuO1wBht/26IqlSt4zwC754HdYyzRpjP73azB/c/TiY3rZM3qRlm/5+HJMYemOa3D/RLifgmPZXIDBrq3gbh6c+MPrN+4OTTGzQ191aZ5g1gW4b3ytKDtwNqjJrcNvOCq2/XM/cOibv/eXZs3b9mqBe994rXl6y49O2p5N4N1H6yjyVvb8UefrdKo8U97NzLuFcruda6uHbw2e5EuuyD6W25yQ8pPO9xfy8jPuT2nbYi1/LA7/qsLe3b0ekK556eHj3vSG9djUP/eatog995c4XX2SR+tMcMu8c7hp/S8RofXqOb10Bx782UxlXfLcd21h9w+Sanlymr4DRd5rzQecNP9uuT8rkrrEP3NFnuPp7Dl9236ds1atW7ewLvOiTZ1v+jGbLO4X9I3bv5DN17dx+s2Hm2ylnfLj/wV3Z0PXPD68vS31K5Vo2yvdc6tN4m1HuNxXrK0QzeeTLNGx3pvaeh1xQjvO92mRQPvmsB14bdMsX6f3XntjhsvU60jDynQ6qy9ENxKLeek8EZbrk8LtOMRhaznlHg/Fu6+S+67NfONxRox8OKou2e9RnYrsJ7X3DIO5H1CVKR/yQyEFAWs6IIMxOJW5Q7AP6791bvJd5MbOdp1T7/h8l4xDUxkLe/W6X4tcYPabHA3RhXLq/ZRh8U8grV7zsu91sylo66rufv12t1YuVeQumfQok3xeFTBug1uGy29Oay/nlofF4lHG9i7nlx7dDcbbvDMW6/7T7RqNH/+9MtzNf/tj7wL4JH3PqXB6efJ/c0N3ur+Fm3a+4LYdcd1F0Hugmri7dEviN2NneuW7kK7Dz75SiMH9dPHy1fp0edm6KE7ov+C7rbPemPg1vXW4k/U95zOqlLZvf7yd8+g9Yn1Y3qlcW69r2LtZh+PC2L3q+39o6/OFmq4V8K6Hh6vPTEqWjV6+2tpB5ErKEiPmr3fyuAuptyvPytX/6hH77oh6vbnNIN7nt0NTnzv8P75Ll+QfbCOJm9tx/neyRwKxOOmwBL4RW5SQc/t4WUUpLz71e/Nl8d5i3joqf95N8fndm+nG+94VC9PGh6V2P1gUCQlxTsfu5CwTOmSql/nyHz9iOC6iA/od5bO7HJy1vpcW04fNkHPPpA9QIi6QZkzrPz2R03+35u6JYZzijt+R07uF2jXu+//27vuMCmKp11wRAM5CvxIKkERUMk5niegoAcoApKD5JzDHTknyQoHKBlBomQQJIiICphQgihKODLoJwjf8zbuOXvs7vRsze7d7lb/xcP1dFe/PbPdXV31vjoh/niO+7y7MWG/0eid4Vq/Z9x5tGNd4uxtdOfVrB7nW2zZfaxWVK87G7hRCNw1yY79KdfZxV0XuWnh3Esk7h7Zjv2Z2Tsuf/cPAuKksIAzl4jFQlc+r+ptvh/Ii9KmeUyR60HvGOHlsxetU5KGIzRUGexIVeDawI3m4BJDcdNF7Ho5vM05RP+eHDVG+9ypRECFY+mswSpqwRGeDDLPyFaDlZyoN+Wb735WxH06KTdQJ3EcokG05TiQ6qZdwT7uwQChtWtjRjo599AmvhGE3JqVTgOmUscW9ahA/lxxVY//cIpiln2ibrTNih0bYuNthbE/d/8f3yZv3gMcwqInLqAc2TPTnLE9lNMV7xHS1uAgeTJvDhXRoxON0jPaOa0FB6P/5chKjepVs0z2ZRwb0urmT+pjNgXq71w5X3ed6KodefMec79/o83cQwHa4jr8uGs793mHfB/IbvHvFXOGqvfPCqeEq/cAax0uEHS+BawHrtK0EPmp6yhwZUOL7mNo3kS9b8HTB+NOUtn4DOp8e+LMg8i0TOnp6fy5HpIJ1/oo41UyOh88Pc+dR+66xN3b2HE45n6LvYbNom5t6tMTWTN6M1XsZ7xZk4ydcvenaMsbZ5ed6yI3LZyrUmPHHtmbdc04j4k19Yv9ggdYA+KksDBhXCIWC115rAoHw/c/n32QA54xnaWFmJvvh1DSHSsmOW16sDHAD7tO3qgdqQpcG+yI5og/Qd4QQ3n7PkDqE9E3DoJI5B5Dqq1CqSIUFham1Sw359CTqoHRAHdKHa4IuqDQ0qDtUNrgpZMC/bbuOU4pjZgVsFDXfam8yrd2cMMgGgMyWtuXP7jRNCtcqTMHwZfxAIFvCSHiW5aON+ueBo19X6VJgFAPcsYgz8S7UbX8807kmePdOCy4G2IYiJC7ezNrAAAgAElEQVRgkGwapSaBY/u+E2nZrCGmY/DmPcAczR7bk34+/RthQwteFZBy3bt3j0o9X5i++fZndQOLMHFfFzhnjQVSiUd/OEUzYtZojR/PcuV8XY3RitoRnoej58TJX5XSFHhFns6Xy2N0neP7R1ISIvIgU4iQeMzD9Zu36dP9XyveI0RImRXuoQDtcx1+3LWd+zwcpUiPOnHqVxURMahbU7p+45b6vnQcljig4LIA3x79G6UJXJDXX/ipPNSxRV0qV6KIx6ngRgjCyRH/W/jupzM0bd5HyhlrVriSyqfP/kGdBk6lZGFJlYMCvCz//HNPpbIiBUmnxI+sAnHj/i+OqSg3HY4a7jxy1yXu3sabw3F8XLnf4oDR79Enuz6nF4oUoHRpH3Xaa44Z0NZ0GrlSuN6sSUajuPtTtOWNs8vOddGutHAHLlZVu0wnWaMCd39mB7m6hplSxQQBcVJYeEW4RCzoiqtpjzSNzoOmUepUKeI4JbCQYiGG0oFZ4eb74cdz5dwopzBSbIgjWw/R4tSwI1WBa4Md0RyucNYlhsKzHLJBhPMj/BY3bTiU9hkxW+XLIrIlqqceuZXdOYdm7138v6N/5PzjBhw3+nUjKtCWXYeofp3KitjVm4IDI0JFP3rfWYHGVVu4Mdq0/QA9lS+XysXOlzu7uoVv3jBCO4+eK3UGGzD+dk3qKCcDDiUzF66lm7duq/QTsxJ/Q+2ufs1Krnk+uBtiT/bp3HrieW/eg4btopQDAH2UiGinyNTwf4unD4xz0oEd/MN3B5pB6DEiqFa10rRz3xFqVK+623awoTUWHDARidGjXQMtSWk8y5Xz5bLJOySokXOObyBXjiwEZwucTzqHO9yUR/dsoXhdHAVqO32Gz9biIuAeCtAn1+HHXdu5z+NAjRtopGu883ZdFV2FKMWvjv+kUuDMCvofO7At5c/zhFNVR+h86pQpKVWqFB6b4UYI4j02FjirYq9cV0SqUJLiFjNJ5aadR1LTyHAleegocMYvWLFZO5LDVWRVnpzZ6K3XqqvfaLPCnUfuusTd23hzOI6PCfdb9LSuuVvLjDY4bvHBL3X+4hV1iYffs/glZorz++r4uzdrkrFt7v4UbXnj7LJzXYQNnLRwV9+JFZUabrqIA0M4LFXq3CtVKbJ2JRW1iGjTehH/pbSZfdPy94RFQJwUFvC3g4jF2J03mvbIH367QbhSZHAUkB4uW7tTK7yYm++HjRSiBiA3iigO3KIhvLxKueLU4o0IC2h6X5Vrgx3RHK6s1yWG4pINGsnYEAXQ/I2XqPTzhZXkn86tG2zn5hxyb92wUGTPmkndgo+ZvoQeSZWSKpYpSkUL59d6MeKTpN27f19FEvRq/4bWAoT+jSVJEuQ/p1dEmrqFK3V289afhPBcfL+K3yVZGNWqXkYdcK0S0urabKzH3RCjLW7YvzfvQYO2UbR89hBFdFr2lQ50YP0MFbkxdmA7lYuP8PSIRr1px8pJprB4igiqU6OMmps2jb0nfzQ1gEhF8nDkfLls8ui/XkR5pdDjcJgg4m7eko20YEo/0yG4+y3RZWjnHgpgINfhx13buc+7A1k3XaNey0EuVTyadR1NMZNdH8ZMJ5ZIrfUcSeJDX39P67fs11aG4ESJIorA1TevK6+ug4dOHc4YuOsSd2/jzeE4Pibcb1EHY506uLR4pdkARbqKlCfwv+kUb9YkY7vc/Sna8sbZZee6GB8n8Jxs2nFQkayvnmfONeUOZ12VGi4JL/rn7s8k3UPna/F9HXFSWMDYlwRjupr2xlsno+mVXutCuz+aYjoabr4fHCsbtx+kTTsPxoUG165eRkkLcQrIwtq//apWE1wbuNEc3IMZl2ywdtN+6pB2+ux5RazmWDQQZqmbqsDNOYx/6waCNYR4Q+WhR7uGWvPIIfiygySNs5nEAO2UOkP+ZOpUKbVwc1TiEl9yN8Sww/EeXLt+U21iImtXdko1cdjqLu0Hf7f6HnQZNE1F3EB2tffwWSqUfP/h40olA+oGp3/9g879cYmO7phvCU/dylBdmDJ3FeXJlZW6tWkQt/m9fOU6nfntPOXOkZUyWHB22Snn6w1pIwgTd62arIbvcFLg30jD+GTxWFNYcION1I63Xquh5h6/z1t2f0FL1mzXOiBzDwUwkOvw467t3OftSNdwTJQ3vyWeJtlKhKCrdnSVcrhRovVaDKTJ0c7RP4hY7Dp4mqWD1e/nY2nrnsN08dIVypwpPYVbkOfmjsH0YzOpwN3beHM4jm8S91v0dDjs3PI1grLYhCHveEQCzjWkYOHGHBFJWGPGDWpneY31Zj64+1Nv+sQzdq+LiECAkx6OCfy7RqUX1f7uuUJ6F0lI/0KUHi5gjMXbqCorJLx27M8k3cPbN9He58RJYQFPLhGLu66saNqD2G/V3Gh67NHUcc1du36LIlsPpq3LJpiOhpvvh9tLXY+0K2NA9ueqHD76A5UqXpjy5MqmSOuQ2+yucG0wBcmkAvdgxiUbRNTMex+up7/+vkOj+rVWobRYhEdN+1BL2QLDszvn0HFQGDjmPbVRNCtcgi+z9s3+bsdmkit15imkEWSYyLGGJKG7YgfxpRlOun8/cuyESkPDAX3qsE7ah3Rv3gMllThiDv1+4TL169QoLqoMv4NwXiFd4a0Ow7UO2BifVQJZRAggmu3Eyd/oq+MnlLMWUQiLP9pGT+bNSWd+/UM5XMF5olO4cr5c0kY4vuHgBjcKnBQfx4ygjzfvUwpO70/sbTqEX89dpH6j5hIiOjJnTEtwWELCFr9NSH2xUrxxssRv35tDOndt5z7PTdfAuz9m+mKllAPnK9JG8E7iBtm4V7AyF466uhGCiGAyFoTYg5MCzkOdFDxulCiif6LGx1DNyiXU/gH7KkUm2Ku5KR+Hw244OweNnadkoNd8slcpl4FvBZLKFUubp91wx+DpgD5nXA9vps/yM1adxp468OZb9HQ4RFrrjyfPKh4mdwXOCbQxun8berZgXlXtg1VbFak2LncSa+He3Nu5LiLiGqlaiG6tUeEF7dRFB7bgx1m+bic9mSfHQ8S1M0Z383oKrJDwcvdnXhspD9qKgDgpLMDJJWJBV1xNexxcQGxmDAdH7tjZ3y6oA75Z4eb7Fa3eklq++TK1a/qqk242GI1H9W9j1j0hR9RVGf3uEur1TkP67sQvtP+L4x4lz7g24IavZLFCcfm70AbH7SgOHkYCQLPBeHsw45INwi6EMuJQAU4Db4vdOYewQ5cLgEvwxd3McTeTGCtX6swY0hh/Dru2iaTZi9Z6lEP1hviSuxGKb+edO3dp2vzVtHnn5zSsdwu6fuM2TZ23iiZHdaR8uZ3z4129p9z3wNim8YALu3BQMyveEMg6cn9xQ1Qioi1tXzGJGr0zjBbPGKTSl7AxR6TS0pmDzbq35e9c0kYcIhtH1lScRhXqdiLwSeD3EYc7BzmvjqHgVMHGNkO6NIofR7dwnSyOfjg3d9y1nUtmzE3XAJcCIoscqltwWkyPWU03b/9FIzVUt4AhNzKrdC1nRSGQOEOBp0fbBlTq+UKmrwM3ShQd4B3YvudwXJQnOAysvMPgdBg9oA09lTdnXFTRufOx1KHfJK1oDO4YjAd03MiDCHXd1n1UvkQRerNeNVMMubn83jiNXRnF+RbdDRI3+nAamZURUz5QKZOpUjpzsED9CRFfvi7eRtrGzX0Soi+++oH2fXFcRQzC8YtoEIy/SMF8WvLk3HURe5Mbt25T5bLFCN+QUUFMBz/8ni2ZMeihOdB51vEdG+s6HJ66JLx27M90bZV6vkVAnBQW8OUS5aErrqa94wOGd//i5avqUF294ot+k2tCqgHk/Xbv/1oxkL9YtIBCsEGbobR8zlALaDpXNXJlGDkXXDXItQE51OBuAFEcvOsr1++i8MolacfeL7VuDrkHM3cg6ZINcm/gHf1z0h1wy2QsiG757sQZ+vbH0/ThdHPCQi7BF3czx91Mev2i2/igN8SXdm+EsBkpmD8X9e/ShB7/N7oL72f/UXO1VFq47wH3gOsNgSycjA4HBA5mBzbMVLwSYP93RJmBMwURCTqFK/vHJW002oj1Ke3jjyoHj670JFdCletkgf3cmzvu2m4HmTHnBhspO9tXTHS6tcTve42GPbW4WYBhQkdmcaNEje+xNzf4eN4ViSvWZUjB6qQ+2TmGuHX63j3q0G+ylrpI/Fx+ODkQCVOpTFGtKEs7nMbcbxFRnsvX7qQrV2/QffqP8HLvwaP0eq2KVO/liqYk8VbViozvDhwCyZMliyOaxd4G64xuRBJX+Qy2QKlj4dT+TukpsKNtnwlxcume1hbuuoi2z1+8TJt2PEj3uHn7T+WsQLoHolnMilHW3ayuyz2+j0l4vbFJnkkYBMRJYQF3LhGLp650Ne29ufkz9su9gUbOI0I3cSAdMm4+FS6QR3EQtOw2huWkcNiIH+KPNn1KkbUquYWLa4NRex55rBOHdlDhydho6shfcg9m3nraHYBwb+DRDjfdAQeL+Av7wS+/pWkjulCxZ540/aq4BF+uOsDGRHczZ8dmkntrxb195RJfcjdCmAOEUxtJfB3zghQAo9qDuxeC+x5wD7jeEMgi3QOhxClTJKcG7aJo27IJtGjlFhUB9sJzT9PxH0/T5l2H6PiuGNPvABW4sn92kDYieuLqtRuKT8JRhoyPUak7ICP1VLgSqnY4Wbg3d9y1nUtmzL3BhpMC7yE4QRwFahhwPOhwVeEZbyKz4r8XVlOnjM9zo0TtSHkBrxMuMPBtY5+AaKLVm/aoQ2tUL3PlLO4Y3H1nurwerp7/5ruf1WXMwC5NTH+PuE5jdMD9FuE4frlqqYeUaibMXq6icvLnzvHQ34wD46oVwQmNqGBElv1x4bKKioPDtnWjWlrRLKYga1TAb+LWpeMekpR3ROyZNcFdF+O3D24XOCs2bD9A6xeOMuueJs5erlJtsDcwSqybPuihglUSXk5fxmexJsLp6Q8yc7tsDqZ2xElhYTbtJMozdmtF096bmz9jX9wbaIeDAG3iULhg+Wbl9b51+0/as2aaBTS9r8q1AVEfw/u0VIcJEANBIg3RERGN+6iNnlnhHsy4nBZm9un83Y50h/j9IAUFN+gzR3c3NYFL8MXdzNmxmYx/a4WUq7/+/psqly2uFWLNvX3lEl9yN0Kmk6xRgfsecA+43hDIIgx38Lh56uCCzXSnlq+pkeL/j31/Ujk8EXLsIKM0g4Er+8clbZw4ZwWtWLdLqTXF3+xD0rJtk1eoeoX/ZB3jj4croWqHk4V7c8dd27lkxtwbbJDWlipeyIkLBgSGnx74WitEHnPqTWSW8V3gXqB4cvoa+3GnAGVHygtSP0sWL0g5s2cmHFbxjSMKoWn9cKf0Vk/fNCfVIX46Li5tjn1/in44eVbrBt2dXa17jqO543uZ/RQR12mMDrjfouP3ML6xutG6dqoV4Xf+mQJ56dXwchTZeojWAZ2bNoVxI3369p//Ry3efJmyZ8moHMjL1+1SBMFIRzIr3HXRsb8/cfLXuNSpp/Pl0uajg7MLHEVw9iH1Lwn9p6yio7rF3d+Z4aPzd0SjjJu5THEzKfW15MnUbyl4fiARLcU/CIiTwgLOdhCxcDXtvbn5MxuilRvoKe+toi6tXndqEremy9fvou5t6pt1ZcvfuTYc/uZHGj55odqAjBvcnnLnzErnL12hNZv2UtsmenKDHAZwBwjeclpwN3Po31fpDpwbHysvB3czZweG8e3FhnLGgjXq5sCTmoXjOe7tqxW8XNXlboS4/dvxPPeA6y2BLDaLcMpBTcRV+er4T1oRRY5NfaXSRenEqV8pWViYSqMDvwMOSTqSwmzSxshutHbByIfCma0cCjgSqlwnCzDk3txx13YumbEdN9jc74kbmcW9QHE4fa/fvEXnL16hp/PnIuSixy8xU1xLqtqR8sLFkJvqAEeLsYSFJVXksyATT5/2ca/Mw+8U0ml1yEu5TmM7vkUcbl0RRuNiQYd3jatWhAgaRNQCN/APOVKDzdKQHZNjR9oU+JUgZbpj3xGKvXxNSaNXKlNM7U91VMC46yI3GgXYuSs67zGXhNerDyXeQ9gfpU3zWBzPD9KA8H1jbCM0eX7ssCPU2xAnhYU3gEuUh664mvbe3PzpDFH3cDlr4VpqUKfyQ+z9Xx790SPjso4NunV8ZQNyq5/Ol9PUDC4DOJfTwlO6h9F4d5s51OGmO+z9/KgTTg5OCkh/ffDuAFMMuRW4mznuhtid/cgDL1+3M+1fN910iNzb1+I1Wpn2gQpHtr7nsh53I6TVuY8r2XHA5RLIIrVj/db9dCH2CmXJmJ5q1yijcnd1ix2yf7p9uaqHG/Song+HsiMFoVf7N0yb5kqocp0sMJB7c2fH2s4hM+beYLv6LYCzFOSVd+/ejZtDd78FqMCNzLLrAgU4vtJsANWpUVbdWuqqidmR8sK9BeemOph+bCYVwIVjLPfu36fYK9fUdww5Tn8U7rfItZGrVhQ9cYEiLP39QizVqlZaRdEgOgYSnyvnRpmaZ0falGknJhW46yI3GoVrP5eEl9s/nq8S2ZV2rJjklK6C1A9Ic29eMs6OLqQNDQTESaEBUmKq4u3Nn2MM3Bvo0rXfUeFbYBE3Suzp3rrZgSXXBuTqfvb5UbUQGYmZYpZuoj4dG1Gp5wt7DO3kMoBzOS3swJCb7hBfShY3PgiRbfx6DS02dXcH7IwZ0mql3NiBAdrwdkPsqf+V63dTZG33nCqOZ7m3r3ZhwG0H+ao7PzuiSIGhPFStwguUI1smrWa574EdB1wtQ91UWrhis5J9bP1WbRo2aYH6/cD/VSj1nPo/TtFls+f0YcezXAlVO2zg3txxbeAqRtlxg+0YAxzG+BbxHiL1CGSD/ih2XKDAyY18ehyocXMJMtFxg9pp3R7bkfLCvQXnpjpwI/xAkmksWJezZs6gwu51CpdnybGmuutL5xZdx05PdbhqRXBa79x7hJInD6OKpYuqQyoOp4ju0VGK4aZNYWzc94C7LnoTjeJYy4EXSOmxzzZyHGFcWTKlD5gDPtKO4JQyclEgNR9pP5s+HMN9TeV5TQTESaEJlKPaz6fPEfS44Z3OmD4tVSlbTG0E/Fk4N3/cG2hspsDhMGLKIrpx808a2rOZCnn2p5OCa0OrHuPo3v17D0kkQkYxvEpJQug1DhnuCpcBnMtpYce7xmXkt8MGRxtYyK5ev0kbtx+kv+/coeYNI7Sa595gczbEWgZqVOLcvpo1r6MWw8UQTk/wLyByAEpDSJvC+z20Z3P1HVkp3r4HrvpAFABuYc1Iu7hOEtyqLJ01WEkBO7gZ/vq/vymy1WBav2i01vDtYLPX6iiRVuLOgV3D4qztXMUou8ZgbMeKKoUd/XMvUOCcAGcWSGlBuofywaqtivRx+ewhWiZizN+eOEOXYq+qAxFSRsKSJtV6FpW4t+DctKOBY95XRJ3YUyHEH+sDnMAlihYkldb/b/aLMUoSB6dVGz9VaatWf3PjAxOfZ+nqtZv085lz6rA+Y1RXbRwTS0WjWpG/bOKmTcFOb94DnfHprovcaBRE1yFC8O364UpC9frN2yra8NqNW9SxeT0dUxO8DtJtsEd8u8FLiq/pQuxViln2CVUpV5xavKG3R03wQQSBAeKksDCJKzfsphnz16iDLDTJ8RGCeLFzy9fptZf9E0pnwVxLVXXl5oykldv2HKbxM5cpLWeQy+jkPFoyyk1lrg24LdmydPxDBxhdRwuXAdwODLhtcBn50T9CY7HwqA1h5vSKVCiiSknTg6En29v2nqCcYGaFe4Ntx4bYzEazv3OlJz2le8wc010R4W1e7D4skYshxoeDORRdjI5aHPZ6RM2gNfOHm0Hg9u+67wEcIsgTRVQUGZQpYq9ep8JP5aGOLepSuRJFtOzAAQeyd6s/2atIsppG1jR9zpXDEoeGBm2HaikFoQMum72v0t9MB/9vBU9qRa0a1dJtRtXzZg7wHNfRwV3buYpRGANHEtoVyLhNrdWkH+1YMdHSHHAqcy5Q4Ozs0a4BpUqZwsmE7Xu/pGrlnzc1C9GBnQZOpWRhSZWDAvuzf/65R1OHd1YHeJ3CvQXnpjqAeBoOX/APOAoOShu2HXBLmIjfWhyizv5+UfHg4GCONqInLSTwheV6IjNF92oR5/jRwcFY54efz9Kyj3fQ4O5vaz3K/Ra1OjGpxHE4clOnuGlTGJo374EREu66yI1GwZq2NmbEQ3tBpJHMGed6f5fYIjGwFuHibNPOg3HkobWrl6GXqpS04xWVNjQRECeFJlCoBuKchdP6qxtDR4GWcLOuY/wW/mPHAsCRmzM6CIAB2powaxkhxP3YzvkW0PS+KtcGbEhdSZzqhlfbwQDu/ejteZLLyA8v8679X1HzBhGUJXM6uhj7ILy4YqnnqKXFg4ljRNhUNu86WusGmnuDzd0Q2zELXOlJMxsQbomwS3eFiyHaNRJ0Gftx9/9mNuPvVt4DYDh2YNuHJOlAFPf+xN6UOmXKOL17nb4dddr3nailUoPN2KJp/VUkBZyfdSMq0JZdh5TjFqlPOoXLZs9Nf9Ox0VMdh1oR6mBjh5tfyBEjJfDNetW8bl53DuJ34I2jg7u2cxWjuJLQw6cscoIBh/MjR09Q6RcKU9+Ojbyeg4R6EHw5qVI5OyvMbGnaeSQ1jQyn6hX/U6KB4siCFZtp3sQ+Zo+rv3NvwblpR0Znl9FgXIxsX+7a2eQgXQWZb9k6HWj8kPaEQ+bEqA4qAgM8aMMnL2JxRbXoPkYbQ6Pd3nyLWhPloRLX4Whs2pvUKa60OPr35j0w2m3nuuhNNAoiy5bPHkoZ0v1H9ooIwyadRtCKOea8HsEQicF9j+X5BwiIk8LCm+A42MV/BGRFH8eMsNCSPVW9WQC4cnPQjXaVl+fNpsJbFBLCBkTMePKg4hZs76Fj7HBLbzGx+hw82hxGfmya1saMdJJiws0dNkw6igQ40DltBu4/yKNGiH4TP91gW8XM7vpc6UnYg5ztNI89Qmkef9SyeXZEAUCBYsqwTk6OW0Q14IC5bJZ5iDb3PQC/y+r3hz009mZdR1PMZNcqAGZAYWPasN1Qrc0Ubs2yZ82kNmNjpi+hR1KlpIplipI7mURXfXPZ7Lnpb2Z4ePN33P7CcY13w5tiZQ48ta/r6OCu7VzFKK4kNPhtjAVcBHlyZqMXixbwBn6vnuFeoEDyb+LsFbR+234ltfjYo6kJN5fd29Z3ygt3ZxxkXF3JG+I3ZquGtDjateMW3Cvw/n0IZMqTojrQU3n/I/BGVEDXIe/SugUjXTYNBQrHby0IBw9smEnxb6yhKrdk5iBT00AQaSxQV/nupzM0bd5Har3nFN1vkdMHnuU6HF31byV1iistjv69eQ+MdvtiXbQyL4iuc3BzQUIVzru1mz9TDsQ2jc0V9LyJxLBin05dLomuTh9SxxwBcVKYYxRXA/lckIOqX7uyYpyGSgMIsxBNoCM5aKEry1V1FwAs5By5ucTAZZAQNtR8o6dKEYlfYMuaT/YSojAQ8j5/kvmNDZcUiavqgDFwGfmBBxiOjTn/WMixQXCFU3zc4JAwFpCkgfgsdeqUWpwUdtxgW/7IbH4AJGsc6Un8HmHhR4j1lOhOVKJYQRWWiOiuIoXymVrrSwx1+DBgIPc9QBscR038G2hsyr/98Qw9UyAPDezaxBTDxFCBm/7mqzGUqtWeDm5wllR01Zev5sCKoyOh13ZfSUL7am7N2vXmAgUpeIj86to6kuq3HkKLZwyiOR+sV/xfo/q3MeuS6rUYSJOjOzmldiCqp+vgabR6nvepZ+hYN5cfzgF3pXPL1wgksxOGvOO2zmeHjlLfkXPpuUL5KHPGdHT5ynVFojiyXyu3aWtwUiyY3E+RgCM6bvdHUxRPULbM6alE8YJ0/PvTNGrah/TNjnmmGMJZZyzgEoi9cl2lYJYvqZc256oTK9+iqZEmFbgOR1fNW0mdskNa3Jv3IL7dnHWROwd4/sCX3ypCbbw/cOJXLlOMypZ4VqtpbiSGVicmlbgkunbYIG1IJIWld6B+myFqA4t85cceSa207HFAAJM9Qpkc5dPVUy21y61sZQHgys3ZwWXAHW9C2AD5KWwa4AUG6zNyRD/evFflvNauUZZqVS/tdJvsaYy+IkWygiuXkR9hsQhxb9ekjrrFx7cwc+FaunnrNg3r3dKKKU51QdzlSTrVUdmOG2yvjbTpQa70JByOGz4YTYgsmjx3pbq1/uW389R7+GxaOnOwqZV2YOiJj8BogFVuAt33gOuocXUDnTtHVuXw0SmeDiXucm912rVSh5v+ZqUvd3VdbYihNKBDKs2dA9jEdXQk9NrOlYTGdw9ull9+u0B37/7jNE06N+h2vAPu2tC+QKnfnbYsGUfJkoXFkdCiTXeh7/H7A6F51PgYqlm5hFqr8fuK3PzoXs21eWm4ufwg/nRXCj2Vm348edZUqh0O+4NHvlOHO5BnlixW0GOk3IcfbSPwg2VKn4bu3P2HJkd3JByq4eA59v1JypMrO63b8pmKsPCmHPr6e1q/ZT9F9XpYpthVe9xv0Rsbjc9wHY7c1CmutLhjLFbfg/gYcC4wuHPAfZ4bicHtH89zSXTtsEHaECeFpXfAU76hsSFfyiwl9ALA5TKwBLibyglhA/L75y3ZSCvW71K3v88XeVrl+hbIn8vykLikSOgQzrETJ3+NI/R5Ol8ubT35+AYjzNYos6QzIITjYjOANBhsipMnC6Na1cso4jOrbTn6A+Fg447D2bdeOvY76uDGDxs6b2220perupzbDkcuMto1hvfiwOOJMNPM5m2fHnbK6/ZU38hHcO/ePfVt7PjsiNKXf/yxR+IetRJpZuU94DpqsBFMnixZXP47HL74HhBqrlOMhxIHH8PydTupW+v62rdGOv14qpMQ6W+JbUPMdXQk9AETxv8AACAASURBVNrOlYR+q+NwerlqaSpSKO9DahbPFHiglJEQxcoFipHHxrHGnzxzjnpEz3SZ0uVqPEhX2L7ncNy6WLNSCS3ZSEdbdubyG+3T5bvydm3fd+gY/X7hMkVULelyLVu0cotWGqW7d6RJp5GKe0encL9FnT481eE6HLmpU3ZJi3P2eNx1kTsHdjzPicSwo38uia4dNkgb4qQIuHeAuwC4ShVIkSI5Zc6QVouwkMtlYAfgXBugc4zNj1HDGWkLiJBBCo/j/49sfe8hc7HpwsFkw/b9tPfgUXqucH7FpF25bDEtLXc0yCVFOnvuAnUeNE2FxiJfNVeOLIQwddyk67KY4zA5+t3FtHPfESVrhvFDWqlfx0aUIX0aS9OEQ37qVCktPYMcWWOBJOy5Py4Rbtwh+WRWPN1gG591d5uNg+i4mcuUKo1ysiRPptRJwInx6COpzLq35e/cKIAlq7cTVHkavlqFugx6V0nEfX7kOxo2eZEWke/ClVtcjgNM7o1fq0G5c2Wj0s8Xtuz8wvsZNWEBvTehlylO3PeA66gBpwZCyfPmyqYiUpp3G6Mwbd2oltekjwgx7z50Oq16L9p0/HZV+P18LG3dc5guXrpCmTOlp/BKL1LWzBnsat5jO8GwIfYLUB464aYAvt1lFC2Y0i9Bh8G9QAEvx6j+rZX8ZpXIrpQ7RzYVGTZmUNsHEpx+KNxcfq6csB1rO+e3AL99xuLgpAARp7/U27jTbKfD0VuuNa60OPc94K6L3DkIhue5JLrBgEFiGINwUiSGWUggGxw3f1PfX0V1apRVh1SzwuUyMGtf5+9cG/A8cj2bRNagDOmgRX6TPvhoq0pfsKJ/DIfGns+/UTJFBw5/SyWLF6SJQzuYDoFLioQDer2I8hRRtVRcWCxCXRHpobtRhcQjHCzQscatMW6Ugcv3P53RUjXwtKnWIQ0EWaCxgOgtW5aM9LgXN9ieAHcXtt9v5BxKm+YxpUCQNs2javwIl8bmYkTfVqZzaEcF7uEOYf5nz12Mc6qBJwektj3bvUEVSz9naiKcJK7Kui37VCTEdz/9QtkyZ3ArfeepA09s9MbnuO8B11GD3Ndt/5LqDR43j3Dr/Gp4OYIjc/3CUaYYuqtgzEv2uhHNB/cfPk6Dxs5T8r/gx4GzbevuL2hoz+Za74FmN26rJYYNMRyNqzZ+Srv2HaHYy9cpY4Y0VLXc80oaPCwsjDtEnz+P9CZHgcMWTmSkbuD3CwdFR3GXCteuz0TlpE6ZIrnPbXXXAfcCBc7uZGFhymGMtAtEYoGbQTfKjeu4tgM4rpwwd23n/haAeNN5XQ6jHNkzU4+2DajU84W0IAr0b5FL4AqeupLFCsUpTkEN7qfTv9HbDcK1U4K57wF3XdSaaB9WSgzfckKT6PoQ3oBqWpwUATVdvjEWofuvNh/gVuLK2CuXy8COEXBteKVZf/p4/sMazpwweSxs0HOHs8escEmRKr/elXatmqy6MZJEgTTrk8VjzbpXfzcezowP6B6ujJtqEHZB0QE56JXKFKXpI7tq2ZCQlXBTt2PFpIeIP4EhCEH9URLD4c7VOCGnuHzOUOX8MMMj/q0VOFo+O3RMydH6I5KA66hBVNOGRaOVcwoEdFCmQYSS7nfgj/fErA+8R6MHtFGKAI7fg3PnY6lDv0l+SZ1KDBtiEAWePvs7NapXnTJlSEsXYq/SB6u20tP5clK/Tm+ZQZgo/w7Suc++OEYDu5gTuM5auFalWdWs9KJytlOS/4bkSm47MQ6Y6/j2xAdhHK8u34w3GHHlhLlre0L/FgCzQP8WuQSu2Fs51pG1W/bRyvW7KLxySdqx90sli61TuO8Bd13UsdGXdRzf8rXrt2j8rGXUvukr9ES2TA916ctv2d34rKRu+RKjUGlbnBQhMNPIe8+ZPbPHkfaMmkHjPbBOBxNMYO1F6KIxZx4KLa+1GKgtVcbFg0OKBCZ4MHgjRQOHEsjffrx5n0pd0F0EEWY/c0y3BxvafwscDd2GvKsdjREfg2+++5mwKOtsqrn4cZ/HZnLl3CinWzpwIeAGfdOHY7jNaz2fGA53rgxFqClCrpHaNHTCfIru1cLtePAuGgtuQpEm0qv9G1T46dxaOCRkpeiJC5SD7fcLsSp6pGn9cEJeO4hy8X4EQnElJWtFMo87Rm82xHYTriJy55MPx6pbeEcBj1Ctxn0s/6Z7k77GxdDd8+6cyfHrx0+1MP7dX7/H3Bt0OxzfHI4fO+aQKyfMXdvt+C3gcCEAQzu/RTvmxGob4CXhELga03mhOIPoWhAIQ5oUDnGdwn0PdPpI7HXwHs5fuokWr95Oj6ROScN6t6Dizz7lN7O5qVt+MzTIOxInRZBPMIbnzrv/zz//0J6DR1WIMDyXn6191xSNxMBmz7UBG+T1W/erlAmwgINFe/WmPeqQ0rJRLVMMEroC8kMbR9ZUefQV6nZSErgILwSLOcL9dQpSG+ARjqhWitI+9ihdunJNpa2AXyN71oxxTTR8pYpOc3F1WvccR3PHm3MRWGrUB5Xnfrie9hz8RvFfZMmYTt28xiz7RKU8WUn54ZjmzeGO01/8Z7nfkZ22JFRb2Ajt3HtEKfZULF1UOf5wwD9/8Yr2t5RQtjv6xaEAN3cI9ccGGb8D+D0DIaguI7+/x+AgXMWFP749pKdULV9c/R5D9vDT/V9TtfLPU5+OjbRMAxP7qvejnUgjsb41bBet5WzCjd2Y6Ytp66eHCc/B2YF0OnDU6JKoahlqoRK4Tdr0Gu+3yC4Lprms6osbdCuOby7Hj6fxI1z/yTw5uBCZPs9d27m/BVwuBAyQ+y2agmShgjcORy6BKyIRh/dpScd/PK2IxSHfitTgiMZ94lILzYbAfQ/M2k/sf8d72HfkHMqQNg1F9WxGN2//SZ0HTqPWb9VWSnr+KNzULX/YGAp9iJMiBGYZbMct36xFL1UpqUb7489nafUne2nzzs+pwJO5VIoC8ndTpUphikZiYLO3wwYjczBkvnA4BUmgP4qdh0PkLqd9/FGnG0SdMXi6eTM+b+UWDiHzLbuPtUyw5c1GQmeMnurgIAqnzKadB+OY4GtXLxP3jXDbD4Tn7fiOME7uzRsHKw4JLqffxPQscp7Bh4NoORCBwjmBtCtEhSB1xRcFh7Ypc1dRnlxZqVubBnHkquD6OfPbeYKMqy4Bb4vuYyi6ZwvK+cR/0X5wvPYZPluRweqU5Wt30pdHT1CDVyoruUbwUiA3/MWiBahciWfjmnAnidozeqZKE3Fw1MBpMT1mNd28/ReN9ANHzavNBjgNE46SS1eu04Aujd2mEHLJNnVwtVLHVzfouo5vLscPxhqfI8cx/lHTPqRB3ZrSE1kzanNkWMHOVV1v1nbubwGXCwHj4H6LXNy4Dkcugevhb36k4ZMXqt/hcYPbKzLz85eu0JpNe6ltkzqWh+fNexDo6yLSXTq3fF1xCjnK1es3qWP/KfTBu86/lZYB1XyAm7ql2Y1UM0FAnBQh8IrAKwk5nYux19SmFeoFcExUr/gC2SGXmhBs9vGnzVsbvGFv5m4OuYfDH0/+SjHLNikN9Q7N61GqlObOJbtf8/ib6nv371PslWsqzL9exH8Li7t+uRsJu8PF7cbHX+3B2fLtiTN0KfYqZcmUnp7On+shCUIrtlj9juy4ebNiX/y6dpHgcmwIxWehJgEiuBMnf6Ovjp9Qjj5EHiz+aBs9mTcnnfn1D2r/9qtU96XypvC4S2mwoliB21ujWpO7TpEa56pgU7x9xcSHIjFqNOxJO1ZOMh0DtwL4fIwFRMJQZ/FEhBmXHoFwlPtEh77+Xjl6MmdIp4iAT/5yTkUH+YsjyBc36FYc33Zw/OAW3FX5+ZdzlCdnNrpw6Qq1bfIKNX69BnfKXT7P5eXgGsXlQkD/3G+ROwauw5FL4Mq1H89z34NAXxeRcpnDBQcF1Gf8RQ7MTd2y4z2QNkSCNKTeAWyE1m/bT5t3HVK3RiDZqlHxRRViyy2JgWhO1wYue/PAMe+rcGrk7cNRgI0UDndKJu3fDSPwdMfE7gprK4dDbALq1CxLyL9FFEXX1pH01bGfaOOOA9S/c2PtqcRCgDDri5evKtbp6hVfVDdFOsWbTbWxXe5G4v3FG2j+sk9UiPgDhZYbijgOIeJI33Dw4XdoVtflcBKDk8OVHDCMzZghrVZY6Omzf1CngVMpWVhS5aC4GHuVQFw5dXhnbSlaV+Dofkd41o6bN533zV0dX5DgcuxJiGchldY0siYVfPJ/BKdr1MQYxSbfu8ObPpNuBMnosllDlHxviYi2tH3FJGr0zjBaPGMQZUj3OGGjDznXpTMHm0LStPNI9d2+9VoNSpYsTDkbtuz+QkVCxEzua/q8HRVwOIPKC/p3FHBagL8I/D8JXYAJUpHclf6j5qpLB0REOsp3J84oAltI7PqjcG/QuY5vX3L8OMiEEeET2XowbV7sG3Ll+LwcZ3+7QH/9/TdVLlvcLxE9wcCFkNAOR3xr2GMjpfhC7BXKkjE91a5RRqXS6hbuexDo66Kn/RnSsnfuO6JIkqUEPwISSRH8c+xyhMe+P6WIFjfv/oJyPZFZhbm/WbeaJTS8iUKw1IFGZW9s4LI3Y0OIBadSmWJxFoLfYMO2A17JNToa0T0cOhj8ERIM6TlwQODftZr001b32L3/K4qasEBtbOGguHj5mpJ9G9qjGVUoZS5fqTE1HqtwNxIqRLxXCydCWCgaIER80bT+puY5cuLNKrpzcpg9Z/XvOIRcuXpDpWEhHx6HTrOCw13TyHA1h46CeV2wYjPNm9jH7HFb/m7HzRvHkMRAgsux345nQfS2Y8VE1dTMBR8r+cqGr1alAaPn0oo5viH/RFqJwwEB2cIDG2Yqh9WsMd3jUj9w6HQXuWAc96/nLlK/UXNVqH3mjGkJYb1IyxjVrzX9L0dWOyAybWPTjoNUqnghpxQVqF59euBrJenq6+LOYanmdEx3FQnp6WBsJOsz2orfSX/9FnBv0LmOb19y/IBbAHskkAnDSQHibX8U9DdjwRrloPLHWhQMXAhch6Onb9E450e2vufyFYBjENw24E8YNmmB4tXB/2Ffhf/zplh9DwJ9XfS0P6tTo4zi+mjT2HrqjDfYyzMJi4A4KRIW/wTvHT9+SD/YsH2/RxZ/h6HcKAQ7Bsy1wU72ZuN4kJO7ffmDw4JZ4eTx4zAwom9LFQGDf88Z10M5KcIb9da6gYdtIAWaNrwz5cmVLc5UR+j+aj9swLgbCSzCW5dNeAhm44HNbA4S69/b951IM0d3NzUPOdiuQtHdYRO/wV9+O08gUP3ltwvqRtxYlswcZNo/KiT0zVugk+BqgWxSyZE7i5t//HvFnKEqjc/dwdWOPpGKMbp/GxV626BdlPrdWbRyC+3/4ji98NzTijQOt4nHd8Vod3f9xi1FYozIqLRpHtV+zo6K3PBqO2zw1Abm1hO/SO2m/Whkv1b0XKH8cc0gUq7bkOm0fPYQX5sXNO0vW7vTdCz37t2zfKFj2qiHCljby9ftTPvXTTdtBvu5pEndR9yYNmCo4A0XgpX2fVU3oR2OkO1eOmuwUk5zXCj99X9/U2SrwbReU93DFTZW3gNZF331dkm7/kZAnBT+RjzA++NGIdgxfK4NXPZmbAgnRXWgp/LmjBvOz6fPUdch79K6BSNNh8jN40e+IbS3Edq7bc9hlQt++Jsf1OZ+cnRH0/5RwV0euO4BV6sTD5W4GwlEEbwSXo5ei6ioNmWIRFi7+TP6aNMeLQnVxBpOiE1mw3ZDtW7AIW82ObqTU2oH0oa6Dp5Gq+cNN52itzoOp5erlqYihfI+xGPxTIG8ps+jQmK4eUtIElwtkHxcqXWv8VSpdFE6cepXggQsCP5w4Ee0A1Q/fFH2fXGcBo+bp8jhXq5aijq1fE11g/8/9v1JFQkBtYddqyZrdf/7+VjauucwXbx0hTJnSk/hlV5UnAz+KtzwarvsxO8YUmUeSZ3KUpOfHTpKvYbNomcL5KPsWTPQ1Ws36cixEzSibyu/RMbBWKTnQGUqf54nlO0gcUTaEbhLEK2XUAWqH1Bp8ZQu47DNF4TSdox75frdFFm7kmlTRau3pJZvvkztmr7q5NTqN3KO39J+TI30QwW7uZqsmOxKBhby5g3aDtWWIHXXn+57gOcDeV30tD9rFQAKfFbeF6nrGQFxUsgbYgkBbhSCpc7cVObawGVvxoaw78i59FyhfCqaAYz2uInDTVa5EkVMh8jN45+/bJNTH0mTJKFsWTJS1XLFtVU+kC8O8i/kgjvK9r1fKuK79yf2Nh1DQldwhIjjYAZekMtXbyiJOISIG1UC3NmZGMIJ42+I79+7T9/+eIaeKZCHBnZtYgrx7gNfU9T4GKpZuYR6D8FJgZQdSFDqvIdWiAlNjSFSaQbeKM3otC113COAeYekLtKE3nm7riJGBnHiV8d/8ukBFekQ4IIBN4+rgv6LPfOk6dTtP3ycBo2dRxFVSio5bKRXgCtnaM/mVLG071PPXBloNbzadJAmFRAdOG7mMpWCiagmzCVwwOEa86lTMOcHj3ynolEypkujFF+gdOKvAsc3nGKI+Fi7ZZ9ypIdXLkk79n7plzUFv32IDMNaQPcdrEREsVevU+Gn8lDHFnW1fhf9hZerfrgRPbhAwT5g9/6vlbMS6jYoDk4Nf40Nt/7f/3xWrQngiOISOluxm8vVxE33QJQqUk4RSYFLn7oRFWjLrkNUv05lbcJV7ntgBa/EWNe4P3Okwu7c95Xi9ujepn5iNFls8hEC4qTwEbDB2iw3CsEOXLg22MHe7LQhTJ+GShbT3xD6Ko/fipb7qbN/UOeBUyl5sjBFugjWciwGIF10d+iwY+4cbbjaCOCmKywsjO7evRvXlbu8T0cFR4g4HBXcDTmYo/cc+MaJ48HOMcdvK35oMRj9Id1YolhB7W4R0r19z+E4GdWalUpQtix6N9DgM5kyrBObLTshb8E9yfkaQURKVKiVjdsP+IVPAakIm7YfUGlDd/5xThvS2VBClWH0gDYqMs0RHg1+mQ79JnmMCHL8huB3Awdj2BFf4QO/bZuXeEdyaCW8mvtu4aY7bZrH4iRQsb7gwA0nEKIhAqEY04sQ5TVxaAcVUVOrSV/2DbLO+HF5MXZg27hIDsczkMWG4z11ypRaMusbdxxUpIdKMSlzevUNwYGmE4mhY6enOtyIHvBygC8DpKlDxs2nwgXyUI92DalltzG0fI5r5RKuzfGfh8R950HTKHWqFHF7i7v/EjrnNaSX2t2vo72E5mo6/sMpyp41kyIQHjN9CT2SKiVVLFOUihb+LxXLbOzc9yAY10VwFYFHDVHMUkIHAXFShM5c2zJSbhSCHUbYYQOHE4I7Bm4ev11a7sAAG4oL2IxlTEcF8v/PtnxWKxjh1hI3LiCXwqb29VoVtR7HAR2pM/H5FMqXNI9mcXSAgwjCIjdsP0i7931FzxbMS7PHJuyBFhKzT+f7L5VICwwvKs1auFYpokDlB7c+Spnm3xJZyzy0GFUT+hbcKOfrCQIrjh8voEzQR+BwhLICiFfvx+naEO09eFR9S/Verki+PByA9wDOgSIF81LSsKROWDRvGGGKjavwaLSHQ+8ni8eaPo8KSIFDRMnb9cMV+eb1m7fVQfPajVvUsXk9rTZcVbISXu11J0RUJbIr7VgxyekgDAyQ3+6tk4VjjzfP4rZ+eJ+Wio8ExHb4Hb1z5y5FNO6jzZXkTb+OZ+q1HESu+JSadR2trRKDiKRd+7+i5g0iKEtmRKc9WJcqlnqOWiZAmLnViB6HkwKYYH1fsHyz+m24dftP2rNmmim8dqTsYH+GFB8oxzkK3gc45edP8j2hM5eryRQkkwpwMCINLlWqB9LwmENESj32aGqvm7b6HgTruogIYH+8Q15PlDxoOwLipLAd0sTdYGTrIXTyzDmnGyfcECC8FBsKx02UuxtsO6IQuAhxbeByQriKAkiRIjllzpBWixiJm8dvh5Y7JEtx4+64dcc7gZvQCqWKqGiGhChWDia4ZVy+bqdK8QhL6nwwmjG6m6n5Xx79kTZuP6hCkRGKCrUWpL5wozFMOzZUwM3vZ58fVeHJxsNlzNJNihG81POFPZLlebot0Ykc8JR/PbCLeboJhuLtLbgVnHTreqP0o9t2Yq6H8GLwQji4ABy2Tpi9nHq0bUD5c+d46G92jseo9OFNuyAcRpoASDjhmEC6EiSesdGP6tVcq0lgsDZmxEO33Q5iYZ1G7HB66vTjqg4IT1fOjXLiokAeO9brTR/6hlfEW1vdPXf4mx9p+OSFat7GDW6vuHLOX7pCazbtpbZN/MvE7+1vAd7FtTEjnVJssN/A75yv+F3M5sFKRM+U91ZRl1avOzWJ1Mjl63dphcnbkbJjdDoaDan0Whe/yPlyuZrM5sPs7/g9hOwvHMN/XLispJgRpdm6US16s541BT1jX1beA+Nz3n4LZuP05d8RQWYsSIU9+sMpmhGzRklfSwkdBMRJETpzrUaKGydwKDSJrKGIFq9cu0kffLRV3aS2eMP81isY4OJyQjj9eN6/TyArnPr+KqpToyxVKVfcEkR25vFb0XJHCO4H7w5QKgBwWPQZMZsKPZVbsepH9dQ7GFgaqEZlbAYho+qQU/T0CG7NlswYRKlSPritsFqeqdxMHex6vfMmZcmUzurjttRv1WMc3bt/j/LlfkA05yibd35O4VVKKjJET3KwxtsSOHjg7Fi3dR+VL1GEtRmyMjg7bsGt9Be/Llfph9N3YnnWoe4R3x5/5aGDuHPuuJ5ewwGCRfAn5MyeWZF94pBbqUxRalo/3KOTztghDlfLZw9VIdaOAkb9Jp1GaJHQcp2eXg/+3wdxgw8Z67cbvKSi2hDdFrPsE7WehMq6zMXQjt+Cmm/0VJErxtQO/LZCHnzL0vFcE10+75A3ddc4DqdIG+jfubGl/r05nNqRshPeqBetmhvtFDlw7fotJd3qSpHL0qA0KnO5mjS68FjFSEoOcmGQUL8aXk45HNcvHOX2WTvfAzu+BS4OnOexrzAWEEJDjrpHuwZUpFA+TtPybIAhIE6KAJswrrmvNOtPH89/+MYJC4snHXZHv1xSIa79eJ5rgy84IUAi92rzAVoSpAjnj1m2SRE+dmhez+uDdnwsrWi5Y9PlCCOG06b5Gy9R6ecLq/xhf9wYxb/F/+efe3Tk6Akq/UJh6tuxkelrwj0YfX7kO9qw/YDioECKB7gcKpctxgrJNDU6XgWQamHjGz/XmXO4RIhvh36TadYYcwlTOxRO7LgFt4qbsT5X6YfTd2J5FulfBZ/830PmgEDOKDHsK3uXfrxDqTjASQtndxJD2hA2lv4oeJcdqRnZs2RUXA5Q+6le8QVq09j8Fp/r9OSOEQdhRHZt2nkwjl+mdvUy9FKVktymQ+Z5O34L+o9+T73D7ZrUUVF14DyauXAt3bx1m4b1bukTLOEYceUAwT4BRLLglkEapE6YO/dwakfKDn534Pg3KtRgXTr72wW//B5hkjhcTdxJhqNnw6LR6jeoYbuoODJZ457LVR92vgd2fAtcHOR5QcAOBMRJYQeKAdQGDkYgVnr8sUfirL5x6096rcVAv3i5EwNUXE4Id2PQlfmq23wg1alZln79/aJSQ+jaOlJFM2zcccDybYk7W8z00sECvnz2EDp99jwNGD03jqAOh87tyyf6fJpckUbmyZktjo3czICJs5cr5wLyXjmEZuCzgFoLHBaffX6Mihd5it4d0cWse1v+vnLDbnLF/cAlPGzSaaRiFzcrdiic2HELbmanp79zlX44fcuzDxDA71l8wkoHNh/HjHAJkycHmfEBK3JzRsk9RFRULlOMypZ4VmuauE5PrU6kkk8RsOO3AJcNkCyFw1+prCQLo1rVy6gbXKuysLqD7TJomlJngjMtefIw2rDtAH28eS/BcV+7RlmqVb20toQr93BqV8pOQqZOGXFHdGbqVCl1p8KWetETF6ioxt8vxFKtaqVVRBjwwDwjpctdsfM9sONbsAUMaUQQYCIgTgomgIH2ODaHIBSrF1FeLYyQK0P+L35ME4IYKiHw43JCwGYO8aaDwR5hnFBYmDu+F+HfSHXQJYrj4gYnwXsfrqe//r6jZDtBNgmnyahpH9L0kV25zfv8eeQI4wYZeexIUUliYH3csXKSV/0jPHbHviMqDSQQypbdh5zMhGPq2Pen6IeTZ1nh9/4i7rQDY67Sjx02SBvWEXA4yBB0gdQGSI5WLV9crUkgvfx0/9eKIwbcLFaLN2Hudjk9rdoq9e1DwO7fAn8dcMFNNG/JRlqxfpcikH6+yNMqmrBA/lyWwUkMh9OETp1CasmY6Ytp66eH1b4KfGsRVUspOV8OeaXuZGBvuHPvEeVwqli6qLpEgRP3/MUrHpW37HwP7P4WdMcu9QQBuxEQJ4XdiAZAe8YbJ6QcIO8Vof46hZtqodOHWR07bTByQiCHWYfjgEu8ifSKEX1bPrg96TWBQHKIxTS8UW+/sKA78EU4IhZQpeyQAGXzrkPKYXYh9gplyZheaWCDwFKnxCdWMj4Dng2dwulfp31f1+kZPdOpC0iYIry+Ub1qimvErHCJO9E+wqObRtZU6QY4HEZNjFGh/707vEkliupLqZrZ6u7vdij9eNu3PPcAAS4Jb4vuYyi6ZwvK+UTmOEgR3ddn+GyaMUrPYcoNc/eF01PeD/8iYNdvQUJFAcDJDJ6hDdv3K2We5wrnV+sh0hB1owHsOJxy18WETp3CupgpQ9o4OV84LabHrKabt/+ikQEg52vHe2DXt+DfL1h6EwQeRkCcFPJWCAL/ItBr2CwaN6idKR5c4k2Ql65cv4uqlnuetu05rLz8h7/5QRGZTo7uaNp/MFSArBtuOlq/VZuGTVqgbkzxfyCKxP/5uiR0/74en077XOJO9IGbOwfR6cwFH6ubwIavVlUpRCvmqNmhYAAAIABJREFUuA9t1bFPpw5X6UenD6njGQEuCa+RaM7Y09tdRtGCKf204OeGudvh9NQyVCr5DAE7fgsSOgrAAQ6U1vZ8/o3iKTlw+FtFLDtxaAdT7LiHUzvWxYROnQLn2PYVE51Uv3AJVKNhT/I2ytIUeB9V8PY9sONb8NGQpFlBwBIC4qSwBFfgV+bKFuLGCp72jOnTUsXSzyUIIFwbStdq79Lu23/+nyLLyp0rK3Vv04BeeO5pl/W4xJvzl21yajdpkiSULUtGqlquuApNDIXyUqPetHTWYBXF4Uh/QSRLZKvBWjKunt5jI37upDi5/SeGOeISX9pB3OlQlkBUBv69Ys5QFcVhZIlPDFiJDb5DgEvC27TzSJXa8dZrNShZsjAVGr1l9xe0ZM12ipncV8vwxBDmrmWoVErUCCR0FIArcLDf2b73S0VMa1a4h1M71sWETp3C/mzbsgnqt8RRsD5hvdv90RQzCBPt3628B4l2EGKYIGARAXFSWAQs0KvHly2EfObydTupW+v6WiRj8JInC0v64Mb0laoUWbsSIYf9+A+nqF5EBb/Aw7UBP/auStPOo2j+5L70/YkzFD1pIa1bMNJlPV8Rb/oFvETSiSvpylu3/6IGbYcqZmyzYnyPPdUtUcx1ygG3fzP7/PF3LvGlHcSd+BYhlXri1K8EmbBB3ZoqRnxISfpDJcYfOEsfnhHgkvD+eu4i9Rs1V3HMZM6Ylq5ev6nUDMCVo6sOwg1zd5dCmDFDWr+m4Mm7lrAIJHQUAHf03NQrO9bFhE6d2rTjIJUqXogypE8TBycIUT898DW9XK00F2J5XhAQBPyIgDgp/Ah2Yu0KjoruQ6fTqveiTU106Igjv69n1AyaPbaHOpS81XGE20O9aaMWK/jKBtwAdG/bQN3k4UbBIdEZ3zwu8WZC5/FbhNsn1eu83V8pUCCSAjccdSMq0JZdh6h+ncrU+PUaPunT2GhC9+/zAfqpg4uxV2nuh+tVBNA7b9elRx9JRTdu3qavjv+kUnekBD8CdpHwYh0BkTPS3kCGa6Vww9yNfeH3H44ShNr/fecONW8YYcUUqRvACCR0FAAXOm7qlR3rYmJIncI3/O2JM3Qp9iplyZSens6fyyn9g4uzPC8ICAL+QUCcFP7BOdH3Yqbh7BjAm+2HUcyUvkpVwUH6iL+503j2xcB9bQMWuBOnfqOn8+U0Nd9IvGla+d8KCZ3Hr2unL+sh8iZ71kwEqcAx05fQI6lSUsUyRalo4fxa3bbtPYHu3zev6i7dg9u/ec/+qbFxx0FFPqo2Y5nTq5uiiColWbKsVi3nKN1Y7ctdfXyzCHX2lUygXXYGaztWSXi//vZnLSh0fw+4Ye7ujMHvDBzxUkIDgYSOAuCizE29CoZ18fTZP6jTwKkq4hcOCjjSIec6dXhnyp0zKxfigHgeFwXJkyWjVKlSKHtBxokIYn+omwQEQGJkwCAgToqAmSr7DfVGqg2HIsjF1Y0oTzNi1lCXVpH0+ZHvCIohS2cOtt9IFy0mtA1Ib4lZtomgjNKheT0tRRDjMCSP/wEanMPt2i37aNWG3SrdKGO6NHTl2k0l4YYwzxeLFSD614HhLt3DLy+qjztBBMOu/V9R8wYRlCVzOroYe02Rj1Ys9Zzf5IS5SjdciLDxGjdzGW3Ytp/u3n0gNwdHDeTmENUhJXEi0KzLvyld0CC9T3To6++VukfmDOlUJM7JX84p+b6ElEPG4aZ519FaHDmJE2WxyioCiSEKwKrNxvrc1CtjW97sD/F8QqdOgeOmaWQ4Va/4Qtxwdu//ihas2EzzJvbhwBswzyLdclT/NpQ3Vzb648Jlat5tDP3f33eodaNa9Ga9agEzDjFUEBAnRYi9A1yptnf6TnJCLEnSJJQ9S0Z6u0E45Xoii1/QTGgb6jYfSHVqlqVff79IaR9/lLq2jlQyfBt3HKD+nRubYiB5/ETcw239NkNo4dT+TtJsIN4Ep8XaGNdcIqYTE2AVqjXorsZqPIzjRhm3gf7ig+Aq3XAh7zdyDqVN81ic3BwOuGDox2FjRADIzXHHHwzP9x81Vx0ooHbkKN+dOKMcbthouyuOwxBklFMkT0Ygx0NEjbHgJtVd2p6xHlLOjOXe/fuKdwnOriaRNYMBZhlDCCDATb3i7g/jQ5wQqVNVI7u5VPHAN7512YQQeAuIjIpJg8fNo2cK5KVXw8tRZOshtH7hqJDAQAYZHAiIkyI45lF7FFypNu2OgriiQ40Cslbt+kykueN7Ef5dq0k/+mTxWNORSx4/qVShehHllfyqA8/dB76meUs2askO4oC+dekESpoUV7EPCkIaa7zRg7Yvn2g6B8FQwcHNgkOao2BTiJDfLUvH+2WIXKUbrpFVIrvSjhWTnNJbzDhluH3K8/Yi4E4JpkX3Mdo3n5B1xu/q2/XDFfnm9Zu3VRrUtRu3qGPzeqYGwyFhLHB2gYAvdeqUwklhil7wVOCqnyUGJFylXuEWHSm6ZsWX+0N/pU7VazGQJkd3ckrtAO9a18HTaPW84WYQBMXf8ZsKAnK8Cw3bRalLCzhyddO6gwIEGURQICBOiqCYRv1BiFSbPlbuamIjM6JvS8qcMV0cLwecFOGNerOY4DduPxAy7NPcwy1u0HE4b/x6TXUouXz1Bn2waovKPR3ZrzV/kgOgBRCwgni0XZM6SjoXxIMzF66lm7du07DeLf0ygoRWukHq1Mq5UU5cFFCJwY3Rpg/H+AUD6YSHAELUR/ZrRc8V+o+P5rc/LlG3IdNp+ewhWo2D8G9tzIiHuFiMvElaDcWrhLQUcDBJCQ0EuOpniQGlG7f+pKvXbjhFFQ0ZH0NTh3Wixx97xKOJvtof+jN1CpcdUeNjqGblEmqPhr63fvoFRfdqTuVKFEkMU+RzG6InLlB7ot8vxFKtaqWpaf1wwm9ql0HT1HopRRAIFATESREoM2WTnVypNpvMCOhmcGu3cv0uFZ68bc9hFQ1w+JsfFCv95OiOpmM7dfYPWr52J125eoPuO8gTiGjvwaP0eq2KVO/liiqXMJgL93CLfFlwMuzYd4RiL18jSAVWLVucWr9VO44sKpjxw9ggqzZu5lL6ZOfnD/gYkoVRreplqEe7Bn4jkOQq3XDnCO/AnoPf0NsNXqIsGdPRhdirFLPsE6pSrji1eENUGbj4+uP5zw4dpV7DZtGzBfJR9qwZ6Oq1m3Tk2AmVrqOrEIPw5uWzhyoiXkdB+leTTiNoxRzvNuVwdjXuODxkbl/9MdeB2IcV9bOEHt/EOStoxbpd6rfQWJBemT/PE9S2yStUvcJ/XA3x7bVjf5gYUqdwIN++5zBduAR1j3RUs1IJypYlQ0JPj9/6B9/Xzr1HKHnyMMXtgwsdRBiev3glpHDwG+DSkc8QECeFz6BNnA3bKdWWOEfoe6vmL9vk1EnSJEkoW5aMVLVccUXcZ1Zw6/dy1VJq02AsE2Yvpx5tG1D+3Dke+ptZm4H294Q+3AYaXmb2gosidaqUZtV8+ndvlG64BmHjBanITTsPxm1Ia1cvQy9VKcltWp73IwJIrzh45DslQQoi3JLFC6roIN3y3uINtHL9AyJdcCQhzHnt5s8U10WbxnVMm4FilLHcu3+Pzv1xiVo1qqUcYFJCG4FACZMHH8PaBSMfUnFo0GYoLZ8z1HQS7dgfSuqUKcxSQRAQBDQRECeFJlDBUs1XUm3+xge3Gzs/O6LIzeApr1bhBcqRLZNfzODKOznUPeIbq7uR8Msg/dhJQhxu/Tg8n3XlScZRV7rRZ8ZJw4KAFwh4qyiArqAwhTUBjg5EVFQuU4zKlnhWy4rvf/rFqV5YWFLleH780dRaz0slQSAxIDBk/HyK6tn8IVMQcder/RumJvpyf+iv1Klg4BUxnSiTCq4UVhBNERYWRnfv3o17+sjW97hdyfOCgE8RECeFT+FNfI2DvXnzrkOUMX1aqlj6ucRnoIZFW3YfohFTPqDwyiUoa6b0dP7SFZVzOLRnc6pUuqhGC7wqXHknbIgLPvm/h4yAvneeIE/zcAx6yZrtVLJYobiIkY827qGfTv+mVGIwp1LMEYiTcVQqjvdVDuqpX36nSmUSVrrR3HL7auAG3V1BLu7OfUeoUb3q9nUoLdmOgN2KArYbKA0KAiGEAFIHsUeJvXJN7ROxV0mWLIyFgD9Tp+LzimBdXLd1H5UvUSQk5TdBKI6LIKgl5f1fdpVSLEUQCBQExEkRKDNlk52Qv0wWllT9aDV8paoKj/3x5K90/IdTVC+igk29+LYZqEFMG9FF/eA6ys+nz1GPqBm0Zr7v2ZtF3ok/v8DQwTi9dss+xfERXrkk7dj7Jb0/sTe/gxBt4ZvvfibgObBLk5BAYHrMGrfjrFOjjOLr0An3DwmwEukgvVUU8HRjahzqnHHO8qKuYIDyQDz1Updo6bSVSGEWswQBUwQQnYd9FAiZM2VISxcuXSFEjk6K6kjPFsxr+jwqJMbUKXA0dOg3mWaN6a41hmCshNRIqH7oKNAF4/hlTIGJgDgpAnPevLbaIVt48/Zf1DNqBs0e20OpArzVcQStWzDS63b9+aCR3MnYr7v/t9s2kXfiI2qUHYRk2MShHZTTqVaTvko6S4r3CLTuOU7J4koRBAIBAW8VBeJuTJMQffHVD7Tvi+NUv05lpfaDgxXUkooUzEctG9UyhQGOvVUbHnBagBPjyrWbtGL9LipVvBC9WKwAQpVUKVGsoGlbUkEQCFQEXms5iPp0aESlni8UNwR8VxNmLaNV70VrDSuxpk416TSSFk3rrzWGYKyEVJ5aTfrRjhWhIdEejHMYimMSJ0WIzTq83JBUg2a2UZ4NzostS8cHBBpIt5gyrJNTWgBC+tr3nUjLZulJ1nEGKvJOHPQePAv+jeF9WtLxH0+r2244y+7cuUsRjfuwZFz5lgV2CyAMbNl9LH30vjMRYGCPyr31ntI9jE+BAFFK4kTADkWB+m2G0MKp/Z3IYxHm3LbPBJo7rqfpwF09D3WQBm2H0tqYwHDemw5SKggCJgiEN+pFmxePe6hWIF0eIB3YWPA7cOz7U/TDybNavwXB8JIMn7LIaRiQZj9y9ASVfqEw9e3YKBiGKGMIEQTESREiE+0Y5sYdB2nr7i+obkR5mhGzhrq0iqTPj3ynSMeWzhwc0GggnA3kQL4uIu/ER/jwNz/S8MkLKXmyZDRucHvKnTOr4hZZs2kvtW1izsbPtyDwW3i12QDnzdj9+yqPGARpgZK6xZ0FT+kexrY7NKvL7Uqe9xECdigKIBpj69JxihjOWBq9M4wWzxhkanm1Bnh+AiVN+t/6gcNNjTd60PblcvNoCqBUCAoEOg2YSh1b1KMC+XPFjQepwJB1xjqtUzylYXVu+RpBHW3CkHd0mvKqTs/omU7PgQT3fzmyUqN61Sh92v8kir1qPEAeWrZ250MY5MmZjV4sWiBARiBmCgIPEBAnRYi9Ce/0neQ04iRJkyjJNhAW5noiS0CgkVhvT8Gg3bNdQ784SgJiosRInyIAkkxjwWYsa+YMKkpKiiAQKAjYoSjQb+Qcuv3n/1GLN19W69nVazdo+bpddPPWnzR6QBtTKPA8HNyNX6+p0kUQmffBqi2EG8iR/VqbPi8VBIFgQGDQ2Pdp/db99HyRp5UEMJzeXx37iaqWf96JPHO8B4eFkbgyPiaFnspNP548q9qX4nsEcHGH39dHUqfyfWfSgyDgAwTESeEDUKVJ3yJgvD29d++eIgHd8dkRApv/4489Ete5r25PoSQye9E6tZE1sq3FXr1OhZ/KQx1b1KVyJYr4FoQgaB0qM9gQXYi9QlkypqfaNcooxRYpgoAgIAhYQQDSpXM/XE879h2h2MtQJUhDlcoUU1FZqVOlNG3qoeczpKWqZYtT67dqU6pUKUyflwqCQDAgED9Vwt2YalZKvOv033fu0qbtB+iX3y7QnX/+cRpC9zb1g2GaTMcAxaRxM5fRhm37CWotyZMno5erlVaXaI8+Ig4LUwClQqJBQJwUiWYq/GcIlDB2H/g6TmKqStliTkoZ/rPEvp7OnrtAURMW0HsTfE8YiNDisQPbxslnOkYBLgAoU6ROmVI2tiZTCzmsrZ8eVoeAYZMWUJ+OjZREVoVSz6n/kyIICAKhgUDxGq0eGmiKFMkpc4a0tF5IdEPjJZBRBg0CntI9/KGO023IdEIEQZGCeSlpWFInXJs3jAganD0NBJFhadM8Ru2bvkpp0zyqiIRxsQbOqhF9H/69DQlQZJABiYA4KQJy2rw3euWG3TRj/hoKr1JSSUxdjL2qiAs7t3ydXns5MCRI3Y0eecX+yB+u13IQrXZBTNis62iKmdzX+8kJoSdfatSbls4arKTOICmLwwiI6iJbDZaDSQi9BzJUQcCIAA4XZ349T1PfX0V1apSlKuWKawP0+/lY2rrnMF28dIUyZ0pP4ZVeVOlPUgQBQcB/CBjTPfA9I+J03dZ9VL5EEXqzXjWfGwJi9UDnV+OCVCWyK+1YMckp9RhzgX3X5iUPE6Ny+5PnBQFfISBOCl8hm0jbDX+zFy2c1t9JGeP8xcvUrOsY2vThmERqtbNZ8AYbC/KGPzt0TN3E68pkBcRAg9jIivU606erp6oROpwUt27/pdj0RYI0iCdehiYIaCAALolXmw/QdjrvP3ycBo2dRxFVStKaT/aq0GYQRA/t2Zwqln5Oo0epIggIAr5CAGTjHfpNplljuvuqi7h2W/caHzIqHu7AfLlxH1o5N8qJiwL7q8jWQwJmn+/zF0U6CAgExEkRENNkn5GOA2H8FqEU8HHMCPs68mFLOOAaS7KwMMqdK5tSNSj8dG4f9ixN24VAnbf7K81yRFLUaNiD6kZUoC27DlH9OpWp8es17OpG2hEEBIEARQAhy6P6m5NeYnivtxqsCDKfypszzul57nwsdeg3iVbPGx6gCIjZgkDwINCk00i15vu6LP14B/10+jcViYX9hVHwDSofoVDAz7Pn4Df0doOXKEvGdHQh9qpSaEFkWos3QiPlJRTmORTGKE6KUJhlwxihQIEf6vq1Kyu5tTt37tKSNdvpxq0/yVdEkyEGsQxXAwHImmXPmokypHucxkxfQo+kSkkVyxSlooXzazwtVQQBQUAQ+A8BV5FZCG+OeKsPfbJ4rEAlCAgCfkIgPvkmpHyPfX+Kfjh51i8RDnWbD1ScFK5KoFzEcacK49+4/SBt2nmQLly6SlkypaPa1cvQS1VKcpuW5wUBvyIgTgq/wp3wndVvM4S+/fGMYvt97JHUdP3GLUIoXo5smRQngKM4QvET3mLXFsDmEyd/jfsBfjpfLieN+8Rqt9glCAgCgoAgYC8C4CPa+MEYJb8Lx0R0r+a0etMeSp4sGUX1am5vZ9KaICAIuEWgZ/RMp79BGhsXY43qVaP0aR8X5AQBQUAQ0EZAnBTaUAVHxfh8Du5GlZgXEyh5dB40jVIkT0ZQKsmVIwvdv3efpgzrRLlzhkY4X3C8jTIKQUAQEAT4CHy0cQ+VLF6QcmbPTCDOg3OiUpmi1LR+uFonpAgCgkBoI4AoYkhwJjHmfwQpJO8t3uB2ZK0a1QrSUcuwghEBcVIE46wG+ZggcVUvojxFVC0Vl38MSdV5SzbSgin9gnz0MjxBQBAQBAQBQUAQEAQEgfgIbP30CyW3CVURMqR9xF69ToWfykMdW9SlciWKBDVw02PWxI3PoZh08MtvlSSpPxRWghpcGZxfERAnhV/hls7sQKDy611p16rJqikjESjklST/2A6EpQ1BQBAQBAIHAbk5DJy5EksFAV8iULV+dxo7sC3lz/OEUzctu4+l9yf2ptQpU1KqVCl8aUKibBtEmivX71YRx1IEgUBBQJwUgTJTYmccAiBJ2/3RFBW2BycFyJA+3ryPNmzbrxYhKYKAICAICAKhg4DcHIbOXMtIBQFPCNRrOYhWvz/soSrNuo6mmMl9Qxq8UrXa08ENzpwhIQ2IDD7RIyBOikQ/RWJgfASGTVpIjSNrUt5c2ahC3U5KmaRksUKKLC1blgwCmCAgCAgCgkCIIyA3hyH+AsjwBQFBwAmBnZ8dUTKkUgSBQEFAnBSBMlNip0sELl2+Rmkff1SplUgRBAQBQUAQEAQcCMjNobwLgoAgEGoI/H3nLn32+VHFy3Gf/pNjjVm6ifp0bESlni8shMKh9lIE6HjFSRGgExfqZm/edYjWb91PF2KvUJaM6al2jTIUXrlEqMMi4xcEBAFBQBD4F4FTv/xOef+XXfAQBAQBQSBkEGjVYxzdu3+P8uV25uXYvPNzCq9SkiqVLkoVSj0XMnjIQAMXAXFSBO7chazlC1dspq2fHqbWb9WmYZMWKM8w/g8/uvg/KYKAICAICAKCgCAgCAgCgkCoIVCjYQ/asnT8Q3KrDdoMpeVzhoYaHDLeAEZAnBQBPHmhajpUPJbOGkzp0jwWp+7x1//9TZGtBtP6RaNDFRYZtyAgCAgCgoAgIAgIAoJACCOwcsNuiqxV6SEENm4/QC9XKx3CyMjQAw0BcVIE2oyJvQR1j09XT1VIOCRIb93+ixq0HUobxEkhb4ggIAgIAoKAICAICAKCQIgi8Pv5WNq65zBdvHSFMmdKT+GVXqSsmYVYPkRfh4AdtjgpAnbqQtfwOm/3p0XT+qtICoS11Y2oQFt2HaL6dSpT49drhC4wMnJBQBAQBAQBQUAQEAQEgZBFYP/h4zRo7DyKqFKS1nyyV0VPbN39BQ3t2ZwqlhYuipB9MQJw4OKkCMBJC3WTj/9wirJnzUQZ0j1OY6YvoUdSpaSKZYpS0cL5Qx0aGb8gIAgIAoKAICAICAKCQIgi8HqrwTR6QBt6Km/OuGjjc+djqUO/SbR63vAQRUWGHYgIiJMiEGctxG2+cfM2JU+WjFKlSqGQuHfvPt3+8y967NHUIY6MDF8QEAQEAUFAEBAEBAFBIFQRcJUSff/+fYp4qw99snhsqMIi4w5ABMRJEYCTFuomv9E+mkb1b0N5c2WjPy5cpubdxtD//X2HWjeqRW/Wqxbq8Mj4BQFBQBAQBAQBQUAQEARCEIFqDbrTxg/GUMoUyZVjIrpXc1q9aY+63Ivq1TwEEZEhByoC4qQI1JkLYburN+xB25ZNUAgMHjePnimQl14NL0eRrYfQ+oWjQhgZGbogIAgIAoKAICAICAKCQKgi8NHGPVSyeEHKmT0z4VIPzolKZYpS0/rhlCJ5slCFRcYdgAiIkyIAJy3UTYZnGCoeV67doIbtopTHGD+84W/2os1LxoU6PDJ+QUAQEAQEAUFAEBAEBAFBQBAQBAIWAXFSBOzUha7h0RMX0OWrN+j3C7FUq1pp5R3+7Y9L1GXQNFo5Nyp0gZGRCwKCgCAgCAgCgoAgIAiELALvLd7gduytGtUKWVxk4IGHgDgpAm/OQt7if+7do517j1Dy5GFUsXRRSpIkCYEU6PzFK5Qti+hAh/wLIgAIAoKAICAICAKCgCAQgghMj1kTN2rsja9cvUE7931FtWuUoe5t6ocgIjLkQEVAnBSBOnMhbjccFSdO/koXLl2lLJnS0dP5clHSpElCHBUZviAgCAgCgoAgIAgIAoKAIPAfAlev36SoCQtoUlQHgUUQCBgExEkRMFMlhjoQOHvuAnUeNE3xUPx8+hzlypGF7t+7T1OGdaLcObMKUIKAICAICAKCgCAgCAgCgoAg8C8CUMKbP6mP4CEIBAwC4qQImKkSQx0ItOk1gepFlKeIqqWodpO+tH7RaNp94Guat2QjLZjST4ASBAQBQUAQEAQEAUFAEBAEQg4BkMobCy7xjv5wimbErKFls4aEHB4y4MBFQJwUgTt3IWt55de70q5Vk9X4HU4K/PulRr3pk8VjQxYXGbggIAgIAoKAICAICAKCQOgiULFeZ6fBJwsLo//lyEo92jWgIoXyhS4wMvKAQ0CcFAE3ZWIwfoB3fzRFEWbCSfFxzAj6ePM+2rBtP70/sbcAJAgIAoKAICAICAKCgCAgCAgCgoAgEKAIiJMiQCculM0eNmkhNY6sSXlzZaMKdTvRjVt/UslihSi6V3NR9wjlF0PGLggIAoKAICAICAKCQAgj8PW3P7sdfYH8uej02T+o4JP/C2GEZOiBgoA4KQJlpsROlwhcunyN0j7+KCVPnkwQEgQEAUFAEBAEBAFBQBAQBEIWgWZdRrsde9c2kTR70VqaObp7yOIjAw8cBMRJEThzJZYKAoKAICAICAKCgCAgCAgCgoAgIAgIAkGNgDgpgnp6ZXCCgCAgCAgCgoAgIAgIAoKAIBAKCHhK9yhaOH8oQCBjDBIExEkRJBMpwxAEBAFBQBAQBAQBQUAQEAQEgdBFwJjucZ/u0+WrN+jUL79TpTJFafrIrqELjIw84BAQJ0XATZkYLAgIAoKAICAICAKCgCAgCAgCgoA5At989zOt3bKPBnZpYl5ZaggCiQQBcVIkkokQMwQBQUAQEAQEAUFAEBAEBAFBQBCwG4HWPcfR3PG97G5W2hMEfIaAOCl8Bq00LAgIAoKAICAICAKCgCAgCAgCgkDCIXDl2g1q2X0sffT+sIQzQnoWBCwiIE4Ki4BJdUFAEBAEBAFBQBAQBAQBQUAQEAQSGwKvNhvgZNK9+/cp9so16tX+DaoXUSGxmSv2CAJuERAnhbwcgoAgIAgIAoKAICAICAKCgCAgCAQ4AiDJNJawsKSUNXMGSpkieYCPTMwPNQTESRFqMy7jFQQEAUFAEBAEBAFBQBAQBASBoEDg1u2/aNXGTyl3zqxUqXTRoBiTDEIQECeFvAOCgCAgCAgCgoAgIAgIAoKAICAIBCACPaJmUJaM6ejs7xep2DNP0qXL1yi8cgmKnrSQfj13kXI9kZmie7WgZwvmDcDRicmhioA4KUJ15mXcgoAgIAgIAoKAICAICAKCgCAQ0Ai83mowrXovmm7e+pPK1ulA44e0p2GTFtLEqA5UomhB+v6nX2j45EUE2m9TAAAC1ElEQVT0wbvOfBUBPWgxPugRECdF0E+xDFAQEAQEAUFAEBAEBAFBQBAQBIIRgYbtomjZrCFqaKVrtacDG2ZSm14TaM64HnHDfbP9MFoyc1AwDl/GFKQIiJMiSCdWhiUICAKCgCAgCAgCgoAgIAgIAsGNAJwUCyb3o/t0n15q1Jt2fzSFRkz5gLJlTk8lihek49+fplHTPqRvdswLbiBkdEGFgDgpgmo6ZTCCgCAgCAgCgoAgIAgIAoKAIBAqCHz40TbatucwZUqfhu7c/YcmR3ekP//6P5rzwXo69v1JypMrO63b8pmKsJAiCAQKAuKkCJSZEjsFAUFAEBAEBAFBQBAQBAQBQUAQiIfAvkPH6PcLlymiakl6JHWqh/BZtHILNYmsKbgJAgGDgDgpAmaqxFBBQBAQBAQBQUAQEAQEAUFAEBAEBAFBILgRECdFcM+vjE4QEAQEAUFAEBAEBAFBQBAQBAQBQUAQCBgExEkRMFMlhgoCgoAgIAgIAoKAICAICAKCgCAgCAgCwY2AOCmCe35ldIKAICAICAKCgCAgCAgCgoAgIAgIAoJAwCAgToqAmSoxVBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAIbgTESRHc8yujEwQEAUFAEBAEBAFBQBAQBAQBQUAQEAQCBgFxUgTMVImhgoAgIAgIAoKAICAICAKCgCAgCAgCgkBwIyBOiuCeXxmdICAICAKCgCAgCAgCgoAgIAgIAoKAIBAwCIiTImCmSgwVBAQBQUAQEAQEAUFAEBAEBAFBQBAQBIIbAXFSBPf8yugEAUFAEBAEBAFBQBAQBAQBQUAQEAQEgYBBQJwUATNVYqggIAgIAoKAICAICAKCgCAgCAgCgoAgENwIiJMiuOdXRicICAKCgCAgCAgCgoAgIAgIAoKAICAIBAwC4qQImKkSQwUBQUAQEAQEAUFAEBAEBAFBQBAQBASB4Ebg/wGf3NOylI+jCwAAAABJRU5ErkJggg==",
"text/html": [
"<div>\n",
" \n",
" \n",
" <div id=\"a8685fe6-00f5-42af-bd68-9bf7597de794\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>\n",
" <script type=\"text/javascript\">\n",
" require([\"plotly\"], function(Plotly) {\n",
" window.PLOTLYENV=window.PLOTLYENV || {};\n",
" \n",
" if (document.getElementById(\"a8685fe6-00f5-42af-bd68-9bf7597de794\")) {\n",
" Plotly.newPlot(\n",
" 'a8685fe6-00f5-42af-bd68-9bf7597de794',\n",
" [{\"histfunc\": \"sum\", \"type\": \"histogram\", \"x\": [\"bread\", \"cheese\", \"rye bread\", \"cucumber\", \"prosciutto\", \"onion\", \"ham\", \"swiss cheese\", \"wheat bread\", \"tomato\", \"avocado\", \"salt\", \"bacon\", \"banana\", \"steak\", \"pork tenderloin\", \"apple\", \"egg\", \"country bread\", \"red apple\", \"bagel\", \"baguette\", \"butter\", \"leaf lettuce leaf\", \"mozzarella\", \"red onion\", \"olive oil\", \"sourdough bread\", \"mushroom\", \"chicken breast\", \"loaf\", \"eggplant\", \"potato\", \"sugar\", \"strawberry\", \"flour\", \"mozzarella cheese\", \"lettuce leaf\", \"black pepper\", \"lemon\", \"arugula\", \"goat cheese\", \"roast beef\", \"cucumbers\", \"nectarine\", \"green tomato\", \"green apple\", \"radish\", \"turkey breast\", \"peach\", \"carrot\", \"salami\", \"sandwich bread\", \"pork loin roast\", \"duck breast\", \"clove garlic\", \"orange\", \"beef tenderloin\", \"zucchini\", \"muenster cheese\", \"basil leaf\", \"pepperoni\", \"pepper jack cheese\", \"dill pickle\", \"loaf bread\", \"lettuce\", \"avocados\", \"jack pepper cheese\", \"pepper\", \"red pepper\", \"sirloin steak\", \"garlic clove\", \"salmon\", \"green onion\", \"turkey bacon\", \"iceberg lettuce\", \"dough\", \"mushrooms\", \"cream cheese\", \"peaches\", \"beef brisket\", \"sausage\", \"water\", \"garlic\", \"fennel bulb\", \"strawberries\", \"flour tortilla\", \"roll\", \"sponge cake\", \"almond\", \"black olive\", \"bananas\", \"green onions\", \"kielbasa\", \"milk\", \"vanilla extract\", \"pear\", \"tofu\", \"lime\", \"olive\", \"roast red pepper\", \"cinnamon\", \"croissant\", \"parsley\", \"pork loin\", \"lemon juice\", \"pineapple\", \"sauce\", \"vidalia onion\", \"shiitake mushroom\", \"hamburger bun\", \"ground black pepper\", \"red bell pepper\", \"salad green\", \"grapefruit\", \"basil\", \"eggs\", \"apples\", \"lamb\", \"mango\", \"jack cheese\", \"chicken breast half\", \"pork\", \"red\", \"scallion\", \"kosher salt\", \"cream\", \"plum tomato\", \"orange juice\", \"grape tomato\", \"squash\", \"bread flour\", \"vegetable oil\", \"ground cinnamon\", \"pastry\", \"fontina cheese\", \"leek\", \"mint\", \"onions\", \"rosemary\", \"crust\", \"artichoke\", \"russet potato\", \"pancetta\", \"ginger\", \"spinach\", \"shallot\", \"green olive\", \"daikon radish\", \"pita bread\", \"yeast\", \"cherry tomato\", \"cilantro\", \"turkey\", \"chicken breast fillet\", \"thyme\", \"lime zest\", \"orange marmalade\", \"potatoes\", \"celery\", \"soy sauce\", \"dijon mustard\", \"beet\", \"cornmeal\", \"walnut\", \"cake\", \"mustard\", \"green\", \"asparagus\", \"lime juice\", \"fig\", \"portobello mushroom\", \"honey\", \"oregano\", \"green pepper\", \"canola oil\", \"bread dough\", \"cabbage\", \"dill\", \"cake flour\", \"ground pepper\", \"baking soda\", \"mint leaf\", \"chorizo sausage\", \"chicken breasts\", \"cremini mushroom\", \"bread crumb\", \"monterey jack cheese\", \"roast\", \"tortilla\", \"hot\", \"pie crust\", \"dress\", \"tomatoes\", \"red potato\", \"sprout\", \"caster sugar\", \"vanilla\", \"pistachio\", \"pecan\", \"polenta\", \"tuna\", \"veal\", \"apricot\", \"ketchup\", \"tablespoon butter\", \"sage leaf\", \"nutmeg\", \"vinegar\", \"lemongrass\", \"okra\", \"hazelnut\", \"walnuts\", \"salmon fillet\", \"ricotta cheese\", \"raisin\", \"almonds\", \"chive\", \"cocoa\", \"leaf\", \"red wine vinegar\", \"beef\", \"chicken\", \"tart apple\", \"red wine\", \"spaghetti sauce\", \"breadcrumb\", \"shrimp\", \"chocolate\", \"buttermilk\", \"ground beef\", \"carrots\", \"peanut butter\", \"ear corn\", \"wheat flour\", \"extra-virgin olive oil\", \"dressing\", \"sauerkraut\", \"lemon zest\", \"salsa\", \"biscuit\", \"meat\", \"vanilla ice cream\", \"egg yolk\", \"soda\", \"chocolate chip\", \"cranberry\", \"tomato sauce\", \"date\", \"rice\", \"ground nutmeg\", \"topping\", \"orange zest\", \"water chestnut\", \"scallop\", \"butternut squash\", \"almond extract\", \"maraschino cherry\", \"sesame seed\", \"broccoli\", \"season\", \"coconut\", \"spinach leaf\", \"salad dress\", \"ground cumin\", \"paprika\", \"margarine\", \"garlic salt\", \"beef stock\", \"pecans\", \"fruit\", \"caraway seed\", \"cherry\", \"salt butter\", \"green bean\", \"wine\", \"flaked coconut\", \"cayenne pepper\", \"ice water\", \"gingerroot\", \"thyme leaf\", \"sage\", \"pie shell\", \"nut\", \"black peppercorn\", \"mushroom soup\", \"flat-leaf parsley\", \"cracker\", \"molasses\", \"fish sauce\", \"applesauce\", \"ground ginger\", \"chocolate chips\", \"apple juice\", \"raspberry\", \"allspice\", \"vanilla bean\", \"marshmallow\", \"vanilla pudding\", \"maple syrup\", \"vegetable shortening\", \"oil\", \"parsley leaf\", \"caper\", \"juice\", \"apple cider vinegar\", \"clove\", \"bean\", \"rhubarb\", \"celery rib\", \"seasoning\", \"oat\", \"syrup\", \"hot sauce\", \"chili\", \"corn syrup\", \"sesame oil\", \"chicken broth\", \"pumpkin\", \"rice vinegar\", \"ground allspice\", \"blueberry\", \"corn\", \"graham cracker crumb\", \"pea\", \"ground clove\", \"rum\", \"hot water\", \"noodle\", \"chicken stock\", \"roll oat\", \"peanut oil\", \"all-purpose flour\", \"curry\", \"cumin\"], \"y\": [0.0026991014202120615, 0.001356918157056977, 0.0010230530800835727, 0.0009864878008613367, 0.0009750900945432229, 0.0009337388395964211, 0.0009293989795348573, 0.0008922834507078139, 0.000891097487936137, 0.0008526644502733097, 0.0007997064053646741, 0.0006825453955595456, 0.0006653779498966055, 0.0006633597290002522, 0.000643543547317847, 0.0006346993178090827, 0.0006184111109180587, 0.00059515470257716, 0.0005769508149430262, 0.0005288715803644406, 0.0005288715803644406, 0.0005002021108564692, 0.0004961442552933756, 0.0004807923457858551, 0.000471176498870138, 0.0004640487106741826, 0.0004469391088428624, 0.0004394392217441701, 0.00043615116940057486, 0.0004270914510020739, 0.0004256277503220044, 0.0004223692671666697, 0.00040779167123968174, 0.00039871500407682385, 0.00036070725401525164, 0.00034379445104975107, 0.00032988838540387496, 0.00032756786923167136, 0.0003264758312129011, 0.0003254120511948922, 0.00028618592011062804, 0.00028052713854604186, 0.00027817271434753043, 0.00027702797066708794, 0.00027702797066708794, 0.00026702467204414417, 0.0002644357901822203, 0.0002590537863114831, 0.00025904228630321233, 0.0002284169717099185, 0.00022837171801378382, 0.00022537141208711956, 0.0002251515375387419, 0.0002225890489749329, 0.00021166589857157767, 0.00020796653487445473, 0.0002069712993692224, 0.00020182097305662057, 0.00020108908238464565, 0.00020033014407743962, 0.0001919309811560277, 0.000191718441618343, 0.00018711918322476524, 0.00017643755808655233, 0.00017288065199533938, 0.0001659072179120204, 0.00016159964955580133, 0.0001593213851721755, 0.00015891464412228648, 0.000157041778808351, 0.00015372702634995104, 0.0001482973742051404, 0.00014596510138528655, 0.00014401430204836847, 0.00014278075723337514, 0.00014233983921291762, 0.00014213204382720532, 0.00013913109164624747, 0.00013900458976801936, 0.00013869009974591974, 0.00013851398533354397, 0.00013490855741430833, 0.00013392129962157457, 0.00013178592250433734, 0.00013093919204380734, 0.00012821129220956135, 0.00012607702433077025, 0.00012529022212843217, 0.00012377845497891165, 0.0001231256276620217, 0.00012277590076925578, 0.00012019808644646377, 0.00011875981874539497, 0.00011872627314303769, 0.00011733100949699372, 0.00011702946155774838, 0.00011660428507392303, 0.0001139307198826702, 0.0001133959445266555, 0.00011116586029730754, 0.00010980257626731015, 0.0001089166135641452, 0.0001081782778018174, 0.00010722398434118088, 0.00010586589556732351, 0.00010577181259803372, 0.00010364639218436824, 0.00010010832128968938, 9.926035525901526e-05, 9.924927709436579e-05, 9.884711056452613e-05, 9.812088689507247e-05, 9.777501608985665e-05, 9.751281379318751e-05, 9.673084099739227e-05, 9.400967655030685e-05, 9.390922795913682e-05, 8.97000645122864e-05, 8.9242198753755e-05, 8.740949324888083e-05, 8.570373976312965e-05, 8.430844835991614e-05, 8.411837733897647e-05, 8.218194747734965e-05, 8.073947264508822e-05, 7.988999729326114e-05, 7.873944797277623e-05, 7.626957715523816e-05, 7.531994973146555e-05, 7.512380402903986e-05, 7.481294690891968e-05, 7.481294690891968e-05, 7.444111190067952e-05, 7.392614495238599e-05, 7.387412551122345e-05, 7.32017175115401e-05, 7.22005636873524e-05, 7.075672960186933e-05, 7.066484275763878e-05, 7.029127862366302e-05, 7.020916264396248e-05, 6.96169912450107e-05, 6.839658854566519e-05, 6.798534301270576e-05, 6.588987769103033e-05, 6.426167514606491e-05, 6.315836725703211e-05, 6.202588277695382e-05, 6.0859790605804444e-05, 6.06372436103056e-05, 5.979184009061232e-05, 5.928651536613458e-05, 5.869356672708587e-05, 5.7647070846363944e-05, 5.75998750891965e-05, 5.7550706883608434e-05, 5.7221060871696836e-05, 5.576053241066722e-05, 5.563860704825323e-05, 5.525381196297451e-05, 5.391713827215534e-05, 5.386758853158367e-05, 5.319404676779673e-05, 5.2821452605944505e-05, 5.05349842252332e-05, 4.9831109522744495e-05, 4.979208220648872e-05, 4.97579186865218e-05, 4.957865477561258e-05, 4.7913607294112025e-05, 4.774765365045734e-05, 4.646583744507593e-05, 4.636470118652424e-05, 4.610294246338551e-05, 4.6011566062353706e-05, 4.5637286998409044e-05, 4.4873952273346476e-05, 4.448418607157647e-05, 4.4130032884451455e-05, 4.336345846997565e-05, 4.2960851839853025e-05, 4.2693092978348585e-05, 4.1988334241136665e-05, 4.145607471316812e-05, 4.102244369688989e-05, 4.001970970703071e-05, 3.9844669540264234e-05, 3.973490461040125e-05, 3.852706876827051e-05, 3.8023446954306185e-05, 3.799810474759177e-05, 3.758670958799686e-05, 3.756190201451993e-05, 3.7102240382561416e-05, 3.705306344856323e-05, 3.7047355411581296e-05, 3.6855690859925174e-05, 3.6336747204134286e-05, 3.591103323462251e-05, 3.556832859480756e-05, 3.556049048076513e-05, 3.49667160571531e-05, 3.479100391616238e-05, 3.3823182465167715e-05, 3.379919190722164e-05, 3.369821857690674e-05, 3.329869249965639e-05, 3.282136746972551e-05, 3.222300642721341e-05, 3.1964765846202455e-05, 3.190511419039776e-05, 3.172905716297225e-05, 3.147004445143779e-05, 3.129224759013023e-05, 3.1046680624736835e-05, 3.101831986594717e-05, 3.0908079371947826e-05, 3.0423343411569062e-05, 2.9996183530559106e-05, 2.9929710014193426e-05, 2.9503166673222928e-05, 2.9493250975611438e-05, 2.90364165240509e-05, 2.9019252299217682e-05, 2.8656497430945008e-05, 2.7953043359642738e-05, 2.7535311078563513e-05, 2.7368832150585577e-05, 2.7306231951454005e-05, 2.6444405405890966e-05, 2.6040093199121067e-05, 2.59717734452546e-05, 2.5660016238617193e-05, 2.5632147141264828e-05, 2.557406094605612e-05, 2.552691684380708e-05, 2.5238990819994998e-05, 2.5084818041001138e-05, 2.4510323082369818e-05, 2.3940143010854303e-05, 2.362032163889811e-05, 2.314926109339302e-05, 2.246037235787936e-05, 2.2160414167858366e-05, 2.2005202767504745e-05, 2.1529353576612213e-05, 2.146734648290872e-05, 2.1439361760652395e-05, 2.1184654134454203e-05, 2.091856708083254e-05, 2.0834334984053718e-05, 2.0813521462591127e-05, 2.052475328861708e-05, 2.048446261974946e-05, 2.037255702482437e-05, 2.024388824361495e-05, 2.0154888259654192e-05, 1.9624177379014492e-05, 1.9456524784499532e-05, 1.873723891560572e-05, 1.8544847623168696e-05, 1.848064059754978e-05, 1.780712391799463e-05, 1.761144123757711e-05, 1.750771941923411e-05, 1.74355262000078e-05, 1.7244677372896323e-05, 1.716489977668991e-05, 1.7060373560143247e-05, 1.7060373560143247e-05, 1.6694178673119966e-05, 1.6522073738345537e-05, 1.627552673126556e-05, 1.6133971335095808e-05, 1.602641152619517e-05, 1.5585038369253423e-05, 1.550943050922113e-05, 1.5454856193591917e-05, 1.525190093199243e-05, 1.507493625933386e-05, 1.501920636558401e-05, 1.481894216463252e-05, 1.4501109624908498e-05, 1.4135294966104138e-05, 1.4064970115526506e-05, 1.3829532642829092e-05, 1.3312556942812006e-05, 1.3282162977189147e-05, 1.278100418473444e-05, 1.245576025351956e-05, 1.2448593533005454e-05, 1.21290032724454e-05, 1.185349682692171e-05, 1.1800380089267439e-05, 1.1775928469247755e-05, 1.169120955939705e-05, 1.1657142004506185e-05, 1.1209730466409737e-05, 1.1209224246645176e-05, 1.103993293991977e-05, 1.0834757088131948e-05, 1.0665757410847391e-05, 1.0660584163766189e-05, 1.055823481671297e-05, 1.0295339310189616e-05, 1.0287384516071788e-05, 1.0220748348593014e-05, 9.989754553052527e-06, 9.974944933316496e-06, 9.940432465614726e-06, 9.76847940644277e-06, 9.630895189450619e-06, 9.528341736504306e-06, 9.06166259191409e-06, 8.823529941388352e-06, 8.624077951315786e-06, 8.47792145782268e-06, 8.405460590661804e-06, 8.183097051361137e-06, 8.026583402101086e-06, 7.947523748645965e-06, 7.63664534189939e-06, 7.385788801221008e-06, 7.009141426516683e-06, 6.640965452715123e-06, 6.6407782567107054e-06, 6.464434901322422e-06, 6.418160066177686e-06, 6.326215076129672e-06, 5.330569100094366e-06, 5.312622605368565e-06, 4.896052401077954e-06, 4.845194182338074e-06, 4.39883207489346e-06, 4.137686617360488e-06]}],\n",
" {\"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}},\n",
" {\"responsive\": true}\n",
" ).then(function(){\n",
" \n",
"var gd = document.getElementById('a8685fe6-00f5-42af-bd68-9bf7597de794');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" })\n",
" };\n",
" });\n",
" </script>\n",
" </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"keys, values = forward_normalized_score(\"slice\", EA.m_base_act)\n",
"data = go.Histogram(x=keys, y=values, histfunc=\"sum\")\n",
"iplot([data])"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"linkText": "Export to plot.ly",
"plotlyServerURL": "https://plot.ly",
"showLink": false
},
"data": [
{
"histfunc": "sum",
"type": "histogram",
"x": [
"sugar",
"butter",
"salt",
"onion",
"olive oil",
"water",
"flour",
"egg",
"milk",
"garlic clove",
"clove garlic",
"garlic",
"vegetable oil",
"black pepper",
"tomato",
"cream",
"bacon",
"carrot",
"cheese",
"oil",
"chicken",
"vanilla extract",
"chicken breast",
"vanilla",
"kosher salt",
"cream cheese",
"rice",
"celery",
"ginger",
"soy sauce",
"potatoes",
"potato",
"parsley",
"pepper",
"sauce",
"honey",
"chocolate",
"cinnamon",
"coconut",
"oregano",
"eggs",
"almond",
"lemon juice",
"apple",
"corn syrup",
"red onion",
"red bell pepper",
"baking soda",
"ground cinnamon",
"egg yolk",
"sesame oil",
"nut",
"curry",
"vinegar"
],
"y": [
143,
137,
130,
99,
98,
75,
71,
65,
59,
59,
51,
39,
33,
27,
25,
24,
21,
21,
21,
21,
18,
18,
17,
17,
17,
16,
16,
16,
15,
15,
15,
15,
15,
15,
15,
14,
13,
12,
12,
12,
12,
11,
11,
11,
11,
10,
10,
10,
10,
10,
10,
10,
10,
10
]
}
],
"layout": {
"autosize": true,
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"xaxis": {
"autorange": false,
"range": [
-0.5,
16.57861570247934
],
"type": "category"
},
"yaxis": {
"autorange": true,
"range": [
0,
150.52631578947367
],
"type": "linear"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAv0AAAHCCAYAAAB8AnbxAAAgAElEQVR4XuzdC5xVU//H8d9cVKJ7Ccld4S8VUkKlhOQWqfQUKlRK6H7V/d4zlSgVKkK6uCRCT4kQj0uoiBSeiO6li2Rmzv/1W9OZzkwze/Y566xp5sxnv17/17/H7L3O3u+9zjnfs/a6xAUCgYCwIYAAAggggAACCCCAQMwKxBH6Y/becmEIIIAAAggggAACCBgBQj8VAQEEEEAAAQQQQACBGBcg9Mf4DebyEEAAAQQQQAABBBAg9FMHEEAAAQQQQAABBBCIcQFCf4zfYC4PAQQQQAABBBBAAAFCP3UAAQQQQAABBBBAAIEYFyD0x/gN5vIQQAABBBBAAAEEECD0UwcQQAABBBBAAAEEEIhxAUJ/jN9gLg8BBBBAAAEEEEAAAUI/dQABBBBAAAEEEEAAgRgXIPTH+A3m8hBAAAEEEEAAAQQQIPRTBxBAAAEEEEAAAQQQiHEBQn+M32AuDwEEEEAAAQQQQAABQj91AAEEEEAAAQQQQACBGBcg9Mf4DebyEEAAAQQQQAABBBAg9FMHEEAAAQQQQAABBBCIcQFCf4zfYC4PAQQQQAABBBBAAAFCP3UAAQQQQAABBBBAAIEYFyD0x/gN5vIQQAABBBBAAAEEECD0UwcQQAABBBBAAAEEEIhxAUJ/jN9gLg8BBBBAAAEEEEAAAUI/dQABBBBAAAEEEEAAgRgXIPTH+A3m8hBAAAEEEEAAAQQQIPRTBxBAAAEEEEAAAQQQiHEBQn+M32AuDwEEEEAAAQQQQAABQj91AAEEEEAAAQQQQACBGBcg9Mf4DebyEEAAAQQQQAABBBAg9FMHEEAAAQQQQAABBBCIcQFCf4zfYC4PAQQQQAABBBBAAAFCP3UAAQQQQAABBBBAAIEYFyD0x/gN5vIQQAABBBBAAAEEECD0UwcQQAABBBBAAAEEEIhxAUJ/jN9gLg8BBBBAAAEEEEAAAUI/dQABBBBAAAEEEEAAgRgXIPTH+A3m8hBAAAEEEEAAAQQQIPRTBxBAAAEEEEAAAQQQiHEBQn+M32AuDwEEEEAAAQQQQAABQj91AAEEEEAAAQQQQACBGBcg9Mf4DebyEEAAAQQQQAABBBAg9FMHEEAAAQQQQAABBBCIcQFCf4zfYC4PAQQQQAABBBBAAAFCP3UAAQQQQAABBBBAAIEYFyD0x/gN5vIQQAABBBBAAAEEECD0UwcQQAABBBBAAAEEEIhxAUJ/jN9gLg8BBBBAAAEEEEAAAUI/dQABBBBAAAEEEEAAgRgXIPTH+A3m8hBAAAEEEEAAAQQQIPRTBxBAAAEEEEAAAQQQiHEBQn+M32AuDwEEEEAAAQQQQAABQj91AAEEEEAAAQQQQACBGBcg9Mf4DebyEEAAAQQQQAABBBAg9FMHEEAAAQQQQAABBBCIcQFCf4zfYC4PAQQQQAABBBBAAAFCP3UAAQQQQAABBBBAAIEYFyD0x/gN5vIQQAABBBBAAAEEECD0UwcQQAABBBBAAAEEEIhxAUJ/jN9gLg8BBBBAAAEEEEAAAUI/dQABBBBAAAEEEEAAgRgXIPTH+A3m8hBAAAEEEEAAAQQQIPRTBxBAAAEEEEAAAQQQiHEBQn+M32AuDwEEEEAAAQQQQAABQj91AAEEEEAAAQQQQACBGBcg9Mf4DebyEEAAAQQQQAABBBAg9FMHEEAAAQQQQAABBBCIcQFCf4zfYC4PAQQQQAABBBBAAAFCP3UAAQQQQAABBBBAAIEYFyD0x/gN5vIQQAABBBBAAAEEECD0UwcQQAABBBBAAAEEEIhxAUJ/jN9gLg8BBBBAAAEEEEAAAUI/dQABBBBAAAEEEEAAgRgXIPTH+A3m8hBAAAEEEEAAAQQQIPRTBxBAAAEEEEAAAQQQiHEBQn+M32AuDwEEEEAAAQQQQAABQj91AAEEEEAAAQQQQACBGBcg9Mf4DebyEEAAAQQQQAABBBAg9FMHEEAAAQQQQAABBBCIcQFCf4zfYC4PAQQQQAABBBBAAAFCP3UAAQQQQAABBBBAAIEYFyD0x/gN5vIQQAABBBBAAAEEECD0UwcQQAABBBBAAAEEEIhxAUJ/jN9gLg8BBBBAAAEEEEAAAUI/dQABBBBAAAEEEEAAgRgXIPTH+A3m8hBAAAEEEEAAAQQQIPRTBxBAAAEEEEAAAQQQiHEBQn+M32AuDwEEEEAAAQQQQAABQj91AAEEEEAAAQQQQACBGBcg9Mf4DebyEEAAAQQQQAABBBAg9FMHEEAAAQQQQAABBBCIcQFCf4zfYC4PAQQQQAABBBBAAAFCP3UAAQQQQAABBBBAAIEYFyD0x/gN5vIQQAABBBBAAAEEECD0UwcQQAABBBBAAAEEEIhxAUJ/jN9gLg8BBBBAAAEEEEAAAUI/dQABBBBAAAEEEEAAgRgXIPTH+A3m8hBAAAEEEEAAAQQQKHCh/8BfB6XXsGnmzk8a3iW9Bjz1/EKZ+txCSUhIMP+t8jkV5YUn+5t/79qzV/qMmC6rv9sopUoWk6E920r1i86j9iCAAAIIIIAAAgggkC8EClTo/2PrTuncb6JU+79zZcu2XRlC/4jHZ8ulF1eW6+vVOOrG9R4+TSqcXFY6tWkia77fKN0GTZY3nhspRQoXyhc3mZNEAAEEEEAAAQQQKNgCBSr07z9wUH7YuEkOHUqW2QuWZAj93YdMkbtuayCXXlwpQ41ITQ1I7Vs6yfL5E6RIkbSQ36X/43JH4zpS94pqBbv2cPUIIIAAAggggAAC+UKgQIX+4B1Z+cVaefGVpRlC/4O9x8tPm/6Q5ORkKV+utHRpd7tcXv0C2bJ9l7TuPFzenTMu/YYmTZsnJYufKG1bNMoXN5mTRAABBBBAAAEEECjYAoT+w/f/4N+HJDEhQRIS4uXzr7+XroOelHnTBsvfh/4xXYLemDUivaZMnvmapAYC0rlNE9m846+CXYO4egQQQAABBBBAIBcETi1zfC68Suy+BKE/m3vbY+hTUrdWVdPa36LDYFk2f3z6nqOffEnKli4h7e66kdAfu+8NrgwBBBBAAAEE8pAAod/uZhD6s/HTlv4bG9SSBlddIlfe2lneeXGsFDuxqNm7Y+8kaXpTPfM3WvrtKiBHI4AAAggggAACfgQI/X6Ust+H0H/Y5v2VX8lVl1cxU3Z+9vU6M63nq88MlRLFT5CBY2dImdLFpXOb283sPZ37TpTFL4yRE4oWIfTb1T+ORgABBBBAAAEEfAkQ+n0xZbsTof8wzcMDJsmXa9bLcYmJZnrOng+2kCoXnG3+unffAekzcrqsWr3etPY/9ujdUrvGReZvtPTbVUCORgABBBBAAAEE/AgQ+v0o0dJvp+RxNKHfGS0FI4AAAggggAAC6QKEfrvKUCBb+u3IMh5N6I+mJmUhgAACCCCAAAJZCxD67WoGod/Oj+49ln4cjgACCCCAAAII+BEg9PtRyn4fQr+dH6Hf0o/DEUAAAQQQQAABPwKEfj9KhH47JY+j6d7jjJaCEUAAAQQQQACBdAFCv11loKXfzo+Wfks/DkcAAQQQQAABBPwIEPr9KNHSb6eUQ0v/xyvjcyy/WtVUKZq2thcbAggggAACCCCAQJgChP4wwTLtTku/nZ9p6U+amCi793gX1Lt7MqHf0prDEUAAAQQQQKDgChD67e49od/Oj9Bv6cfhCCCAAAIIIICAHwFCvx+l7Pch9Nv5Efot/TgcAQQQQAABBBDwI0Do96NE6LdT8jia7j3OaCkYAQQQQAABBBBIFyD021UGWvrt/Gjpt/TjcAQQQAABBBBAwI8Aod+PEi39dkq09Dvzo2AEEEAAAQQQQMCPAKHfjxKh306J0O/Mj4IRQAABBBBAAAE/AoR+P0qEfjslQr8zPwpGAAEEEEAAAQT8CBD6/SgR+u2Uohj6f/lfnK9zOeP0gK/92AkBBBBAAAEEECgIAoR+u7vMQF47v7AH8s6ZmyDfrvMO/q1apkilcwn9lreGwxFAAAEEEEAghgQI/XY3k9Bv50fot/TjcAQQQAABBBBAwI8Aod+PUvb7EPrt/Aj9ln4cjgACCCCAAAII+BEg9PtRIvTbKXkcHe7iXHTvcXYrKBgBBBBAAAEEYliA0G93c2npt/Ojpd/Sj8MRQAABBBBAAAE/AoR+P0q09Nsp0dLvzI+CEUAAAQQQQAABPwKEfj9KhH47JUK/Mz8KRgABBBBAAAEE/AgQ+v0oEfrtlAj9zvwoGAEEEEAAAQQQ8CNA6PejROi3UyL0O/OjYAQQQAABBBBAwI8Aod+PEqHfTonQ78yPghFAAAEEEEAAAT8ChH4/SoR+O6VjFPpXfBQvycnepx4fJ1K3Tqqz66NgBBBAAAEEEEAgLwgQ+u3uAlN22vk5nbJTQ/+SpfGeZ9igXiqh3/IecjgCCCCAAAII5H0BQr/dPSL02/kR+i39OBwBBBBAAAEEEPAjQOj3o5T9PoR+Oz9Cv6UfhyOAAAIIIIAAAn4ECP1+lAj9dkoeR2/e8ZckTUyU3Xu8X6J392QpWlRkztwE+XZdnOfOrVqmSKVzA0L3Hme3jYIRQAABBBBAIJ8JEPrtbhgt/XZ+tPRb+nE4AggggAACCCDgR4DQ70eJln47JVr6nflRMAIIIIAAAggg4EeA0O9HidBvp0Tod+ZHwQgggAACCCCAgB8BQr8fJUK/nRKh35kfBSOAAAIIIIAAAn4ECP1+lAj9dkqEfmd+FIwAAggggAACCPgRIPT7USL02ykR+p35UTACCCCAAAIIIOBHgNDvR4nQb6dE6HfmR8EIIIAAAggggIAfAUK/HyVCv50Sod+ZHwUjgAACCCCAAAJ+BAj9fpQI/XZKhH5nfhSMAAIIIIAAAgj4ESD0+1Ei9NspEfqd+VEwAggggAACCCDgR4DQ70eJ0G+nROh35kfBCCCAAAIIIICAHwFCvx8lQr+dEqHfmR8FI4AAAggggAACfgQI/X6UCP12SoR+Z34UjAACCCCAAAII+BEg9PtRIvTbKRH6nflRMAIIIIAAAggg4EeA0O9HidBvp0Tod+ZHwQgggAACCCCAgB8BQr8fJUK/nRKh35kfBSOAAAIIIIAAAn4ECP1+lAj9dkqEfmd+FIwAAggggAACCPgRIPT7USL02ykR+p35UTACCCCAAAIIIOBHgNDvR4nQb6dE6HfmR8EIIIAAAggggIAfAUK/HyVCv50Sod+ZHwUjgAACCCCAAAJ+BAj9fpQI/XZKhH5nfhSMAAIIIIAAAgj4ESD0+1Ei9NspEfqd+VEwAggggAACCCDgR4DQ70eJ0G+nROh35kfBCCCAAAIIIICAHwFCvx8lQr+dEqHfmR8FI4AAAggggAACfgQI/X6UCP12SoR+Z34UjAACCCCAAAII+BEg9PtRIvTbKRH6nflRMAIIIIAAAggg4EeA0O9HidBvp0Tod+ZHwQgggAACCCCAgB8BQr8fJUK/nRKh35kfBSOAAAIIIIAAAn4ECP1+lAj9dkqEfmd+FIwAAggggAACCPgRIPT7USL02ykR+p35UTACCCCAAAIIIOBHgNDvR4nQb6dE6HfmR8EIIIAAAggggIAfAUK/HyVCv50Sod+ZHwUjgAACCCCAAAJ+BAj9fpQI/XZKhH5nfhSMAAIIIIAAAgj4ESD0+1Ei9NspEfqd+VEwAggggAACCCDgR4DQ70eJ0G+nROh35kfBCCCAAAIIIICAHwFCvx8lQr+dEqHfmR8FI4AAAggggAACfgQI/X6UCP12SoR+Z34UjAACCCCAAAII+BEg9PtRIvSnCxz466D0GjbN/O9Jw7uk//dde/ZKnxHTZfV3G6VUyWIytGdbqX7ReebvXn/bvOMvSZqYKLv3eN+I3t2TpWhRkTlzE+TbdXGeO7dqmSKVzg3Iio/iZcnSeM99G9RLlbp1Uu1qAUcjgAACCCCAAAJ5XIDQb3eD4gKBQMCuiPxz9B9bd0rnfhOl2v+dK1u27coQ+nsPnyYVTi4rndo0kTXfb5RugybLG8+NlCKFC4nX3wj9+ef+c6YIIIAAAgggkH8FCP12965Ahf79Bw7KDxs3yaFDyTJ7wZL00J+aGpDat3SS5fMnSJEihYxol/6Pyx2N68jVNatm+7e6V1QTQr9dBeRoBBBAAAEEEEDAjwCh349S9vsUqNAfZFj5xVp58ZWl6aF/y/Zd0rrzcHl3zrh0qaRp86Rk8ROl8bW1sv1b2xaNCP129Y+jEUAAAQQQQAABXwKEfl9M2e5E6BeRX37dYrr9vDFrRDrU5JmvSWogIDc3rJ3t3zq3aSLaOar34GTZscu7l9T44cfJiSeITHk2Rb78xrsPfpcHEqXKhXGyeGmqvPJGiucdvvXGBLnpOu9+/3ZVhKMRQAABBBBAAIFjLxDnPSTy2J9gHj8DQr+IbN2+W1p0GCzL5o9Pv12jn3xJypYuYUJ/dn9rd9eN8vvOv+TfE3IeyNunR9pA3pd0IO933rW2tQ7kPS8gKz6Ml3dzGsh7TarUYyBvHn+bcXoIIIAAAgggYCtwSunjbYso0McT+kVExzJfeWtneefFsVLsxKKmQnTsnSRNb6on9a+snu3fGlx1SZ7p3rNhY5zMXZDgWZnPOD0gLZt7Pzko0O8GLh4BBBBAAAEE8qwA3Xvsbg2h/7DfwLEzpEzp4tK5ze1m9p7OfSfK4hfGyAlFi4jX3/LKQF4N/bNme4f+8yunhf6Df4us/TbnLkGXVmcqULu3F0cjgAACCCCAQLQECP12koT+w3579x2QPiOny6rV601r/2OP3i21a1xk/ur1t/wa+keMTvSsOcWKifR4NNmudnE0AggggAACCCAQJQFCvx1kgQz9dmQZjyb0R1OTshBAAAEEEEAAgawFCP12NYPQb+eXp/r0h9O9h5Z+yxvP4QgggAACCCCQqwKEfjtuQr+dH6Hf0o/DEUAAAQQQQAABPwKEfj9K2e9D6LfzI/Rb+nE4AggggAACCCDgR4DQ70eJ0G+n5HE0ffqd0VIwAggggAACCCCQLkDot6sMtPTb+dHSb+nH4QgggAACCCCAgB8BQr8fJVr67ZRo6XfmR8EIIIAAAggggIAfAUK/HyVCv50Sod+ZHwUjgAACCCCAAAJ+BAj9fpQI/XZKhH5nfhSMAAIIIIAAAgj4ESD0+1Ei9NspEfqd+VEwAggggAACCCDgR4DQ70eJ0G+nROh35kfBCCCAAAIIIICAHwFCvx8lQr+dEqHfmR8FI4AAAggggAACfgQI/X6UCP12SoR+Z34UjAACCCCAAAII+BEg9PtRIvTbKRH6nflRMAIIIIAAAggg4EeA0O9HidBvp0Tod+ZHwQgggAACCCCAgB8BQr8fJUK/nRKh35kfBSOAAAIIIIAAAn4ECP1+lAj9dkqEfmd+FIwAAggggAACCPgRIPT7USL02ykR+p35UTACCCCAAAIIIOBHgNDvR4nQb6dE6HfmR8EIIIAAAggggIAfAUK/HyVCv50Sod+ZHwUjgAACCCCAAAJ+BAj9fpQI/XZKhH5nfhSMAAIIIIAAAgj4ESD0+1Ei9NspEfqd+VEwAggggAACCCDgR4DQ70eJ0G+nROh35kfBCCCAAAIIIICAHwFCvx8lQr+dEqHfmR8FI4AAAggggAACfgQI/X6UCP12SoR+Z34UjAACCCCAAAII+BEg9PtRIvTbKRH6nflRMAIIIIAAAggg4EeA0O9HidBvp0Tod+ZHwQgggAACCCCAgB8BQr8fJUK/nRKh35kfBSOAAAIIIIAAAn4ECP1+lAj9dkqEfmd+FIwAAggggAACCPgRIPT7USL02ykR+p35UTACCCCAAAIIIOBHgNDvR4nQb6dE6HfmR8EIIIAAAggggIAfAUK/HyVCv50Sod+ZHwUjgAACCCCAAAJ+BAj9fpQI/XZKhH5nfhSMAAIIIIAAAgj4ESD0+1Ei9NspFfDQv3evP75ixfztx14IIIAAAggggEC4AoT+cMUy7h8XCAQCdkUU7KM37/hLkiYmyu493g69uydL0aIic+YmyLfr4jx3btUyRSqdG5AVH8XLkqXxnvs2qJcqdeukyoaNcTJrdoLnvudXDkjL5ily8G+REaMTPffVAN/j0WSzz4QnEmTnTu9z1n0J/QX7vcDVI4AAAggg4FKA0G+nS+i38xNCfxogod+yInE4AggggAACCHgKEPrtKgih386P0H/Yj9BvWZE4HAEEEEAAAQQI/Q7rAKHfEpeWflr6LasQhyOAAAIIIICADwFa+n0geexC6Lfzo6Wfln7LGsThCCCAAAIIIOBHgNDvRyn7fQj9dn6EfkK/ZQ3icAQQQAABBBDwI0Do96NE6LdT8jia7j1pOME+/XMXJMj3P3jP9HPn7SmiMwmxIYAAAggggAACfgUI/X6lst6Pln47P1r6M7X0a+hfs9Y79Ou0oYR+y4rH4QgggAACCBQwAUK/3Q0n9Nv5EfoJ/ZY1iMMRQAABBBBAwI8Aod+PUvb7EPrt/Aj9hH7LGsThCCCAAAIIIOBHgNDvR4nQb6fkcTR9+tNwQvv0073HWXWjYAQQQAABBAqsAKHf7tbT0m/nR0s/Lf2WNYjDEUAAAQQQQMCPAKHfjxIt/XZKtPTLzp3eg3Np6XdWxSgYAQQQQAABBESE0G9XDWjpt/OjpZ+WfssaxOEIIIAAAggg4EeA0O9HiZZ+OyVa+mnpd1aDKBgBBBBAAAEE/AgQ+v0oEfrtlAj9TkL/xyvjZV0OC3mdcUZAGtRLdXb/KBgBBBBAAAEE8ocAod/uPtG9x86P7j2H/SLp06+h/+0l8Z53oG6dVEK/ZR3lcAQQQAABBGJBgNBvdxcJ/XZ+hH5Cv2UN4nAEEEAAAQQQ8CNA6PejlP0+hH47P0I/od+yBnE4AggggAACCPgRIPT7USL02yl5HM3iXGk4dO9xVsUoGAEEEEAAAQSYstO6DtDSb0lI6Cf0W1YhDkcAAQQQQAABHwK09PtA8tiF0G/nR/eew3609FtWJA5HAAEEEEAAAU8BQr9dBSH02/kR+gn9ljWIwxFAAAEEEEDAjwCh349S9vsQ+u38CP2EfssaxOEIIIAAAggg4EeA0O9HidBvp+RxNH3603Bcd+/5+Zc4+WF9XI738bprU+XvQyLvf+A9/78WpPuyIYAAAggggED+ECD0290nWvrt/Gjpz6WWfg39z85K8Lxblc4NSKuWKSb0Dx+V6Llv0aIivbsnW959DkcAAQQQQACB3BIg9NtJE/rt/Aj9hH7LGsThCCCAAAIIIOBHgNDvRyn7fQj9dn6EfkK/ZQ3icAQQQAABBBDwI0Do96NE6LdT8jiaPv1pOLnRp5/uPc6qMQUjgAACCCCQ5wUI/Xa3iJZ+Oz9a+mnpt6xBHI4AAggggAACfgQI/X6UaOm3U6KlX3bu9J45h5Z+Z1WMghFAAAEEEEBARAj9dtWAln47P1r6aem3rEEcjgACCCCAAAJ+BAj9fpRo6bdToqWfln5nNYiCEUAAAQQQQMCPAKHfjxKhP0elp55fKFOfWygJCWlzwVc+p6K88GR/8+9de/ZKnxHTZfV3G6VUyWIytGdbqX7ReeZvDORNo6V7T45VjB0QQAABBBBAwEKA0G+BJyJ07znsN+Lx2XLpxZXl+no1jhLtPXyaVDi5rHRq00TWfL9Rug2aLG88N1KKFC5E6D+sRei3eyNyNAIIIIAAAgh4CxD67WoIof+wX/chU+Su2xrIpRdXyiCamhqQ2rd0kuXzJ0iRIoXM37r0f1zuaFxH6l5RjdBP6Ld7B3I0AggggAACCPgSIPT7Ysp2J0L/YZoHe4+Xnzb9IcnJyVK+XGnp0u52ubz6BbJl+y5p3Xm4vDtnXDpi0rR5UrL4idK2RSNCfwyE/g0bvWcm0kssUyYgJUvYvdk4GgEEEEAAAQQiFyD0R26nRxL6D/sd/PuQJCYkSEJCvHz+9ffSddCTMm/aYPn70D/Sud9EeWPWiHTpyTNfk9RAQDq3aSLb9/wto5LiZfdu7xsxoHeqnFBUZPacOFnzrXfIbNMqIJUrBWT5ijh5e4n3vtc1CEj9ugFZvyFOnpnlve+F5wfk7pYBOXhQZNCIeM8TLl5MpG+PVLPP2AnxsmOn9/XpvnrMi3Pj5Js13ueh56DnsuLjOHnzbe999dr0Gjf+HCfTnvXeV83U7u+/RQYO974+vRd6T3RLmhQvW7d5X1/vrqlSsqTdm42jEUAAAQQQQCBygbIlCkd+MEcS+rOrAz2GPiV1a1U1rf0tOgyWZfPHp+86+smXpGzpEtLurhvlUHKq9B+WIjt3edemMUMS5MQTRKbNTJWvVgc8d+50X7z83wVx8u6ygLz2ZlowzW67+YZ4adQwTtb9EJDHp3rve/FFcdKhTbz8dVCkW78Uz3JLFBcZOTBtUPPAkSmybbv39em+eswzz6fKF195X5+eg57L0vcDsmCh9znrtek1rt8QkPGTvfdVM7U7+LdI177e16f3Qu+JbkPGpMgfW7yvb1j/BCldik8MBBBAAAEEEDhWAoUSvRv0jtV55ZfXpaU/mzulLf03NqglDa66RK68tbO88+JYKXZiUbN3x95J0vSmeuZvzN6TBpifB/JOmpwg27Z7P0Xo+nAy3Xvyy6ca54kAAgggEJMCdO+xu62E/sN+76/8Sq66vIqZsvOzr9dJr2HT5NVnhkqJ4ifIwLEzpEzp4tK5ze1m9p7OfSfK4hfGyAlFixD6D/sR+u3eiByNAAIIIIAAAt4ChH67GkLoP+z38IBJ8uWa9XJcYqKZnrPngy2kygVnm7/u3XdA+oycLqtWrzet/Y89erfUrnGR+Rst/bT0270FORoBBBBAAAEE/AgQ+v0oZb8Pod/Oj9BPS79lDeJwBBBAAAEEEPAjQOj3o0Tot1PyOJqWflr6nVUuCkYAAQQQQACBdAFCv11loKXfzo+Wflr6LWsQhyOAAAIIIICAHwFCvx8lWvrtlGjpl507vWe3YSCvsypGwa+MUEsAACAASURBVAgggAACCCAgIoR+u2pAS7+dHy39tPRb1iAORwABBBBAAAE/AoR+P0q09Nsp0dJPSz/z9Dt7D1EwAggggAACfgQI/X6UCP12SoR+Qj+h39l7iIIRQAABBBDwI0Do96NE6LdTIvQT+gn9zt5DFIwAAggggIAfAUK/HyVCv50SoZ/QT+h39h6iYAQQQAABBPwIEPr9KBH67ZQI/YR+Qr+z9xAFI4AAAggg4EeA0O9HidBvp0ToJ/QT+p29hygYAQQQQAABPwKEfj9KhH47JUI/oZ/Q7+w9RMEIIIAAAgj4ESD0+1Ei9NspEfoJ/YR+Z+8hCkYAAQQQQMCPAKHfjxKh306J0E/oPxz6F7yaIL9u9q5ODRukyoXnB5zVOQpGAAEEEECgIAoQ+u3uOivy2vmxIu9hvx6PJkuxYiJzFyTImrVxnqotm6fI+ZUD8vHKeHl7SbznvnXrpEqDeqny8y9x8uysBM99K50bkFYtU+TvQyLDRyV67lu0qEjv7slmn0mTE2Tbdu9z7hoS+r9e7b1vi2YphH7L9xWHI4AAAgggkFmA0G9XJwj9dn6EfkL/UTWI0G/5puJwBBBAAAEEshAg9NtVC0K/nR+hn9BP6Ld8D3E4AggggAACfgQI/X6Ust+H0G/nR+gn9BP6Ld9DHI4AAggggIAfAUK/HyVCv52Sx9Gbd/wlSRMTZfce75fQ/uPaj3zO3AT5dp13n3Dtl67901d8FC9Llnr3edf+7trvfcPGOJk127vPu/aj1/70B/8WGTHau8+79s/Xfvq6TXgigYG89Ol39h6iYAQQQAABBPwIEPr9KBH67ZQI/YR+Qr+z9xAFI4AAAggg4EeA0O9HidBvp0ToJ/QT+p29hygYAQQQQAABPwKEfj9KhH47JUI/oZ/Q7+w9RMEIIIAAAgj4ESD0+1Ei9NspEfoJ/RGE/pWfxMvm373HbxQvHhBdzIsNAQQQQAABBLwFCP12NYTZe+z8mL3nsB+Lcx2pSMF5+jX0L37XeyD21VemEvot34McjgACCCBQMAQI/Xb3mdBv50foJ/QfVYMI/ZZvKg5HAAEEEEAgCwFCv121IPTb+RH6Cf2Efsv3EIcjgAACCCDgR4DQ70cp+30I/XZ+hH5CP6Hf8j3E4QgggAACCPgRIPT7USL02yl5HM3iXGk49Ok/Ukno3uPs7UbBCCCAAAIFWIDQb3fzaem386Oln5Z+Wvot30McjgACCCCAgB8BQr8fJVr67ZRo6WfKzgin7GT2HmdvPQpGAAEEEChgAoR+uxtOS7+dHy39tPTT0m/5HuJwBBBAAAEE/AgQ+v0o0dJvp0RLPy39jlv6/7cpLseFvLQa1rqchbycvZkpGAEEEEAgTwsQ+u1uDy39dn609NPSH5WWfg39T89I8KyN55wdkHtapVjWWA5HAAEEEEAgfwoQ+u3uG6Hfzo/QT+gn9Fu+hzgcAQQQQAABPwKEfj9K2e9D6LfzI/QT+nM99Ccni6xZG5djza1WNZDjPuyAAAIIIIBAfhEg9NvdKUK/nR+hn9B/TEL/kBGJnjW3SGGRvr2SLWs3hyOAAAIIIJB3BAj9dveC0G/nR+gn9Of50P/k1AQJ5NDo37JZqpQuzZMBy48DDkcAAQQQcChA6LfDJfTb+RH6Cf35IvRv2eLdHeiRzimEfsvPAg5HAAEEEHArQOi38yX02/kR+gn9hH7L9xCHI4AAAggg4EeA0O9HKft9CP12foR+Qj+h3/I9xOEIIIAAAgj4ESD0+1Ei9NspeRy9ecdfkjQxUXbv8X6J3t2TpWhRkTlzE+Tbdd5dLVq1TJFK5wZkxUfxsmRpvGfBDeqlSt06qbJhY5zMmu09z/v5lQPSsnmKHPxbZMRo74GgxYqJ9Hg0bSDohCcSWJwrFxbn8jtPv87eE85AXu3T77d7j64X4Gc7vWJAwtn3t9/iJMXHumJabmpA5Ndfcz4P3ZcNAQQQQKDgCBD67e41Lf12frT009IfUy39ry6Ml1Vfef/QbHZHilz0fwH59LN4eXOx9761r0iVGxqmiob+qc94/yg984yAtL0nxYT+QUO9f5QWLiTSrzezE1l+fHE4AgggkK8ECP12t4vQb+dH6Cf0E/o93kOEfssPGA5HAAEEEEgXIPTbVQZCv50foZ/QT+gn9Ft+inA4AggggIAfAUK/H6Xs9yH02/kR+gn9hH5Cv+WnCIcjgAACCPgRIPT7USL02yl5HM1A3jQcHfSrg3/nLkiQNWu9B2HqYGIdVPzxynh5e4l3n3AdpKyDlX/+JU6eneXdJ1wHP+sg6L8PiQwf5d0nXAdV6+Bq3SZNTpBt273PuWsBGcibH/v06znntF1VOyDlygZk4aL4HAcUn31WQKpWYZBwTqb8HQEEEMhtAUK/nTgt/XZ+tPTT0k9L/zFu6Z8yLUF+/8P7R9tDD6akh/7Pv/T+kXBHkxQT+vft9/fhcOIJEta+WqqfsrVcNgQQQACBIwKEfrvaQOi38yP0E/oJ/TEa+vXHgT4Z8NquqJUqja5LNT869MeH16ZTjN7XJsXsorMT6SxF2W2JiSKP9WV2IsuPZw5HAIEYEyD0291QQr+dH6Gf0E/oJ/Q7Df05dYFT/uoXB6R8+UCO3eV03/LlRKpXSzVTs27ZlvMHoE65yoYAAgjkBQFCv91dIPTb+RH6Cf2EfkK/09Cv6xvoOgdeW6f2KSb067oJun6C19bkltT00J/TeIiaNVKlcaPUHMdBBF8v4fBL+1mILZx9tXzd30+5rvfV8v2cR1ycSHzOa8xZfgNxOAIFS4DQb3e/Cf12foR+Qj+hn9Af86FfV3TWlZ29tgoVAtK+XVr3JV0xWleOzm7TMDxoQNoOuhJ1Tqs7d3wgRU45OSCL342XlZ94/6i55aZUueySVPl6dZwseNX7nHU/3V8H8uuAfq9NX1/PQzedKEAnDPDa9PoI/ZZfsByOQCYBQr9dlSD02/kR+gn9hH5CP6FfRAj9Gd8IwdD/wYqcZ5c65+yA8WNDAAFvAUK/XQ0h9Nv5EfoJ/YR+Qj+hn9B/1LsgGPp1qmGdcthr0yckhH7LL2MOLxAChH6720zot/Mj9BP6Cf2EfkI/oT8qoV8HbX/xhfeTgWsbpIqOtWBDoCAKEPrt7jqh386P0E/oJ/QT+gn9hP6ohX5dtNBr04HVGvp1EcT9B3IeKaz77twZJ+s3+NtXXzunweC6z6XVU0WnlvWzr46H0Clr2RCwFSD02wkS+u38CP2EfkI/oZ/QT+g/JqFfV0D32nRqVp2tSUP/hCe899XZn3QWKN1GjE6Ug397fznqOhIa+mfNTpANG71/UOj6FIR+y7DB4UaA0G9XEQj9dn6EfkI/oZ/QT+gn9BP6PT4HgqF/ydJ4Wb0mhwXvaqaKLnr37bo4efsd7x8qZ5weEF1Be/cekWdnJnp+mx93XEB0ZW7dkiZ676v7dOqYLIULWQYEDo+6AKHfjpTQb+dH6Cf0E/oJ/YR+Qj+h32foX/GRd+jXFa6DoX/OXO/QX7XKkdCfU5AvV/ZI6B81LlEOHPD+8u/XOy30f7Mm525RxYuJnHlGwNe++qoXXxSQdd/HyaF/cg4guu/evSI/5TAYPFiu/n8/51zpvIAUKexv3xOKiugMU37KDZ7HDz/GycGD/q5P78WPOTwtCpZL6M/Z1GsPQr+dH6Gf0E/oJ/QT+gn9hP4YDf2zX0wQDbBeW9t7UkzoX7o8Xt7/wPtHja5wXfuKVBP6X3zZ+0fNRf8XkGZ3pJjQP3a899OJ0qUD8kjntCcZuq8e47X17ZVsQr+eg56L13ZPqxQT+vXa9Bq9toYNUuXqK1ONmdp5bReeH5AWzVLMDzD9Iea1lSwh0vXhZLr3WGZWQr8l4OYdf5lHhfp40Wvr3T1ZihYV0ZYLfWzptbVqmSKVzg2Itojo41CvrUG9VKlbJ9X0qdS+lV7b+ZUD0rJ5iumrqX02vbZixUR6PJq2eI72BdU+oV6b7qvHaB9THWDmtek56LnogDWdrcJr02vTa9Qp73TqO69NzdROF83RxXO8Nr0Xek9000V5dHEer00/bPRDRxf70UV/vDb9ENMPM11ESBcT8tr0w1E/JHVxIl2kyGvTD1398NVFj3TxI69NP8z1Q103XVRJF1fy2vTLQr80dIXWVV95n7N+CemXkQ7g0xVgvTb9ctMvOV1RVleW9dr0S1O/PFMDIoOGel+ftsBpS5xuU6YlmNDtteljfW3pW7goXj7/0vuctbuAtiDqfrq/16Ytktoyqa+v5+G1aZ9m7eagm16fXmd2m/aV1j7TuuWFFXlZnEvM4mCRLM4VzpSd+nkYzkDe/NanX7/P8ltLP6FfzPcOod/z4z3f/JHQb3mrCP1pgIT+IxWJ0H/EgtB/xILQf8SiIK3IS+gX82NX6z+hX0wjCC39aZ8FtPRbBtAIDif0R4AWegihn9CfuQoR+gn9WX2sEPoJ/dl93QQX56KlX8yTs7zUp5+Wflr6LWNinjqc0G95Owj9hH5Cf/ZvIlr6aenPqnbQ0p9RhdB/xIPQf8SCPv1HLOjTbxlWDx9O6Ld0JPQT+gn9hH769ItUqBAQDa+66ZgTHXuS3UboJ/RnVzcI/YT+rOoGod8yrBL6owNI6Cf0E/oJ/YR+Qn/md8GgAcmiP27o00+f/tC6QZ/+Ixr06Y9ODg2nFFr6w9HKYl9CP6Gf0E/oJ/QT+gn92X8OMJD3iA2hn9BvGTutDif0W/EJ8/Qf9mP2niMViYG8Ryzo03/EgoG8Ryzo3kP3Hrr3ME8/Lf2WATSCwwn9EaCFHkJLPy39tPTT0k9LPy39tPTT0s/iXGLWnWFxLstg6fBwQr8P3F179kqfEdNl9XcbpVTJYjK0Z1upftF55khCP6Gf0E/oJ/QT+gn9hH5CP6HfR6Q8prsQ+n3w9x4+TSqcXFY6tWkia77fKN0GTZY3nhspRQoXIvTTveeoGkT3Hrr3ZPWxQvceuvdk93XDlJ1HZJi954gFU3YesWD2Hh9h1ccuhP4ckFJTA1L7lk6yfP4EKVKkkNm7S//H5Y7GdaTuFdUI/YR+Qr/He4g+/UdwCP2EfkJ/vKz4KN7zW5fQT+jPqoIQ+n0keh+7EPpzQNqyfZe07jxc3p0zLn3PpGnzpGTxE6Vti0aEfkI/oZ/QL3TvoXtP5rcBU3YeEWH2niMWzN5zxIKBvD5SepR3IfTnAPrLr1ukc7+J8sasEel7Tp75mqQGAtK5TRPz33oNTpYdOwOeJU0YcZyceILI5GdS5MtvUj33fbh9olS5ME4W/ydVFryRtthNdtttNybITdfHy7ffByRpssdqOCJSrUq8dL4vQf46KPJQr388yy1ZIk7GDUk0+/Qdmixbt3tfn+6rx0ydmSKfrfK+Pj0HPZd330uVua95X59em17j9z8GZOwk7+tTM7U7+LdI557e16f3Qu+JbgNGJMvvW7yvb/TARClTOk6efj5FPvnc+/oebJcgl1wcL0uWp8rLr3pfX6Nr4+WOmxPkx58CMmqC9/VdWDlOuj6YKP/8I9Kxu/f1HV9EZNLotOsbNDpZft3sfX0jBiTKSWXjZMaLKfLRp97X1/7eBKlRPV6WrUiVF+d7X99118RLs9sS5KdfAjI8yfv6Kp8bJz0eSpTUVJEHHvW+viKFRZ4Yk3Z9Q8Ymy/9+9b6+oX0T5ZTycfLcyynywcfe13df6wSpdVm82U/399oa1ouX5k0SzOvreXht554VJ70fSXtP6fXpdWa3HXecyJRxadenburntQ3qlSinnRpn7ofeF6+tTcsEubJmvLnPer+9tvpXx0vLpgmm/mg98trOOiNO+nVNuz6tn1pPs9vi40WmjU+7Pq33Wv+9tsd6JMrpp8WZ95O+r7y2u5snSJ3a8eZ9qu9Xr0330/31/a+fA16bvr6eh276+aKfM16bXp9ep35u6eeX16Zu6qefh/q56LXp/dD7op+z+nnrtel91vutn9/6Oe61af3ReqSbfj/o94TXpvVT66l+7+j3j9em9V7rv36f6fea16bvJ31f6fekfl96bfo+1ferfv/q97DXpu9//RzQ7ZG+/8i+/d7Xp58v+jkzcWqyrP7W+/r0c0s/v157K0UWveN9ffp5qJ+LX61OlSee9r4+/ZzVz9vdewLS/THv69PPb/0c10331WO8Nv1+0O8JPQc9F69Nv3f0+0evTa/Ra9PvM/1eUzO189r0e1K/L/Ve6D3x2vT7V7+H2ewECP05+G3dvltadBgsy+aPT99z9JMvSdnSJaTdXTfa6XM0AggggAACCCCAAAK5IEDozwE5EAjIlbd2lndeHCvFTixq9u7YO0ma3lRPGlx1SS7cIl4CAQQQQAABBBBAAAE7AUK/D7+BY2dImdLFpXOb283sPZ37TpTFL4yRE4oW8XE0uyCAAAIIIIAAAgggcGwFCP0+/PfuOyB9Rk6XVavXm9b+xx69W2rXuMjHkeyCAAIIIIAAAggggMCxFyD0H/t7wBkggAACCCCAAAIIIOBUgNDvlJfCEUAAAQQQQAABBBA49gKE/mN/DzgDBBBAAAEEEEAAAQScChD6LXm/WvOjnHxSafN/um38ZbP877etcnXNKpKQkBBx6a7K1RPSGYm+Xf+LbN+xW04qW0oqnVNREnRCaUfblFmvS8d7bnVUun2xKSkpsm7DJtm+c4+cVKakE49ff98mi5d9Km8t/URefXaY/UlnKmHslDnSvUNziYuLi3rZ0SjQpbGrsl2VGw1P12X8+PNvMnH6AjmzYnl59IFmEh+fVq927vpTfvlti5xRobyULlXc9WnkyfJdfja7qnOuytUblJKaKus3/io6vfVJZUtKpbMrpteXPHkD9Zxz4TPf5tpz6/2XH+uyjSvHihD6LWtB49a9ZfYT/aRUiWKib6Bew6fKBeedISWKnyCDu7eJuHRX5f686Q95qP/jkpgQbwL/th27JSUlVR4f1kXOOK18xOerBz7U7/Esj/9i9fdSs/qFcmbFk6VlkwZSrkzJsF6nesP7sty/TOkS8p+X/x1WWZl3/mHDJukyYJIcX6SQ8di6fZckH/Y4q+LJVmXrj4i33/uvCfr674Z1L5Pr69WQiy84J+Jyl3zwuUx9/g3ZuXuv/npLL2fH7j/lwvPOlM5tb5Mra1SJqPym9w80P1r1R2Fw0x8Rxx2nC4Ilp//3VUueDqt8l8auynZVbmhd1kYBtU7NYpWucI31hmT1PilU6DgpV7qELHp+VFj37J6HR8o9za6X9Rt/k6/WrjeBrlH9mvLiK/+Rc886TX759Q/zQ/62G64Kq9zQ89S6Vei4RDkUUreChel78Z2XxoZVdvD6o11u5pNw9dnsqs65KlddNm3eaj4/9T5u+HmzVKxwkgRSAzJx6ENW3yfZfeZnvheRvE9ceeSX91+oYX6ry2F9ILBzlgKEfsuKcf1dPdK/nB7o8W9p0+IGqXXJhaJvprdmj464dFfl3t1lhNzd9Hq5ts6l6ef2/sqvZNa8d+TZpF4Rn68eqOVktY164iXp8WBz+W79/2Tl52vNj6RINw1Ju//cJ28t/VQO/fOPtGneKNKizHGtOg834aZhncvSy9Gg/vLC92TG+Mg92nUdIzt2/Sl1rqgqDa++VKpccLbVeQYPrn9nVxnTv72cc+apGcrT13smqaccX7iwFClSKKLXenbOYtOS27ppQyldsrjs2rNPZr+yREoWP1Hatojc2ZWxy/vn8pz1vLUO/6vTMOnWoZnUvzL6633o+0RXE3/8mQVyc8Pacs2V1cOqE807DJaXnxooyckpUqNRe1k6b7y0fHCovDh5gJQuWUz+Ovi3tHl0tMyZ8lhY5WbeWeucNjzcc+f1Uq5MCflz3wFZtGSl7Nm7P33F80hewFW5ei6uPptd1TlX5aqFfuc1aXSV+UF4U+ve5sfl+598Lc++9JbMmtgnklvn/BiXHsGTzy/vv/xWl51XjgLwAoR+y5t80919ZO7UgfLzpi3Sb9T09K4bDZp1laVzkyIu3VW59Zs+mmF14eAJNmzeTZZYtppnd7HBQJr5CzNinMMHtu/5b5k6pptVMXWadJEPXj36CUXd2x+W91+ZGHHZ9z48SvbuPyD1aleT6+rWkMrnVIy4rNADm7QbIK8+M/Sosu59ZJTMnNDb6jVuubevvD5j+FFdhK5v2cMsThfp5spYz8dV2a7K1XPWVvMBY56Rf5KT5dChZGlw9SXWP16zuzf79v8lt7bpF/ZnUYuOQ9IDfa3GHeWTN6eYgPfU6K7pXTduvbefvD5zeKTVwhx38z19ZeHMo+ucvta0sZG/t12Vq+fs6rPZVZ1zVa5a1LvjEVm+YIK5l8HQr/++oWVPefvFMVZ1w1W3IZcemS84r7//8ltdtqpQHGwECP2WFUFbhJ9+YZEcPPSPjOxzv1x1eRXR/tsjJ70gT454JOLSXZXbpG1/mTAk46NXbRF85LFJTvqahwKkpgbklcUfSNPGdSN2CR6orYNtHhkVdreFzC+sgXbB9CFy4gnHp/9pz5/7pen9j1n/CNqybacsXpbWvWffgb9M+NfuPdr9y3bTliRtbS16fPQWiNMffq88MzR95Wk9x737/5Lb2/a3snBp7KpsV+W+texTGTv5JRPyWze9Tv4+9I/0Hj5NSpUsJgO73mNbLbI8vs+IaTKy7wNhla3de0b1fUAKFzpOmnUYbLrRPT//XfOk7tKLK8naH36Wd5Z/JmuXzwyr3Mw7X9u8m8ydOsg8PQhuB/8+JK0fGi7zpg2OuGxX5eoJufpsdlXnXJWrFhqgtXFEu1Rp6Ncfga+/87G8+Z+V5sljpJurbkN6Pi49srrevPz+y291OdL6xHFHBAj9UagNu/bsNR962g0impuLcvXR6+BxM+W6ejVM33oNz9pPfEiPNhH3BQ9es34B+Nmyaln3Ok7DaOiWGgiYPvI6cFWDk82mYxx08FloeNYWpk2/bTVjEKK16Q8rDf9vLv1EFj03MuJiD/x1UMZOedl8qWrXC+1vf2ODWsbCdoXop19803St0Mf1Wje0e9Kri1dI4wa1pF3LxhGfs0tjV2W7KvfOBwbKqL4Zu2fpDzi9pz0fbBGxsZ8D9XX8DvT++PO18tjYZ+W4xES5sX5Neajd7eYl9L+vWbdRzjr9FBk+cXZ6K6+f189qH61z8xe9L01vqiunnFRG9DNv4Tsfme6HD7S6OdJixVW5wRNy8dnsqs65Klctho5/Tlo1vU50/NPVtz1kGgkur3aB+T4JTm4RyU102W3IpUe0nk7k1vtP701+qsuR1CWOyShA6I9Cjfjtj+1mQJOGsNBNW/0j3X7Y+KvMfHmxlClVXDq1aSJFCkfWTzur19fzXbrii/TZFrQF2uYDOvSL0M/16qDncDYN+KGbrpCsM+Ecf3xh624RX3+7wdepVL0w/MG30foCCD1BbTUqUfxE6Xj3rWawuFrowF794B7eO+sBz74u8PBOn3z5rbz30SoT+LXuaV9wHaNis7k0dlW2q3L1MyIxMW0Ab7Sf1HgNfpwyuqsMHDcjrG5a2jVB61XFU0/K8vZ/tfZHqfZ/59pUDXNsaJ3TFv96V1SLyornrsp19dnsqs6psX7mL3n/c9m2c7eUL1tKrq1zmZxavoz1vQstQD+nSxQ7wTRE2G4uuw258oj204ncev/9vmWHLFnxhWzbvkvKlS0l19e9TMqXS5uN0GZzkYtszodj0wQI/ZY1QQPX3Dfek3PPrHDUtJeTRz0acem3tekvN19X23QV0g/SR+5vamYHemvZJ9K3S6uIy3V9YG5OB6r95mdOtOvHrmX42cJ9nWh/AQTP8Zqmj8iyeeMztNiqufahDXe2k6yuW+tb8ROLSvFiJ/hh8bVPqHFqINU8pdFpbWtUO9/M9BHcwjXW41yV7apcl09qcroZOkuOzrIS7qat5tlt+hTovY9XScsm14ZbbIb9XfwIclGX9aRdfTa7qnM6wcLgf88yT0808G/bucc83R3U7V65uubFYd8382Q4aZZUOKWcTBvTzUzZqU+5l374pZnB59yzKkj9K6v7fqqU1Qm46jakrxVtj+D5u3o64fX+u8/iCaye98ov1sqAMc9Ko2sul9fe/tA8NdYfh4O6t5E6tcKvG0ELV7ko7MrKAUcJEPotK4UOrHxp8oCotsTrKQUHRel8wh16Jcn0cT3M3MKNW/exGiClH0x+tkgG0bmcDjTzOe8/cFBadR7mfByCH6us9nH1BXBjq14yf/rgDN2R1EKn21z8QuSzRek16Fz/2rVCv8QnDnnIhHIddKpjE6I1+1DQSp8mfPT5Gun/cOtIibM9zlXZ0SjX9ZMaF/OPPznztWytb254hZmWNtKuOK5+BLmsy64+m7NCjkad00HNk4Z1ydBdMdgokdWkADm9IbWL2tQx3WXDz79Jj6FPmfEY2h1Qp56tecmF8s23G0xLcb+HI2+cctVtSK8t2h5BL1dPJ0Lff8FZgT798lvztPeuJg1yul2ef7/jvsdkVL8H5LyzTkvPHJu37JBOfcZbfbe6ykVWF8vBRoDQb1kR7u8xTqaP7W5ZytGHa2gc3rud+TANzmShX+jXt+xpNTf9Z1+t83WuGvjC3VxNB3pXx4yz1Whr8eY/tou2ctzT7IZwT/Oo/V08+nb1BTD9hUWy4tNvzHXrQmJbd+yWmS+/bbrh2EyrqSg6s9Obs0fJH1t3yoTp881c2//7bYv0HDbVemrGrG6SDra0XWchu5vvqmzbcl0+qXE1/7j1G8yjAFc/glzWZVefza7qcnZ1NtIZ24LTuWoArdGog3z+9lTR//bik/3TF6T8V+dh8sIT/aNSdaLZbUhPKNoewYt0+XQiM6R+B+hYGP2MttlCZzIK/pjV+9roX72sGhdd5SKba+XYNAFCv2VNSJo6Vy46/ywzz7vfQXJ+XlLnmZ6/aLmZw/s/K74w8yB/8c33Zv70CUM6INJKkAAAIABJREFU+yki1/dxNR3ouh//l+FaEhLi5eSTykixkBl3Ir1YV496XX0B6AeyrlGw+L1P08dk3HTtFXLDNZdHSpB+nLb6LHh6iPnfoVMm2k7ZmdWJ6cDmB3qMi0qXpMzluyo7GuW6fFLjav5xl90LXP0IclmXc/OzORp1TtdTaHVHQ2lw1ZH1ILQrji60FskMO83aDzbTVOtsbLVv6SSfLJosHXsnyZj+HczMXzojVaOWPbOcGtrvh5TX+IZIxleFvm60PYJlu3w6kZVbzcYd5dM3p/glzXI/nVpc1xPSWbo06OsAbJ28QQfwD+4R+eKirnKR1cVyMKE/GnVAv1w0lOqbRgdWxknacvW6LZs/PuKXmPHy4gzHxsfFmaCrfSVtBkp5de/p0u520df998AHIzrvYzkdaEQn7PBRb25/AUR6/aHHvfTqUvOF3fzWa+ThAU/I5JGPyH9XfSdDJzxv1XVI53MP3fSJ1fZdf5rH/7pwlM3mqmxX5bp8UuNq/vHM3Qt27d4r7338ldzU8Arp+sCdNrdPXP0IclWX9WJdfTa7qnM/bfpDuvR/XI5LTEhfdVwbD3QV9uwGaXvd1IcHTJI7b64nZUuXkJ7DnpKFM0eYvuH6mafl/fzrH+ZJ7OplMyKuG6HjGwISkN179smGXzZLnVpVzeeSzRZtj6zOJdpPJ7J6jZ/+97uZRctme+WtFXJ59fPltFPKia7NoWG/7hVV5e47r49o/E/wXFzlIptr5dg0AVr6LWuCzm6R3RbuLDWWp+LrcK/uPTp//A8bN8klVSr5KivzTq6mA3X5Q8XVo95Qm2h+Abhsdb293QDZtHmbmVlGt/h4/aFZWrp3aGE1qEu/nEI3fVKjfX71h7Lt5qpsV+W6fFKTm/OP64rCOjh0/OBOVrfQ1Y8gV3XZ6mJzONhVndOX1XE62v1LuwNqt8DK55yevshauNek4wF0bYnft+6UPg+1TF/NXNc30WuoWOEks9q07eJcmc/r+w2b5OXXl8ljUVjPIpoeoeepA5n1e3DHrj1SplQJuaZ2NetgruXr+h46nfJ2vX/lSpkBtzr4Npq9C8KtB17757dcFM1rz+tlEfojuEM//vybTJy+QM6sWF4efaBZ+ofnzl1/yi+/bZEzKpSX0qWKR1DykUO8wl1owbaj9zWE6KNUnUM+GrMCuZgO1OUPlWg+6s2NWS0yt7pq+Ppg5ddm0a9uHZpb1TmXB7uYvtTP+YYzN72f8oL7uCo3nHPIvK/L+cezOi9978wY38vmlM0PTFfd1axOzONgnQVp8dJPzAxU/6RknKbZ9smHq9nPojnAWycOWPDWB3LGaeWlbq2qWUr980+y1RPp7Pjbdh0tzybZ1TlX9WL+m+/L5BmvyfXXXG6egugaODrIvUu7O+T2G6+O+GX1h/HylV9Jm2aN5KRyurbOHnlu3jtSp+bFVuun6An1HfW03N30Ojn/3NPl4MFDMjhppmi+6dnpLqlRNfxxfRFfJAfmmgChPwJqXa3ynmbXy/qNv8lXa9ebvtXa5177SJ571mnyy69/SMd7bpXbbrgqgtLTDvGaMSO00E733hbRa2irjy4UpfPd63RrGhptFmCK6CTywEHRfNSbG7NaZEWm8zn3H/20WWnZdotmOAiei6vpS7X8aM9NHzxnV+W6/pJ1Med25lY7nWZ19fc/yeSZr8nLTw20rXJZHq9z4Vc6+zQnZdsW+ujAJ82PlSrnnyXxCfEZitOVliPdXM1+Fu0B3t0GTzZPCzb9vs2s06BPMvX7Y8j45+TXzduk4qnlZEiPtmasW6SbNh6FblrnvvvxF5n07CumO5HNltV7u1Ch46Rc6RJWK7xff1cPeW5SXzMtanDTmc/ufWS0VfdI7Xev1xy6+KKu8aFdaLQ/vs1W/86usmxekiliyqzXzb1sfmt96TdqutWK2K6Mba6VY9MECP0R1ITg7AW60E6NRu1l6bzx0vLBofLi5AFm+jJ9Q2or2Jwpj0VQuvchtl+GTz2/UBYv/dRM+ajzNuuHtfbni8amM73o/LzaApZ5obKXpgyI+CVcTjOqJxWtR725PatFKGg0ZsuIdjgInp+r6Uv9VKhI56bPqexIy3X1Javn62rO7cwrbScmJMjpFcpLtw7NrKdyVceP/rtadu7eK9p3O7jNnLNYenVuaaaAjGRtAZehQ/s+u/hsdzX7WbQHeAcHSWtjQ+2bO8m4gR1Nf/6kwZ1M67COcRs24XmZ/UTGsTw5vadC/64zyYRuf+47YBYMnDqmm9gsepn5HIJTYD7+zAIzvkhnQYt0C85+k/l4Havx+szhkRYr17XobiY8CO3Ko+etPzLenTMu4nL1QB1Toz8c9H2o/543bZBot2Qd1Gs7BXTwxKJpbHWxHEzoj7QOhH7o12rcUT55c4qZ7eSp0V3Tu/rYvtFdfRledkN7M1Cn2c3XyGXVKh+1oFikJnqcBs8b69eSKhecdVS5/1c58lYfl9OMZr5eXdBHn35od6dXnx0WFkduzGqhC6iEbjqDxnfrf5Fvf/hZXnjSboq8aIeD4Hm6mr40WL6LpxPmx2BKiqzbsMm0fmnLZqVzKlq/X1x+ybqaczusN0GYO9/XbazoFLxnn3FqhiPfee+/ppuEdh+JZAGp0MKiHTpcTUfoavazaA/wDjZuqHHo91/o2i46zbJNQ09W1eizr9fJondXWs0qk1311B8wt7bpJ0vnprV6R7Lp2hD6Y/jOm+qZHKBdnF56bans3f+XRPpEXs9Dnw7q0/gOrW82iyb+uXe/THluoezbf0CG9mwXyammH6N1Wd9j63/6VfTH/IBH7zbla8axfYqQ+cSiYWx1sRxM6I+0Dmj3nlF9HzADEZt1GGzmGn9+/ruy8vO1cunFlWTtDz/LO8s/k7XLZ0b6EuLqy1CfQiz7cJXp2vPd+p+lTs2qprW/5iUXpM+xHOlJq8usiX0iPfyYHaehTvteatDXfzese5kxufiCc8I6p9yY1WJw0qwM57R33wHRhVomDX/YPGq32aIdDoLn4mr6Ui3f1dMJV+W6/JKN5pzbuTFuSe+fzhWvrZWZByQ2e2CQzJ02yKY6H3VstELHnNeXmX7P2jKsYSzuyIRtJvRFurma/SzaA7w19M+a0Mc8mdGVwN9/ZaIMnzhbTi5XSmpUP1/WrvtZRk56Qb5Z9mykFNke1/qhEfL8pL5RL1cL1DUjRvZ9IOKytXvntz/8YsYynFj0eBOe9SlyhZPLysG/D6WX+8Grj4f1Glpv9QeFfkfpE3SdhanxtVeYJ236xN5m03EHOmZAz/nBe24zXYj0O+WrtT9a/9jO6rxsjW2ulWPTBOjeE0FN+PjztfLY2GfN9FY31q8pD7W73ZSi/33Nuo1mtL5+CC5fMCGC0tMOyY0vQ51tQQef6g+AH3/6VVa8Nini89UDdeVgXSwkGrOyhJ6Iy+497bqOMY+N61xRVRpefalVd4VjNauF9rnuO3K6TBnV1er+RTscBE/G5fSlrp5OuCrX5ZdsNOfczo1xS1o/dPBj08Z1j6q3+gNcZyiJ9haN0HFbm/7pM1xlPj+bbhyuZj+L9gDvF175j1k7pmyp4vJPcopZN0Ybk6bNXmS+/86seIq88e5H5gl4pJtOHRy6Bfv062fJK89kXKwx3NdwtQaA14w1oedoM6ufOh9fpHC4l+y5vz7dLn5iUfMUgS32BQj9Ed5j/fWtb/Ls5jnWX8o2La+58WWoo/WLFClkBHQw8kllS0aokXbYU88tlGUfrZLr6l5mWsBClizI8ovd74sFu/foj5RxT70sHe++RU49uexRh0eyirDOB713/wGpV7uaXFe3hlQ+p6Lf0/K9X6izq1ktotECFu1wkBVQNKcv1fJdPp3IqkWu7u0Pm5bNvLhFc87t3Bq3pGOUZr68WMqUKi6d2jSRIoXTPo9st6/W/Gimm9X/023jL5vNWKOra1axfqJpe25ex7uY/UxfL9qrjn/82RozZWej+pdn2dqsT75bN70uYirtNhS6JSQkSIVTykm39s3MU2mbLfMaADqeRKca1W6vT46wWwPA5rxyqhfaqJR5rJzt+AZ9grDwnY/ME4mJQx4S/Q7VLKADkKtccHbEl+NyTE3EJ8WBRoDQb1kRXH1pWZ5Wtocf+OugJE2dJ4v+s1L0h8uJJxwvuqJr1/Z3Wj8qHDbx+Wxft//Dra0uST+UZsxZLC++ulSKHl9YhvZsK9UvOs+qzODB+gG3eFla9559B/4y4V+79+i6BZFurpw//O/qDKcU7NOvy7LbDJwLFhrtcBAs18WsMlq2q6cTrsp1+dQq0rqa1XG5MW5JX1dbzW++rrZoa2OJYifII/c3FQ3sby2zm0K4ceve5v2grapaXq/hU837WRdQHNw98pVGg1a6Uu57H61KG+9RtqQ0uPpS040jWls0W3RdrTqu15pff1xlvk/ffLdBFr77sdh+T0Xr/oeWo5NjzH3jPTn3zApHjSmaPOpRq5fUcSRvzh4lf2zdKROmzzdP6nVCjp7DpkZtsHq0x9RYXTAHE/pt64CrLy3b88rueO0TrrNh6JfrnfcPNDMO6WNZXUzEpj+jq/PVck23mRHTpHSJ4jK4+70mmHfpP0nu/9dN0vja6HYB0C9zDf/a5WnRcyMjvixXzg/1y9gfVBe60tmXWt3RML1VM9KTdhUOXM0qo9fp6umEq3JDB6XrDzYNjfPeWC71r6qe4UdmJE+tIr3vWR2XG+OW9HWDM57ooGntHjh9XA8zgLpx6z5WizvpzCY644lu+kOrTYsbpNYlF4r+GLAdoPju+5+Z7pvaMKDTM27Zvst0kxzUvU2289b7uTf6JHP0ky/Kkg++MAbaz1qngu7eoblpnIl0u/mevjJpWBc5s+LJ6UUEp9F91bKrjMsfV67WLMjO8f7uY039y2tbk3YD5KXJA6L2FCz0+oIzMQXfJ8HB2Nro8c6Lae+faG3RGlMTrfMpqOXQ0m955119aVmeVraH65SB7740VhITE9K/cHXnaEzR5aqvpM7+knmBE12UqnPfiVFp3XaxcJRLZ1d1w1U4cDmrjFedC3WqemF4g7JdlZvVvdOnQi0fHCavzQhvtihX9UDLzY1xS8GgMbx3OylXpqQJ5xo6NPBe37KnmSAh0u2mu/vI3KkD5edNW8yc48GZuHTcg80MLcEfKjpwXsduBTddiVXnr7e5h92HTDGLOnW8+1bzREJ/BDw581XZd+CgjOh9X6QU4nLVcVc/rlytWZAdonbV1fFdtuMFIr5JHge6mi1KX/KlV5eKjp9ofus18vCAJ2TyyEfkv6u+k6ETno/alJ2hlxaNMTUujAtSmYR+y7utX1QuvrQsTyvbw69u0kVWHJ49IPiDRfu7dhsyRWxbfTL3ldz021Y5eOiQ1Ktd3epLS7ucZPXoXD+sbAcNu1o4ypWzy+5krsJBNGeVyVyxg3Xuz337Zcu2XWZaTR30l3mbOTHjvN85vb9clZvd64bO35/TueXW312PW9LreHbOYpm/aLnUv/ISMzhUW7a/+OZ7KV2yuBkgGun28sL35OkXFsnBQ//IyD73m7ndtQuRzipj22879L0den7Z/Xe/16CNG0vnJWXowqE/gBo27y7L5o/3W8xR+0Vz1fHMhbv6ceVqzQI9f51OO3RLDQTMk+4eHVtIk0aRr5zb9P6BZuyIPqEIbjorlT6x0bFcwf++asnTYd3LpKlzzUJnDetcdtQsV2EVlMXOt7cbIJs2b0s/N51qVMfBdO/QQurUujis4vWePfd41jMraSOdPkF/7e2PzI9xtmMnQOi3tHf1pWV5WtkerrOSjOx7vxmAfE3TR+SMCiebPnyjB7SP+rLb2n1h8qzXzAeVzTzFriy0XFcLR7lydtmdzFU4iOasMtnVBW2pu+XefmYaRe0OoV9e0diiXa52DQndklNSZeXna2Tbjj1mnY+8uukUxIuWrJStO3bJSWVKyU0NrzDdW2y3GS8vzlBEfJyGjjJS/8rqJizZbHrv9LPHTCoQxU3HO2jf59CVV3UwaMfeSVYrFGvo16cb+hQ2uOl6LTqTm83g8WiuOp6Z0dWPK1drFuj566Dd0E27SJYvV9q6AUmzwM5df0rrpg3Nj9Zde/bJ7FeWmPrXtkXkKzXrk1Jd8EwbuPQJUFzIDBk2Pwaj+JYwRWmXoKfH9Uif3ER/sH7wyTfy+jsfyqo1P5qFz3T84GVVK0f7pSkvDAFCfxhYWe3q8kvL8tSyPFwHiOkiHPqFqv1Qi51YVC6+4GzrQbzZnau+8a+6rYusfONJF5djXaarhaNcObvsTuYqHERzVpmsbrgOYtYxFNpKp3NMa4vu2AEdrKe2c1GuduHIHDjOPO1k+dft1+bZKfOem/eO6WeuY2iGjp9lVsrV/6aLZul/c7HZrjyem92zgtevLbmZ1xsIx0YXBaxZ/QIpXap4+mH6tOWDT762nr40WquOZ3U9Ln5cuVqzIJz7Ee6+t9zbV16fMfyoOmDbP95rKlCb6T/1+qLZJVennB2SNEvqXVHNjBtc8d/VZpzSDddcLnVqXmz9Iz7c+8H+WQsQ+qkZzgXmL3pfmt509Fzczl/Yxwu4XDgqq5fXKdK0JTrScOC6O5nLcODjdoS9i4Z9HRyri+XpI3DdZi9YYmbisHmM7KrcsC8wDxygCzDNeeox02IZ/NGpiw01ve8xWfT8KKszdLXyeGhXQ68TDLfbV7AsV08+cnvwqtXNc3iwqzULHJ6yeSKjYwK0IS246Wq8t7ftL0ssxqe4POfMXXJ379knG37ZLHVqVTX9+8Pd9h84KG/+Z6WZHVD/3eCqS8xil+eddVq4RbG/IwFCvyWs1xR8ocuSW74MhzsScLVwlD5F0anW9LG/hPTx3LH7T7nwvDOlc9vb5MoaVcK+qvzWnUwvUJeRv7vpdXL+uaeLrlkwOGmmWdG0Z6e7rLuU6SwqujJl5vndl374pfnCiXRzVa6ej6vpSyO91pyOy2pMhn6hN2s/SN60DP2uVh7P6Zps/u7qyYerwatZzZmu11+mdAmrwdI2hn6OdbVmgZ/XjmSfp19803SBa9LoKjMwXRd9fHXxCmncoJa0a9k4kiLNMbl9/77fsElefn2ZPNb1nojPWQ/UaUDfWvap+RGgP+61O6C2+uvUo2zHToDQb2kfOgVfcD5anVP30fvvlNo1LrIsncNzUyCaC0fpwMwx/dvLOWeemuESdIaIZ5J6yvGFC6cvjBbONbrsTubqyyV0kOqUWa+baSqb31rfzKoyb9rgcC7fc9/QRdCiVqiI+aESXMTOtlyX05fanlt2x+usTs9P6mta+rU187ZGV8u7yz+TO2+uZ6aKtdlcrjzu6seVqycfLgevBu+Rfkft2r1XXn37Q9PdQn+MF7RNuwAel5iY/p7WsWc6g5bNtKhBw0++/Nas36CBXxec037sOlVstLbcun9tu46WZ5N6Reu0zTgKbf1/a+mnTmYFitqJFoCCCP0ObrLO9d510JOy4OkhDkqPTpH64aH9zoseXyQ6BVJKBgGdWzmr2ZDufWSUzJwQ3kwyfmh1ZoQbG0RvzYJofrnc2KqXmRtdW3v03/OmDTKLJkVjmlhXi6C5Ktfl9KV+6kkk+6z9/ic5pXxZKV2ymIx+8iUpWqSw1LmiqoQ7DWpWr+1q5XGXP65cPflwOXg1K3sdeDxlVN4cPO7yCboOxNY1ac6qeLJpjdYJDHQmuPtbNpa7mjSI5C1yTI6Jxv3Tpymhm8589t2Pv8ikZ1+RhTNHHJPr4kXdChD6HfmGzl/s6CUiKlbDzNgpL5tHbrqkt7b2aFjUfuYnFOUHQESo2RykA0qLn1g0qgM0dbDt3IXvmda6gByZGu7DT1fLHY3rSJMb65gvs2hutl8uOs903VpVZf1Pv5pB5AMevVv+3Ltf9MvXdqEkV4uguSrX5fSl0bznuVmWi1WgXf64cvXkIzcHr2rrdvMOg6L6pC2adSbzE3TtJvnGko/lqhpVrIN56NTEj419Vv6v8lly6/VXik65abMgo16/q7EemW2jdf90jE7o9ue+A+YpxdQx3cw0t2yxJ0Doj7176nlFujhGieInpi8Ao486te+5zhAw3GIBmALGmOPl6oDdhe98JDowduKQh0RXWN26fbds2bZTqlxwdo7HZ7eDBo4b69c8qtvQv6fOlW7tm8k5Z1Q46m8Rv5iIROPLZduO3TL9hUXmB+aD99xmflxqvftq7Y9mBhibzdUiaK7KzY3pS208szrWZaurq1WgXf64cvXkw9Xg1WETn89wW7U199sffpH/q3ym9H+kdbSri7Py9LO0U58J1lPb6hNGHYui33nNOww2DQ8624xtQ52rsR65ff8++3qdLHp3pQzu0cbZvaTgYydA6D929sfklXVu/mXzxmeYPUa7cmg/1eCy9cfkxHLxRXWQrU4tVuGUcjJtTDcTzLW/sg7+1JU1zz2rgpknPNIZdvRS9FH9m7NHmcfHE6bPN/N663oIPYdNlTlTHov4aoNdZTIX0OyBQTJ32qCIy9UDc+PLJZr94/WcXS2C5qpc19OXWlWAbA52OW7J1SrQ+fHHlfK7GLyqc+mHbjov/RkVypuGiPy2tX5ohBlfYrPpZ78+Ofh96w4zyPbuO6837g8PmCTzp0c+xsjVWI9jcf+i4WxzjzjWnQCh351tnixZQ6N+sIX25deZOPTR5uIXRufJc472Sd35wECZOqa7bPj5N+kx9CnTV1lnW0hNTZWal1wo33y7wSzW0u/hVhG/tHYvCI7p0JbS4ExOtnM26yItOgtO5k1n/jjTsluPqy8XV/3j1cDVImiuyo24QuWxA6M1bsnVKtD58cdVHrvFx/R0Mi9ip08c16z7Sb7fuEmmj+1udW7ayPPeh6vkuOMSzNSU2rijDV+6oreuRhvp5mqsR6Tn4+c4HcsQugX79Ousdjr9KFvsCRD6Y++eel6RdrPQRYfuaXaDnFSmpGzdsVtmvvy2mWXAZtXA/MSoj3Rffmqg+aCv0aiDfP72VPOY98Un+0tCQtpqmP/qPExeeKJ/xJf10qtLzeCw5rdeIw8PeMLMefzfVd/J0AnPW/+40mnQdGq47Tt2y0nlSpkxGY2uudzqyUTEF+rjQFf94/WlXS2C5qpcl11lfNyKqO5i2x1CTyaaq0C//d5/zZSA2W26UOCHn60x40vy4uZVN0LPN9ypoPUJo3bh/N9vW804rtDtpSkD8iKFZLWI3ekVykvLJg3MJADhbjoz0nOPZ/2EYPef+0QnQnjt7Y+s1vZwNdZD79mCtz6Q5R+vkh07/5QypYtL/SsvkdtvvDr9+ypcj+D+tRp3zHCofv/pE3DtKlrzkgsiLZbj8rAAoT8P3xwXp6ZB10yb9d6npo/5SWVLmqWxvb4sXZzHsSyzWfvB5sNdW49q39JJPlk0WXSw6pj+HczCKhrWG7XsKTZLnN/eboBs2rzN/LDQLT4+zrQide/QQurUirwfu/5oW77yK2nTrJGcVK6kbNuxx6yOqise2swF7fJ+uOofr+cczRUlQw1cleuyq4zLe+iq7GiuAn1di+7y7pxxR52qru772tsfmmB31umnyIzx0ZuKMJouoXXDq9xwu+VoA8aN9WtJlQvOkoT4+AxF6yDWgrDpE9anx/WQiqeeZC5XfwB+8Mk38vo7H8qqNT+aRi/9HrysauWIOVyN9dA1Q37e9Lu0bHKtlC1dwjTU6QKElc4+Tfo89K+Iz5cDC6YAob9g3vcCfdXad1PnGNcP0J7DnjJTk+kUf/pIU78Ufv71D9n8x3ZZvWxGnnPSvsp6vqEzLWmrtHYnsp0Jx9XFuuofr+ebeUVJ7aurc0LXvaKqPDki/BUlgwauys3KOFpdZVzdP9flRmsVaH1faze9B1rdbLpuvPmfT0yoS0lJlZsa1pbG19aS8mVLub4cq/JdzPh1z8MjZdbEPlbnld8P1kHS2pe/3hXVzKDdFf9dLRecd4Zp7NIGE51kIK9u+pn/9gtjMpyjTn/cuFWvqKz0q++/9Rt/TW8ErHR2RdNIxRabAoT+2Lyv2V6VrhqY3aaDmt77eJVpUYjlbdPmrdJ7+DT5fetO6fNQS2lY5zJzuXv+3G8CY8UKJ8m/Og2Tt18ck+cYtDVTB1yHDjLWpwna1SKrVs68cAG53T/+m+82yMJ3P5b+D0d3ZhJX5eo9ikZXmbxwryM5h2iFDg1Cz770lsxbtNwsAHdJlUrSu3NLqXxOxUhOK9ePcTXjV4deSWYigcKFjsv1a8pLL6hj13Sqal0kSv+tK3Y3rHuZnHfWaVE5TVfds25r018WPDMkw1MafVLRvMMQq4HHetH6XdhlwCTzQ0gnsdDvPu3Xr/XljNPKR8WFQvKWAKE/b90P52fz5MzXsn2NmxteIdovVlvKCvr2zz/JVq0/OjB64y+b07v3qKcGdW1R0rKD3X5WLXk6LOq+o542Mw11aH2zmf9f57uf8txC2bf/gAzt2S6ssnJrZ1f9473O//7uY2X6uB5Rv0RX5Ub9RPNJgS5Ch3bb064yby5dKbp+xcUXniPX16sh9WpXk+OLFM6zMq5m/HrquYWy7KNVcl3dy8xnh4Q04jZtXDfPeNiOowrnQnRWNR0bpT8C9Mei1g9t9T/3zArhFJNhX1fds3Rdli9Xr5dmt9Qzn/nar/+l15aarkhX1rgo/Ry061q4m/5QadLoKmlUv6bonP2Lnh8l+lREfzwX9KdD4Vrml/0J/fnlTnGeTgT0gz9p6lyzZPq/H3tQTju1nOnr/+e+/WlfkBFuz85ZLDt3/SmtmzaU0iWLy649+2T2K0tMmTYDpvft/0u0RVB/nJnF1RITpPG1V0i3Ds1YXfnwvdL5t9t1HRP12SdclRthFYuJw1yHDv2BveK/35hxTJ988a1cXv18SRrUKU/auZrxK/NUvKEXH+2nYTawDZt3k94P/ct0u/Ta9MmNzlZedVzpAAAYvklEQVSW1Sxmkby+Pt3V1n8z1i0PzmCnLf3BRiKv63t95vCwL7/eHY/I8gUTzHHB0K//1ulH8+KT7rAvkAOOEiD0F7BK4dW9J5TivpaNC4SMftFoCNABhZ999Z1pLf9y9Q9mMSmbJepvubevvD5j+FEz6thO2Rl6U7QFPS+3XOZGBbr13n4ZXiY1EJAdu/ZIj44tpEmjqyM+BVflRnxCMXpgboYOnTpW1+K4uWHtPKnpcsavrC5YJyzIS11+dFGo2fOXyJ69+yVksfGjTv2RB5rK1OcXWn0+u6gArrr3uDjXYJk6zej7r0w031Ma+vWHw+vvfGyegDyT1NPlS1P2MRIg9B8j+GP1sl7de0LPqdO9tx2rU8zV19VWlNdmDDOveX+PcelzQNuGc/0xofMc62xAwW3v/r/k9rb9ozL4KleR8vCLaStd6KYLD+kaC7ZhxlW5eZjymJwaoeMIu6sZv/QV9LNn9569GVqMB46bKY8PfSjDZ9QxqQS5/KLVG9531CsWKnSclCtdwnRviXRz1b0n0vPxc5xOXtGq6XVyVsWT5erbHjL15PJqF8iQHm2s1izw89rsc2wECP3Hxp1XzSMCA8fNkNtuuEqqX3SeBBfR0hlgdAGvpXOTIj5LfaKic+lrf0mdUWTHrj/l1cUrzAqQeXVqzYgvlgN9C+iYjLubXme6JujqxIOTZsqPP/8mPTvdJTWq5r8VUn1feDY7EjpsBXM+PmnaPJn3xnKzLkvopuMpzjnzVGnf+ha59upLcy4ol/fQVXL1HDOvLXDV5VWidibabUZnz3r8mQXmCZBO3VlQNx38XqLYCVZj2QqqXX66bkJ/frpbnGvUBTSELV76iZx3dkXzBXP2GaeYWQzaNG8k7VvbDWj+5Mtv5b2PVpnAr2MG9Aul1iUXRv0aKDD/COiaBcvmpf2YnDLrdTPLTPNb60u/UdNl3rTB+edCHJwpoSNrVB3D071D84gX39MBwgtnjZATTzg+wws0e2CQzJ02yMGdtC9SFxOb+8Z7ZmBt5rUFJo961P4FMpWgY6VubdPPqqEn6idFgQg4ECD0O0ClyPwjoAuqhG5xcdo9pJQJ6WwIRFvgxla9zHoKOmOI/nvetEFmhdFG/+qVJwcRRvv6M5ens5BodwJtcdbtlbdWmCcf9zS7Ps/PqR9tmyUffG5WztUnjXJ4UT99jR27/5QLzztTOre9Ta6sEX4rtz7NHNy9zVGnqz8mdOxLXtyatBsgL00eIEUKF8q10+szYpqM7PtArr1eOC+kU3Su27DJNBLoE5tK51Q86sdQOOWxb8EVIPQX3HvPlTsUyI+DuhxyUPRhAR03UrdWVVn/06+SmJAgAx6920y72qLjkDy7uJrLm3dt827munWecF1bYf6i5XJ9vctl2YdfFriBhPoUaEz/9uk/gILuOhOVDqo8vnBhKVIk90Kwy/ueU9mh46ty2jfSv2uQTk5JzXC47VigSM/F67gfNmwyc+kfX6SQnFS2lGzdvsuc9+PDupi++GwIhCNA6A9Hi31jToBBXTF3S6NyQe17/ju0sTXbMqeN7RbW623bsdvMDKXrNTx4z21mZeW9+w7IV2t/lKtrXhxWWbGwc+gTjiZt+5uZtHS+8cate8ubFoMq86ONtm6/+szQo0793kdGycwJvfPjJUV8zjqN8kXnn2UWTgxdiDDiAkMO1Hnoh0943jxBiQtdtEBEPn97algvkRuz4enihvrkK7iIpJ6gTtn88sL3ZMb4XmGdb1Y769iJJe9/Ltt27jZP166tc5mcWr6MdbkUkDcFCP15875wVsdAwNWgLh2wWVBa6I7BbXPyktrqvODN96XpTXWlzOF1FnSl15rVL5DLqlVOn1KwRrXwBt/qtJHvLP9MypQqIXVqFbyQn/lmab/yYb3aydoffjZBZuqYbmbxukatesl/Xv63k3ubHwot6J8ZumbBuh//Z2bhKlH8hAzhfNn88Va3UGdJGtWvvVQ6234l3uBseLre2dYdu014rn9VdTN5w5/7DsgHK782K//26twy4nPWGa4+ePXxo46ve/vDZrpNm+39lV/J4H/PkmvrXGoC/7ade0S7mQ3qdm+BbISwscwvxxL688ud4jxzTSAag7o03CVNnWcWfdHydBDdTddeIV3b38kiWrl2JyN/IZ296bnH+2ZYB+Hg34ekWftBsnDmiIgL1m4LiQnxaQN4b6lvflT8sPFX0bElNusKRHxCx/jAL775QYZNeE6OS0yUsY91lDNOKy9btu+S1xZ/aD2Q/hhfWtgvz2fGETJdCC+7TcfA2GzB7lI2ZWR1bNuuo2VI97ZmgcfgplNg9hr2/+3dCVAUVxoH8D+CxhMQFK8YXS1LzUZd48ZooiYeeEWjJqDEm0RA44UKCl6IKEdQjCaKgDGw3qLRUjzwTkzioslqTnMZ1wtPFMQDNcLWawOZcQFneqaHnu5/V23Vltv9+n2/1zt8M/3e9xKwLCpQ9u1E+ejNSXONFmLn3LwNL7/ZFpd/7jtiOj6YNwENDaYJFe6SXdxbJ9lB8ELVCDDpV81QsCNqErB0UVd4XIo0TznQzwvefmFYu2wWElenSRtHqXWxmJr8y7ovXQdOxt71C1GunPgN79Ehdmr29JliUYWP7j5BSF8Xi1t38hAUvkz6ZVvM6R8ybj62p8j/MlHWXry/5QL8zDDdULyVlTvtJzhiOSb5e1t9CotYn1Lc26kRE6OQsjjU9OAeO1PsPuxRw9Xox6KH+fk4d+GKUbIu5wYl9VnsM7NXx2/a5FjayzVM+u1lpNhPuxIQi/L2rIuFk5Oj0fbmeq3SYleDB0B86RNJxdA3u6Omu4tUUWX15j14+DAfkaF+ssN5a0wEkheHSNMWCveFEI2JLwN71i+Q3S4vtH8Bfmb8NYbFrbUq/F/jYyZDVCRKXxsra9BnRK/A7kNH0aZFU7i6VDH68hAzI0BWm+Ki4RMipak8Q97wlD73xReTPZ9+BVGhypI1Gd/8eKrEPjVtXB/iS4HY90PO4TspBkPf9JT6XXiIXavXfrJPdwvp5fjZ4zVM+u1x1NhnqwmU9sfF8CbH964w654dB0zA4T/nYYrtzcVOj7+fycSUufHFLtYzq3GerLiAmFMtFtwe+PI4sq7nwN3NBV1eag2/IX0sWp+x80CGNO+3f68OWJa8FRNHeeHo8ZMQezqsj5+teFy8gXoF+Jlh+tiIkrfiTaqcY8+nx0q8rPsrL8hpUrrmfOZVhEYlSWsRxA8F2TdvSYvSo0L98Ey9WrLbHTmx5F2CA/29kLBqG+KjJ8tq//S5S5gwcwnKOzkWVQYSX1ZEZaD6dT1ktcmL1C3ApF/d48Pe2amAqLgQNd1P+uDs7BWIBvVq4+yFy4iZFaDLnVftdBit3u13Q4wXITqUc0AdD3epOgf/yFqd264a5GeG8XDZa216MV1PbMjo5uosLUJW+yGmComyoGIhstgDoGnjZ4ymNaq9/+yfeQJM+s3z4tk6E5A7d/Ru3j2pDrsozSiqIVSrWhktmzfiIl47eX5Ke6Xe6tnGdhIFu2lPAvzM+Gu0rF2b3halNUXvL17Owt7DX+PqtRuoWaM6erzyT9Sq6WbRY1iWn0Vy//5ZFDAvVlSASb+ivGxc7QJKzh1Ve+zsX8kChq/UC1AgLZrLu38fr77UGpEho2TTlfYH3LBRfrGQTcwLNSBg7dr0tiiteeTrHzDrvZXo1bkttu7+HL27tpOm8s0J8rWoPO/jn0VifdHpsxfxSvtWWBopvyqQeEz4908D/2cxMwQm/WaC8XR9CVgyd1RfUtqOVlTuWZayVVr0N3Zkf9nBljY/17BRsdiXBwX0KqBkbXqlSmuKvQWiZ/ijyd+eLirekHk5C2NDF2HLynlWHcpvT56SdrCeOXGYVdt9vDH+/VOUt0waZ9JfJuy8qZoE7HXuqJoM9dAX8Zx06D8BR7YvtXq49+4/kCr68KAABQAla9MrVVrT8ItKYfEGMT1GVGzbvfY9qw+rX1AskhYEW71dNqhtASb92h5fRvcEAWvPHX38duJDX8zVrVypIsdCAwKb0h7t0mvJITbsyc7JlUr6FR5hC5KxJGK8tPaDBwX0LqBkbXqlSmuKvT12ro6RvryLRH9usC+27DosbTwXHuxr1SEVm5eJTcY++SjConZF2WBTjsTYKaacxnPsQIBJvx0MEruonIC1544W9lTsrhkbvwE79h3BH388lBb0ijmeQaMHoUplfgFQbkSt13L6oWNI23sEV7JuwMO9Ovp4tkePV+WX9BM9i0tMRer2Q1KVDMND7ILZuGFdBAx7Hd06trFeEGyJAnYqoMSiWEGhVGnNT3YeRtvWzfB0nZrwGTNXSvbFvPvh3j1klxcV/e03cobRCOYXFEibPAaP8bF4F+9jJ34y6el44R/NTDqPJ6lfgEm/+seIPVRQQKm5o2JzJxfnqhgzvJ9Uti331h0krNoO8QvNfAsWgipIwaYNBP6Vmo69n30t1eWPWJSCaeMGQ/xbxxdbSv8m9+jiNQnbUiJRtUoloyYG+s/BxsQ5cpvldRTQlIBSi2INkeyltKZYtGt4ODqWkyoCcTqgph55mwXDpN9m1LyRGgWUmjsqavMfSF1ktNujmM7Rc/BUpK+Tt5OkGv202icxTuuXz4arc9WiRXl59+7Da9RsaaM1uYfYSTQ86P9f9cfGr5d+ueNBAQoAtlwUa4m3rUqBWtJHXksBQwEm/XwedC2g1NzR3kOnYVNSuNFc/tt38uDlF4Zda2J0bW4PwRe3KE+M38CAOdhhQdJvD7GzjxQoawFbL4qVG68tSoGWVFZT7BK+b4Npc/LlxsfrtCfApF97Y8qIVCCQtCYNhzO+xYiBPaX522K3w+QNu9H55dZ426eXCnrILpQm0HfEdKz6YLr0S7/noCno36sj9hw6Bu++r2Lom57EowAFFBSw5aJYa4WhVClQw/6Jt8U3snOxZffn0jqx4V7drdV9tqMTASb9OhlohmlbAfHhvHN/BnYdzMCVa9nwqOGKPt3ao2fntrbtCO8mS+CHn0+jTq0acHOthpil61C54lPo1L4VuGmWLE5eRAGzBJRaFGtWJ8w8WalSoCV1Y0xIHOKjJ5vZS56udwEm/Xp/Ahg/BShQrMD5i1fhXLUynKtVoRAFKECBUgWUKgVa3E3FZoGDRs9BamI4R4UCZgkw6TeLiydTwDSB0hZ4vda1HQ5+eRyDB3QzrTGeZXMBsbB2W/oXeJifj8Vzx0OUrBNvbC5fvY4WzRvZvD+8IQUooG4BpUqBzlu8yijwgvwC/PjLGfy9aUPMDFR2R151i7N3cgSY9MtR4zUUeIJA4QKv4k7r69keuw8ehf/QvnRUqYAorbljdTQuXbmO95M2YXHEeJy9cBlT5yVgffxslfaa3aIABcpawNqlQDdsO2gUkijZ2aBeLemHCB4UMFeASb+5YjyfAhTQvIAoGbh5xVwpTrFrZeGOlKLEa/pallzV/APAAClggsA3P54y4SxwLZBJSjzJFgJM+m2hzHvoToD1m+17yNdt2Y979x9gUL/OmDjrQyyLCsTR4ycR8f4qlly176Fl7ylgNYGRE//cs8MBQAFw7Juf8HTdmqjp5iptyPj72Ux0atcKSyMDZd9z54EMxCVshHt1Zyyc/a7UvpjTf/PWbam6GA8KmCPApN8cLZ5LARMFSpveY9jE2JH9TWyRp9lS4I13ZuFc5lWIKkziKFfOAbU93BA02ged2rW0ZVd4LwpQwA4EpkcloVunNujy8vNFvT356xlpJ++o6f6yIxAlg+PmjMXpc5dw7MRJREx9B//57heIstCs3iObVbcXMunX7dAzcApQgAIUoAAFrCHQa8i0Yt8Civr9K+Omyb5Ff9+Z2PrxPOl6v+AFSIoNkv47pxrKJtX1hUz6dT38DJ4CFChO4MT3v0m/7Iv/iOP3M5k4e+EKOr7YAo6OjkSjAAUoYCTQZ3goIkNHoWXzxkX/fuHSNUwKW4qNCWGytcIWfIz+PTug9XNNitYXXc/Ohbd/GPZvjJPdLi/UpwCTfn2OO6OmAAVKEXhtWAhWfzgD1V2qQXwBmDY/Ac2bNICLcxWEB/nSjgIUoICRwBfHvkNwxHI817QR6tRyQ3bOLRz//lfMDxmFji/KnxI4PXoFdu3/N5o0qo9zmVfQqEEdnPpvJnwH9ULAMFaA42NongCTfvO8eDYFKKADgR5vBSN93aMqPaJ6j69PT7R7/lmILwM7V8foQIAhUoAC5gqIxbsZx08i68ZNuLs6o23rZhZv7id2Bzc8HBzKoVbN6tLCXh4UMFeASb+5YjyfAhTQvIB4VS9eyf/33GXMiE7ClpWP5tR2HTiZr9Q1P/oMkAKWCeTl3UfFihUsa4RXU0ABASb9CqCySQpQwL4FxIY4K9akIe/+A0SF+qFD2xY4f/Eqoj5YY1H5PftWYe8pQIGSBO7czUNcQirS9h3Brdt3UbVKJfTp1h6TA7xRuVJF2XCtPUcVe627mwv2bVgou11eqE8BJv36HHdGTQEKPEHgRk4uHBwcjGphi9r9T1UoTzsKUIACRgLhcSmoUN4JgX5e8PYLw9pls5C4Og1ZN3IsKtlpeBNRQjj75i3s3J+B+w8eSPP6eVDAHAEm/eZo8VwKUEA3Arm37yI7J7eoVr8IPGxBMpZEjEe1qpV148BAKUCBJwt08Z6MPeti4eTkiD7DQpC26tHGXSWV8nxyi6WfETB1IRLem2JpM7xeZwJM+nU24AyXAhR4skBcYipStx+Ch7ur0cmiekbjhnURMOx1dOvY5skN8QwKUEAXAh0HTMDhLUukWAuTflHqd8rceGz5KMKqBlezsuEbGF30xcKqjbMxTQsw6df08DI4ClBAjkAXr0nYlhIpzcs1PAb6z8HGxDlymuQ1FKCAhgWGjpuPqOl+qF/XA529AtGgXm2cvXAZMbMC8EKrZrIjFzvyGh75BQW4dj0HQaMHYZhXd9nt8kJ9CjDp1+e4M2oKUKAUAbEhTnH1+GPj1yN4jA/tKEABChgJ3M27BydHR5Qv74S9n30lTQFs2byRRYt4xQ1Egm94iLKguw5koFKlpzinn8+g2QJM+s0m4wUUoAAFKEABClCg7ARGToxG8uKQsusA72yXAkz67XLY2GkKUIACFKAABdQiUFxpzQoVyqOmm4vV597fvpOHoePmFe0fohYD9kP9Akz61T9G7CEFKEABClCAAnYiIEprnjl/GUs+2oy+ni+h88utZff8rTHGi4DzC/KReekaRg1+DSMG9pTdLi/UpwCTfn2OO6OmAAUoQAEKUEBBAbFJVz/fGRbt4v3Tb2eNeujoWA61PdxR7bEiAwqGwaY1JMCkX0ODyVAoQAEKUIACFFCPQGhkolU25xJvD8RiYUt291WPCntSVgJM+stKnvelAAUoQAEKUIACpQjcuZuH2PgN2LHvCP7446FUHah313ZSyc4qlSvSjgJmCTDpN4uLJ1OAAhSgAAUoQAHbCIg3BS7OVTFmeD+4OFeBKNmZsGo7buTkYn7IKNt0gnfRjACTfs0MJQOhAAUoQAEKUEBLAmKjrwOpi+Dg4FAUlpjq03PwVKSvi9VSqIzFBgJM+m2AzFtQgAIUoAAFKEABcwV6D52GTUnhRnP5RclOL78w7FoTY25zPF/nAkz6df4AMHwKUIACFKAABdQpkLQmDYczvpXKc3q4u+JKVjaSN+yWyoC+7dNLnZ1mr1QrwKRftUPDjlGAAhSgAAUooGcBMZVn5/4M7DqYgSvXsuFRwxV9urVHz85t9czC2GUKMOmXCcfLKEABClCAAhSgAAUoYC8CTPrtZaTYTwpQgAIUoAAFdCWwYu2OEuMVu/LyoIA5Akz6zdHiuRSgAAUoQAEKUMBGAkuTtxbdSUz1uZGdi4NfnkAfz/aY7O9to17wNloRYNKvlZFkHBSgAAUoQAEKaF4g++YthC9MwaLwsZqPlQFaV4BJv3U92RoFKEABClCAAhRQVMB3Ugw+XjRN0Xuwce0JMOnX3pgyIgpQgAIUoAAFNCAgdt41PAryC/Ddz6exLHkrNiwP00CEDMGWAkz6banNe1GAAhSgAAUoQAETBToNmGB0ppOjI56pVwtTRg9Ei+aNTGyFp1HgkQCTfj4JFKAABShAAQpQgAIU0LgAk36NDzDDowAFKEABClCAAhSgAJN+PgMUoAAFKEABClCAAhTQuACTfo0PMMOjAAUoQAEKUIACFKAAk34+AxSgAAUoQAEKUIACFNC4AJN+jQ8ww6MABShAAQpQgAIUoACTfj4DFKAABShAAQpQgAIU0LgAk36NDzDDowAFKEABClCAAhSgAJN+PgMUoAAFKEABClCAAhTQuACTfo0PMMOjAAUoQAEKUIACFKAAk34+AxSgAAUoQAEKUIACFNC4AJN+jQ8ww6MABShAAQpQgAIUoACTfj4DFKAABShAAQpQgAIU0LjA/wBshS8PK+y77gAAAABJRU5ErkJggg==",
"text/html": [
"<div>\n",
" \n",
" \n",
" <div id=\"bd66a42b-303a-4c90-b2ac-b7c8b80642af\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>\n",
" <script type=\"text/javascript\">\n",
" require([\"plotly\"], function(Plotly) {\n",
" window.PLOTLYENV=window.PLOTLYENV || {};\n",
" \n",
" if (document.getElementById(\"bd66a42b-303a-4c90-b2ac-b7c8b80642af\")) {\n",
" Plotly.newPlot(\n",
" 'bd66a42b-303a-4c90-b2ac-b7c8b80642af',\n",
" [{\"histfunc\": \"sum\", \"type\": \"histogram\", \"x\": [\"sugar\", \"butter\", \"salt\", \"onion\", \"olive oil\", \"water\", \"flour\", \"egg\", \"milk\", \"garlic clove\", \"clove garlic\", \"garlic\", \"vegetable oil\", \"black pepper\", \"tomato\", \"cream\", \"bacon\", \"carrot\", \"cheese\", \"oil\", \"chicken\", \"vanilla extract\", \"chicken breast\", \"vanilla\", \"kosher salt\", \"cream cheese\", \"rice\", \"celery\", \"ginger\", \"soy sauce\", \"potatoes\", \"potato\", \"parsley\", \"pepper\", \"sauce\", \"honey\", \"chocolate\", \"cinnamon\", \"coconut\", \"oregano\", \"eggs\", \"almond\", \"lemon juice\", \"apple\", \"corn syrup\", \"red onion\", \"red bell pepper\", \"baking soda\", \"ground cinnamon\", \"egg yolk\", \"sesame oil\", \"nut\", \"curry\", \"vinegar\"], \"y\": [143, 137, 130, 99, 98, 75, 71, 65, 59, 59, 51, 39, 33, 27, 25, 24, 21, 21, 21, 21, 18, 18, 17, 17, 17, 16, 16, 16, 15, 15, 15, 15, 15, 15, 15, 14, 13, 12, 12, 12, 12, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10]}],\n",
" {\"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}},\n",
" {\"responsive\": true}\n",
" ).then(function(){\n",
" \n",
"var gd = document.getElementById('bd66a42b-303a-4c90-b2ac-b7c8b80642af');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" })\n",
" };\n",
" });\n",
" </script>\n",
" </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"keys, values = EA.m_base_act.get_forward_adjacent('burn')\n",
"data = go.Histogram(x=keys, y=values, histfunc=\"sum\")\n",
"iplot([data])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"linkText": "Export to plot.ly",
"plotlyServerURL": "https://plot.ly",
"showLink": false
},
"data": [
{
"histfunc": "sum",
"type": "histogram",
"x": [
"egg",
"butter",
"salt",
"milk",
"onion",
"cheese",
"sugar",
"olive oil",
"tomato",
"garlic clove",
"black pepper",
"water",
"cream",
"parsley",
"clove garlic",
"bacon",
"mustard",
"pepper",
"vanilla extract",
"garlic",
"cinnamon",
"thyme",
"flour",
"cream cheese",
"raisin",
"nutmeg",
"ham",
"celery",
"lemon juice",
"vanilla",
"ground beef",
"sauce",
"mushroom",
"tablespoon butter",
"ground black pepper",
"vegetable oil",
"apple",
"dijon mustard",
"swiss cheese",
"ground cinnamon",
"oregano",
"basil",
"red onion",
"avocado",
"potato",
"peanut butter",
"chicken broth",
"eggs",
"spinach",
"chicken breast",
"red pepper",
"chicken",
"sausage",
"margarine",
"flat-leaf parsley",
"pineapple",
"banana",
"carrot",
"egg yolk",
"yeast",
"paprika",
"ketchup",
"kosher salt",
"wine",
"lemon",
"honey",
"goat cheese",
"shrimp",
"zucchini",
"almond",
"ground pepper",
"chicken stock",
"vinegar",
"pork",
"extra-virgin olive oil",
"cucumber",
"leaf",
"mozzarella cheese",
"cayenne pepper",
"parsley leaf",
"sage",
"plum tomato",
"seasoning",
"turkey breast",
"oil",
"green onion",
"turkey",
"tuna",
"lemon zest",
"green pepper",
"walnut",
"all-purpose flour",
"red bell pepper",
"broccoli",
"jack cheese",
"cilantro",
"maple syrup",
"crabmeat",
"pecan"
],
"y": [
421,
346,
319,
290,
215,
210,
172,
166,
124,
114,
89,
86,
75,
68,
65,
60,
56,
56,
54,
53,
52,
47,
47,
45,
44,
44,
43,
42,
41,
40,
38,
36,
35,
33,
33,
33,
32,
31,
31,
28,
28,
28,
27,
25,
25,
24,
24,
23,
23,
23,
23,
22,
22,
22,
21,
21,
21,
21,
20,
20,
19,
19,
19,
18,
18,
18,
17,
17,
17,
17,
17,
17,
16,
16,
16,
16,
15,
15,
15,
14,
14,
14,
13,
12,
12,
12,
12,
11,
11,
11,
10,
10,
10,
10,
10,
10,
10,
10,
10
]
}
],
"layout": {
"autosize": true,
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"xaxis": {
"autorange": true,
"range": [
-0.5,
98.5
],
"type": "category"
},
"yaxis": {
"autorange": true,
"range": [
0,
443.1578947368421
],
"type": "linear"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABCkAAAHCCAYAAADCTZOBAAAgAElEQVR4XuzdB5QUxdrG8Xd2lygZFBURzAkFVAwgQYKKiAgiYEAFlCArknPOSYIKCBjAgAqYAEVBMH0KKIoKGPCKIhhQkCgg7Mx8523u7h2we7d7q1aH2X+f4zketqun+lc1PT3PVFeFotFoVNgQQAABBBBAAAEEEEAAAQQQQACBf1kgREjxL7cAL48AAggggAACCCCAAAIIIIAAAo4AIQUdAQEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIQV9AAEEEEAAAQQQQAABBBBAAAEE4kKAkCIumoFKIIAAAggggAACCCCAAAIIIIAAIYVhH/h5+37DI1AcAQQQQAABBBBAAAEEEEAgUQROLlkgUU7lXzkPQgpDdkIKQ0CKI4AAAggggAACCCCAAAIJJEBIYdaYhBRmfkJIYQhIcQQQQAABBBBAAAEEEEAggQQIKcwak5DCzI+QwtCP4ggggAACCCCAAAIIIIBAIgkQUpi1JiGFmR8hhaEfxRFAAAEEEEAAAQQQQACBRBIgpDBrTUIKMz9CCkM/iiOAAAIIIIAAAggggAACiSRASGHWmoQUZn6EFIZ+FEcAAQQQQAABBBBAAAEEEkmAkMKsNQkpzPwIKQz9KI4AAggggAACCCCAAAIIJJIAIYVZaxJSmPkRUhj6URwBBBBAAAEEEEAAAQQQSCQBQgqz1iSkMPMjpDD0ozgCCCCAAAIIIIAAAgggkEgChBRmrUlIYeYnG37cLxu/D3kepVhRkVPLRg1fheIIIIAAAggggAACCCCAAALHggAhhVkrEVKY+TkhxdgHUzyPck+rMCGFoTHFEUAAAQQQQAABBBBAAIFjRYCQwqylCCnM/AgpDP0ojgACCCCAAAIIIIAAAggkkgAhhVlrElKY+RFSGPpRHAEEEEAAAQQQQAABBBBIJAFCCrPWJKQw8yOkMPSjOAIIIIAAAggggAACCCCQSAKEFGatSUhh5kdIYehHcQQQQAABBBBAAAEEEEAgkQQIKcxaM9eGFJNmzpe33lsti54e7Qju2LVH+oycKWu/2ijFixWWYT1bS+UKZ2X5NybONOuAlEYAAQQQQAABBBBAAAEEEkmAkMKsNXNlSLHu6+/l4Sdekp9++T0jpOg9YoaUObGUdGzVWNZ9s1G6DZ4qC58aJfnz5ZXM/kZIYdYBKY0AAggggAACCCCAAAIIJJIAIYVZa+a6kOLgoTRpef8IGdjlTuk1fLoTUkQiUal6Y0d5Z/4kyZ8/ryPaqf9DcnODGlL98oqef6t5ZSUe9zDrf5RGAAEEEEAAAQQQQAABBBJKgJDCrDlzXUgxYfpcOfGEElK/9uXSMnWEE1Js3bbD+f8lz4/P0JwwY54UK1JIGtS9wvNvrVvUJ6Qw63+URgABBBBAAAEEEEAAAQQSSoCQwqw5c1VI8cVX38lDj70kM8d3l52792aEFJu2bJXUfpNl4eyRGZpTZ70ikWhUGtar6vm31FaNZfsfEek1JOzZCt1Sk+SM8iGzVqI0AggggAACCCCAAAIIIIDAMSGQN0/SMVHPeK1krgkp/jp4SO7sNFImDO7ozD2hE2Wmj6T4bdtOadF+iCyfPzGjncZMeU5KlSjqhBRef2tz6/Xyw89/yfAx3p2ww70RKXdqvDY/9UIAAQQQQAABBBBAAAEEELApUKpIPpuHy3XHyjUhxSdfbJC2PcdLnuRkp5GjIrJv/wE5rkB+eenxYdK07SB5c844KVyooPP3Dr0nSNMbakntapWlWqNU17/VuepiHvfIdW8ZThgBBBBAAAEEEEAAAQQQ8BbgcQ+z3pFrQoqjmWJHUujfBo17UkqWKCKprZo4q3uk9p0si58dK8cVzJ/p31jdw6wDUhoBBBBAAAEEEEAAAQQQSCQBQgqz1iSkeHq0I7hn7z7pM2qmrFn7rTOaQlf/qFqlQpZ/I6Qw64CURgABBBBAAAEEEEAAAQQSSYCQwqw1c21IYcb2v9KEFLYkOQ4CCCCAAAIIIIAAAgggcOwLEFKYtSEhhZkfc1IY+lEcAQQQQAABBBBAAAEEEEgkAUIKs9YkpDDzI6Qw9KM4AggggAACCCCAAAIIIJBIAoQUZq1JSGHmR0hh6EdxBBBAAAEEEEAAAQQQQCCRBAgpzFqTkMLMj5DC0I/iCCCAAAIIIIAAAggggEAiCRBSmLUmIYWZHyGFoR/FEUAAAQQQQAABBBBAAIFEEiCkMGtNQgozP0IKQz+KI4AAAggggAACCCCAAAKJJEBIYdaahBRmfoQUhn4URwABBBBAAAEEEEAAAQQSSYCQwqw1CSnM/AgpDP0ojgACCCCAAAIIIIAAAggkkgAhhVlrElKY+RFSGPpRHAEEEEAAAQQQQAABBBBIJAFCCrPWJKQw8yOkMPSjOAIIIIAAAggggAACCCCQSAKEFGatSUhh5kdIYehHcQQQQAABBBBAAAEEEEAgkQQIKcxak5DCzI+QwtCP4ggggAACCCCAAAIIIIBAIgkQUpi1JiGFmR8hhaEfxRFAAAEEEEAAAQQQQACBRBIgpDBrTUIKMz9CCkM/iiOAAAIIIIAAAggggAACiSRASGHWmoQUZn6EFIZ+FEcAAQQQQAABBBBAAAEEEkmAkMKsNQkpzPwIKQz9KI4AAggggAACCCCAAAIIJJIAIYVZaxJSmPkRUhj6URwBBBBAAAEEEEAAAQQQSCQBQgqz1iSkMPMjpDD0ozgCCCCAAAIIIIAAAgggkEgChBRmrUlIYeZHSGHoR3EEEEAAAQQQQAABBBBAIJEECCnMWpOQwsyPkMLQj+IIIIAAAggggAACCCCAQCIJEFKYtSYhhZmf75Dimw2hTF/pnLOjhjWhOAIIIIAAAggggAACCCCAwL8tQEhh1gKEFGZ+vkOKkWNS5MBf7i/WpFFYKlUkpDBsCoojgAACCCCAAAIIIIAAAv+6ACGFWRMQUpj5EVIY+lEcAQQQQAABBBBAAAEEEEgkAUIKs9YkpDDzI6Qw9KM4AggggAACCCCAAAIIIJBIAoQUZq1JSGHmR0hh6EdxBBBAAAEEEEAAAQQQQCCRBAgpzFqTkMLMj5DC0I/iCCCAAAIIIIAAAggggEAiCRBSmLUmIYWZHyGFoR/FEUAAAQQQQAABBBBAAIFEEiCkMGtNQgozP0IKQz+KI4AAAggggAACCCCAAAKJJEBIYdaahBRmfoQUhn4URwABBBBAAAEEEEAAAQQSSYCQwqw1CSnM/AgpDP0ojgACCCCAAAIIIIAAAggkkgAhhVlrElKY+RFSGPpRHAEEEEAAAQQQQAABBBBIJAFCCrPWJKQw8yOkMPSjOAIIIIAAAggggAACCCCQSAKEFGatSUhh5kdIYehHcQQQQAABBBBAAAEEEEAgkQQIKcxak5DCzM9qSPHl16FMa3P+uVHD2lIcAQQQQAABBBBAAAEEEEAgJwUIKcx0CSnM/KyGFI/OTJaff3EPKmrWiEidWhHD2lIcAQQQQAABBBBAAAEEEEAgJwUIKcx0CSnM/AgpDP0ojgACCCCAAAIIIIAAAggkkgAhhVlrElKY+RFSGPpRHAEEEEAAAQQQQAABBBBIJAFCCrPWJKQw8yOkMPSjOAIIIIAAAggggAACCCCQSAKEFGatmatCig9Xr5cps16WH3/6TQrkyyvNG9WWNrde7wju2LVH+oycKWu/2ijFixWWYT1bS+UKZ2X5tw0/7pexD6Z4tsI9rcJyatmojByTIgf+ct+tSaOwVKoYFeakMOvMlEYAAQQQQAABBBBAAAEE/m0BQgqzFshVIcXCpR/KeWeVkzPLl5Gdu/fKrR2Gyeh+baXi+WdI7xEzpMyJpaRjq8ay7puN0m3wVFn41CjJny9vpn8jpDDrgJRGAAEEEEAAAQQQQAABBBJJgJDCrDVzVUhxNFWXQVPkmpqXyrW1LpOqN3aUd+ZPkvz58zq7der/kNzcoIZUv7yi599qXlmJxz3M+h+lEUAAAQQQQAABBBBAAIGEEiCkMGvOXBlSRCJRWfnJehk26WmZM7W/HDyUJi1TR8iS58dnaE6YMU+KFSkkDepe4fm31i3qE1KY9T9KI4AAAggggAACCCCAAAIJJUBIYdacuS6kGD75aXl58fuSJzlZ+nVuKQ3rVZVNW7ZKar/JsnD2yAzNqbNekUg06vzd62+prRrL73+Epc+QiGcrdO2YJKeXF+kxICL7D7jv1rJ5SC6/NCRjJkdk8xb3fa6rG5Ibrg2ZtTalEUAAAQQQQAABBBBAAAEEclQgf97kHD1+oh8814UU6Q26+effpO+ox6Rpgxpy5aUVpEX7IbJ8/sSM9h4z5TkpVaKoE1J4/U0n3fzxl4MydLR3eHBf26iUP1Vk4PCQHPAIKZrfHJVLKotMnhqSn35273J1aolcWzea6P2R80MAAQQQQAABBBBAAAEEjmmBEoUPTyHAlj2BXBtSKNf8Re86q3kM7n63VGuUKm/OGSeFCxV0JDv0niBNb6gltatV9vxbnasu5nGP7PU7SiGAAAIIIIAAAggggAACCSnA4x5mzZqrQorVn38jlS88S5KTkpzVPXTiTJ1zommDmjJo3JNSskQRSW3VxFndI7XvZFn87Fg5rmD+TP/G6h5mHZDSCCCAAAIIIIAAAggggEAiCRBSmLVmrgopdJnRlZ9+KUlJSVIgf1658Zpq0vaOGyQUCsmevfukz6iZsmbtt85oioFd7pSqVSo4upn9jZDCrANSGgEEEEAAAQQQQAABBBBIJAFCCrPWzFUhhRmVe+l/OqT4ZE1SpqdxSWXvSTxz4vw5JgIIIIAAAggggAACCCCAwP8ECCnMegMhhZnfPz4nxdwXk2XdeveJOi+qEJWmTcKGZ0RxBBBAAAEEEEAAAQQQQACB7AoQUmRX7nA5QgozP0IKQz+KI4AAAggggAACCCCAAAKJJEBIYdaahBRmfoQUhn4URwABBBBAAAEEEEAAAQQSSYCQwqw1CSnM/AgpDP0ojgACCCCAAAIIIIAAAggkkgAhhVlrElKY+RFSGPpRHAEEEEAAAQQQQAABBBBIJAFCCrPWJKQw8yOkMPSjOAIIIIAAAggggAACCCCQSAKEFGatSUhh5kdIYehHcQQQQAABBBBAAAEEEEAgkQQIKcxak5DCzI+QwtCP4ggggAACCCCAAAIIIIBAIgkQUpi1JiGFmR8hhaEfxRFAAAEEEEAAAQQQQACBRBIgpDBrTUIKMz9CCkM/iiOAAAIIIIAAAggggAACiSRASGHWmoQUZn6EFIZ+FEcAAQQQQAABBBBAAAEEEkmAkMKsNQkpzPwIKQz9KI4AAggggAACCCCAAAIIJJIAIYVZaxJSmPkRUhj6URwBBBBAAAEEEEAAAQQQSCQBQgqz1iSkMPMjpDD0ozgCCCCAAAIIIIAAAgggkEgChBRmrUlIYeZHSGHoR3EEEEAAAQQQQAABBBBAIJEECCnMWpOQwsyPkMLQj+IIIIAAAggggAACCCCAQCIJEFKYtSYhhZkfIYWhH8URQAABBBBAAAEEEEAAgUQSIKQwa01CCjM/QgpDP4ojgAACCCCAAAIIIIAAAokkQEhh1pqEFGZ+hBSGfhRHAAEEEEAAAQQQQAABBBJJgJDCrDUJKcz8CCkM/SiOAAIIIIAAAggggAACCCSSACGFWWsSUpj5EVIY+lEcAQQQQAABBBBAAAEEEEgkAUIKs9YkpDDzI6Qw9KM4AggggAACCCCAAAIIIJBIAoQUZq1JSGHmR0hh6EdxBBBAAAEEEEAAAQQQQCCRBAgpzFqTkMLMj5DC0I/iCCCAAAIIIIAAAggggEAiCRBSmLUmIYWZHyGFoR/FEUAAAQQQQAABBBBAAIFEEiCkMGtNQgozP0IKQz+KI4AAAggggAACCCCAAAKJJEBIYdaahBRmfoQUhn4URwABBBBAAAEEEEAAAQQSSYCQwqw1CSnM/AgpDP0ojgACCCCAAAIIIIAAAggkkgAhhVlrElKY+RFSGPpRHAEEEEAAAQQQQAABBBBIJAFCCrPWJKQw8yOkMPSjOAIIIIAAAggggAACCCCQSAKEFGatSUhh5kdIYehHcQQQQAABBBBAAAEEEEAgkQQIKcxak5DCzI+QwtCP4ggggAACCCCAAAIIIIBAIgkQUpi1JiGFmR8hhaEfxRFAAAEEEEAAAQQQQACBRBIgpDBrTUIKMz9CCkM/iiOAAAIIIIAAAggggAACiSRASGHWmoQUZn6EFIZ+FEcAAQQQQAABBBBAAAEEEkmAkMKsNQkpzPziMqRYtz6U6VlVuCBqeNYURwABBBBAAAEEEEAAAQQQcBMgpDDrF4QUZn5xGVK89XaSvPd+kuuZlSkTlXZtwoZnTXEEEEAAAQQQQAABBBBAAAFCCvt9gJDC0HTDj/tl7IMpnke5p1VYTi0blZFjUuTAX+67NWkUlkoVo/LozGT5+Rf3URA1a0SkTq2IzH0xWbxGSlxUISpNm4SFkMKwUSmOAAIIIIAAAggggAACCGRTgJEU2YT7b7FcFVKs3/CDTHh0rmz4fosUzJ9P7m52ndzauI5DsWPXHukzcqas/WqjFC9WWIb1bC2VK5yV5d+O1ZBizWdJ8sZS99EWetJ9eqSZ9SxKI4AAAggggAACCCCAAAK5UICQwqzRc1VI8cob/yflTzlRKlU4U37fvlOatxsiM8Z3lzPLl5HeI2ZImRNLScdWjWXdNxul2+CpsvCpUZI/X95M/3YshxQvL3APKQoUIKQwe1tRGgEEEEAAAQQQQAABBHKrACGFWcvnqpDiaKr7+z0kja6rJrWrXSxVb+wo78yfJPnz53V269T/Ibm5QQ2pfnlFz7/VvLLSMTsnhY6kIKQwe/NQGgEEEEAAAQQQQAABBBA4WoCQwqxP5NqQ4tChNLn+jl7y1EN9JSk5SVqmjpAlz4/P0JwwY54UK1JIGtS9wvNvrVvUJ6Qw63+URgABBBBAAAEEEEAAAQQSSoCQwqw5c21I8fDjL8mf+w9I79TbZNOWrZLab7IsnD0yQ3PqrFckEo1Kw3pVPf+W2qqxbN0eln5DI56t0Pm+JDm9vEivgRHZf8B9tzuah+SyS0IybnJENv/kvs+1dULS4NqQzHo2Kp9+7r6E6CWVQ3LXrSFZ9EZUlix336dcWZFu9yfJqtVReXau+z4FC4qMHuw9X4VZl6M0AggggAACCCCAAAIIIJC4AgXzJSfuyf0DZ5YrQ4oXFrwtb723WqaO6iJ58qTIb9t2Sov2Q2T5/IkZ5GOmPCelShR1Qgqvv7W59XrZ/OtBGTLKfUUOPVhq26iULyfSf1hIDniEFC2aRuXSyiKTpoRky8/urV73apHr6kblmedD8tla930qVxS5vVlUFi8NybJ33Pc59RSRTh2i8vGnIi+86F7vggVEhvZ3DzD+gT7JSyCAAAIIIIAAAggggAACx6xAsUKHpxBgy55ArgspXn3zA3nxtXfl0TFdpWCB/I5aNBqVao1S5c0546RwoYLOv3XoPUGa3lBLaler7Pm3OlddzOMe2et3lEIAAQQQQAABBBBAAAEEElKAxz3MmjVXhRRvvvOxPPvSUpk2uqscV/BwQJG+DRr3pJQsUURSWzVxVvdI7TtZFj871tkvs7+xuodZB6Q0AggggAACCCCAAAIIIJBIAoQUZq2Zq0KKWjd3lu07dklI/veYQ7XLKjihxZ69+6TPqJmyZu23zmiKgV3ulKpVKji6mf2NkMKsA1IaAQQQQAABBBBAAAEEEEgkAUIKs9bMVSGFGZV7aUKKnFDlmAgggAACCCCAAAIIIIDAsSlASGHWboQUZn7MSWHoR3EEEEAAAQQQQAABBBBAIJEECCnMWpOQwsyPkMLQj+IIIIAAAggggAACCCCAQCIJEFKYtSYhhZkfIYWhH8URQAABBBBAAAEEEEAAgUQSIKQwa98D8K8AACAASURBVE1CCjM/QgpDP4ojgAACCCCAAAIIIIAAAokkQEhh1pqEFGZ+hBSGfhRHAAEEEEAAAQQQQAABBBJJgJDCrDUJKcz8CCkM/SiOAAIIIIAAAggggAACCCSSACGFWWsSUpj5EVIY+lEcAQQQQAABBBBAAAEEEEgkAUIKs9YkpDDzI6Qw9KM4AggggAACCCCAAAIIIJBIAoQUZq1JSGHml9AhxaYfQ7JyVZKnUMMGYSlY0BCQ4ggggAACCCCAAAIIIIBAAgkQUpg1JiGFmV/ChxSPz0r2FOrdPY2QwrD/UBwBBBBAAAEEEEAAAQQSS4CQwqw9CSnM/AgpGElh2IMojgACCCCAAAIIIIAAAokkQEhh1pqEFGZ+uT6kCIdF5sz1Hm3R4NqInHJK1FCZ4ggggAACCCCAAAIIIIDAsSFASGHWToQUZn6EFGGRcRNTPBXbtg4TUhj2MYojgAACCCCAAAIIIIDAsSNASGHWVoQUZn6EFIQUhj2I4ggggAACCCCAAAIIIJBIAoQUZq1JSGHmR0hBSGHYgyiOAAIIIIAAAggggAACiSRASGHWmoQUZn6EFIQUhj2I4ggggAACCCCAAAIIIJBIAoQUZq1JSGHmR0hBSGHYgyiOAAIIIIAAAggggAACiSRASGHWmoQUZn6EFIQUhj2I4ggggAACCCCAAAIIIJBIAoQUZq1JSGHmR0hBSGHYgyiOAAIIIIAAAggggAACiSRASGHWmoQUZn6EFIQUhj2I4ggggAACCCCAAAIIIJBIAoQUZq1JSGHmR0hBSGHYgyiOAAIIIIAAAggggAACiSRASGHWmoQUZn6EFIQUhj2I4ggggAACCCCAAAIIIJBIAoQUZq1JSGHmR0hBSGHYgyiOAAIIIIAAAggggAACiSRASGHWmoQUZn6EFIQUhj2I4ggggAACCCCAAAIIIJBIAoQUZq1JSGHmR0hBSGHYgyiOAAIIIIAAAggggAACiSRASGHWmoQUZn6EFIQUhj2I4ggggAACCCCAAAIIIJBIAoQUZq1JSGHmR0hBSGHYgyiOAAIIIIAAAggggAACiSRASGHWmoQUZn6EFIQUhj2I4ggggAACCCCAAAIIIJBIAoQUZq1JSGHmR0hBSGHYgyiOAAIIIIAAAggggAACiSRASGHWmoQUZn6EFIQUhj2I4ggggAACCCCAAAIIIJBIAoQUZq1JSGHmR0hBSGHYgyiOAAIIIIAAAggggAACiSRASGHWmoQUZn6EFD5DigWLkjyly5WLSsULo4YtQXEEEEAAAQQQQAABBBBA4N8XIKQwawNCCjM/QgqfIcWI0Sny10F37JsbhwkpDPshxRFAAAEEEEAAAQQQQCA+BAgpzNqBkMLMj5CCkMKwB1EcAQQQQAABBBBAAAEEEkmAkMKsNQkpzPwIKQgpDHsQxRFAAAEEEEAAAQQQQCCRBAgpzFqTkMLMj5CCkMKwB1EcAQQQQAABBBBAAAEEEkmAkMKsNQkpzPwIKSyGFNMfT/ZsjbPPjMrVNSOGrUVxBBBAAAEEEEAAAQQQQCBnBQgpzHwJKcz8CCkshhTTZiTLL7+GXFtEAwpCCsPOSnEEEEAAAQQQQAABBBDIcQFCCjPiXBdS7Nt/QHoNn+GoPTyiU4bejl17pM/ImbL2q41SvFhhGdaztVSucJbz98z+tuHH/TL2wRTPVrinVVhOLRuVkWNS5MBf7rs1aRSWShWj8ujMZPn5F/cv6TVrRKROrYjMfTFZ1q133+eiClFp2iQsb72dJO+9777kZ5kyUWnXJixrPkuSlxe471OggEifHmmy6ceQPD7Le3RD7+5pEiakMHsHUhoBBBBAAAEEEEAAAQQSSoCQwqw5c1VI8etvf0hqv8lS6YIzZevvO44IKXqPmCFlTiwlHVs1lnXfbJRug6fKwqdGSf58eSWzvxFSiIyb6B3StG0dllNOiYqfJUgZSWH2ZqY0AggggAACCCCAAAII/PsChBRmbZCrQoo/9x2QDRs3y8GDafLMi0szQopIJCpVb+wo78yfJPnz53VEO/V/SG5uUEOqX17R8281r6zE4x6MpDB7B1IaAQQQQAABBBBAAAEEEkqAkMKsOXNVSJFOteKT9TLnpWUZIcXWbTukZeoIWfL8+AzNCTPmSbEihaRB3Ss8/9a6RX1CCkIKs3cgpRFAAAEEEEAAAQQQQCChBAgpzJqTkEJENm3Z6jwGsnD2yAzNqbNekUg0Kg3rVfX8W2qrxvLrtjTpPyzq2QqdO4TktPIivQZF5cAB991ubxaSyy4RGf9QVDb/5L7PtXVErr8mJLPmRGXN5+77XFJJ5M5bQ/Lam1FZstx9n3JlRbqmhmTVapE589zrXbCgyKhBIfnue5GHHvU+t5EDQ5IWFhk4wnufLh1DUv5UkZ4Do/KXx5wcLVuE5NLKIuMmR2XLz+71rl8vJNfVNevslEYAAQQQQAABBBBAAAEEclrguPzej8Pn9GsnwvEJKUTkt207pUX7IbJ8/sSMNh0z5TkpVaKoE1J4/a3NrdfLlq2HZPD/so2/9Yn724mULyfSb6h4hhS3NhW59GKRiVNEtniEFPWuFrmunsjTz4t89oV717u4osjtzUUWLxF56x33fU49ReSB+0Q+/kTk+Rfd9ylYQGTYAJGNP4hMOTzHqOs2tL9IOE1kyGjvfTp1ENFgpO8Q8QwpbmsmogHLhEdEfvIIKTSkuaZOIrzlOAcEEEAAAQQQQAABBBBIZIGix+VJ5NPL8XMjpBCRaDQq1RqlyptzxknhQgUd9A69J0jTG2pJ7WqVPf9W56qLedyDxz1y/E3KCyCAAAIIIIAAAggggMCxI8DjHmZtRUjxX79B456UkiWKSGqrJs7qHql9J8viZ8fKcQXzS2Z/Y3UPVvcwewtSGgEEEEAAAQQQQAABBBJJgJDCrDUJKf7rt2fvPukzaqasWfutM5piYJc7pWqVCs5fM/sbIQUhhdlbkNIIIIAAAggggAACCCCQSAKEFGatmStDCjOyI0sTUhBS2OxPHAsBBBBAAAEEEEAAAQSObQFCCrP2I6Qw82NOin94TooX5iXLrj3ujVayuMjNjcOGLUpxBBBAAAEEEEAAAQQQQCD7AoQU2bfTkoQUZn6EFP9CSLH+q5Brq1W8MOqEFOvWu/89vVCFC7yXTDXsDhRHAAEEEEAAAQQQQACBXC5ASGHWAQgpzPwIKeIwpFi6LEne/yDJtWVPOSUqbVsz2sKw21McAQQQQAABBBBAAAEEPAQIKcy6BiGFmR8hBSGFYQ+iOAIIIIAAAggggAACCCSSACGFWWsSUpj5EVIQUhj2IIojgAACCCCAAAIIIIBAIgkQUpi1JiGFmR8hBSGFYQ+iOAIIIIAAAggggAACCCSSACGFWWsSUpj5EVIcoyHFXwczb/h8eQ07BsURQAABBBBAAAEEEEAgVwoQUpg1OyGFmR8hxTEaUnyyJkleXeg+uWbBgiK9u6cZ9gyKI4AAAggggAACCCCAQG4UIKQwa3VCCjM/QgpCCsMeRHEEEEAAAQQQQAABBBBIJAFCCrPWJKQw8yOkIKQw7EEURwABBBBAAAEEEEAAgUQSIKQwa01CCjM/QooEDil+2BSSlavcHwnRbtOoYVgKFDDsQBRHAAEEEEAAAQQQQACBhBIgpDBrTkIKMz9CigQPKZ6YnezZQ/r0SJNDh0R27Ax57pOSLFKmTNSwl1EcAQQQQAABBBBAAAEEjhUBQgqzliKkMPMjpCCkkPGTUjx7Ubs2YUIKw/cYxRFAAAEEEEAAAQQQOJYECCnMWouQwsyPkIKQgpDC8D1EcQQQQAABBBBAAAEEEkmAkMKsNQkpzPwIKQgpfIUUD0/1fmykZo2IXFSBR0IM34oURwABBBBAAAEEEEAgLgQIKcyagZDCzI+QgpDCV0gxbFSKM3+F29a0SZiQwvB9SHEEEEAAAQQQQAABBOJFgJDCrCUIKcz8CCkIKayFFFOmJ8uePe6TcF55WUR0xMXzc5Plhx/d9zn7rKg0aRQ27NEURwABBBBAAAEEEEAAARMBQgoTPRFCCjM/QgpCCqshxdat7gFEnVr/Cym+/Np9n0oVD4cUS95Kko9Xuy+dWrp0VO5pFZbVnybJ/v3enb96tYjhO4PiCCCAAAIIIIAAAgjkTgFCCrN2J6Qw8yOkIKSIy5Di/z50DylOLfu/kGLBIvd9Ch0n0rNbmmz8PiRPPeM9l0bvnmmSP5/hG4jiCCCAAAIIIIAAAggkmAAhhVmDElKY+RFSEFIkdEgx62nvkKJvL0IKw8sHxRFAAAEEEEAAAQQSUICQwqxRCSnM/AgpCClydUhx4IDI+x+4j8jQt9YllaNy8klRWfi69z6nlYtKhQtY3cTwUkRxBBBAAAEEEEAAgTgRIKQwawhCCjM/QgpCilwfUkyYnOL5Lmp/b9gJKYaOTJG0NPfdmt0cdkKKl171HrVRqkRUalSPyPbt7vNxpB+5ZMmor30M3/YURwABBBBAAAEEEEDAU4CQwqxzEFKY+RFSEFIQUlgKKR55NFl++809hKh7dcQJKea8kCxff+O+T+VKEWl8Y0TeWJokH65wH7lR7tSotLk77EwsuvEH78CjedOw/PJr5oFIiRJRyZfX8AJCcQQQQAABBBBAAIGEEyCkMGtSQgozP0IKQgpCimM0pPB6BKVwYZEeXdLku40hmZ3JxKH9eqfJvn0heS2TR1nq1I7ISSdG5cfNmQceOqEpGwIIIIAAAggggEBiCBBSmLUjIYWZHyEFIQUhRS4PKSY+5P2YSoe2YSekGDI8RcIeq7o2vyUsF5wXdVZTyWw7/TSCDMPLNcURQAABBBBAAIF/RICQwoyZkMLMj5CCkIKQgpDC8yoSJKR4eGqy/L7NPaioVyci1atF5JsNmQcZ55xNkGF4Sac4AggggAACCCBgLEBIYUZISGHmR0hBSEFIQUjxj4UUzz6f7BlUXFI5Io0aRmTxkiTPURkF8ou0vitseNWjOAIIIIAAAggggEBmAoQUZv2DkMLMj5CCkIKQgpAi7kKKFSvdJw4tXy7qhBSrPk6SFau8R2V0Tg3Lt9+F5LXF3kvHdmwXlj17QvLUHO99br0lIqVLR2XNZ9775MsflfPPZQSI4UcRxRFAAAEEEEAgjgQIKcwag5DCzI+QgpCCkIKQ4pgMKbwCiCJFRLp3TnNCiqef9Z5vY0CfNCekmPSI9z4aZGhIMXhYikQ8cogWzcJOSDF5SrIcPOgenFx5eUSuqhqRZ+Ykyy9b3fc556yI3HiDx8Qfhtd5iiOAAAIIIIAAAkEECCmCaP19X0IKMz9CCkIKQgpCCkIKD4GgIcX27e4BxDV1/xdSbPiP+z6XXnw4pPi/D71HbWg1NexY+VGSpKV5X/x1H30dryVxteQVl0UkJcXwA4TiCCCAAAIIIJCQAoQUZs1KSGHmR0hBSEFIQUhBSBFHIcXrbyQ5IYTbpiuk3N0y7Pxd93PbihUV6fpAmhNS6MgNr21g3zTZtSskj0zLfHWXUsdHJZrF0yzJSeK5+kv66+s+bAgggAACCCBwbAgQUpi1EyGFmR8hBSEFIQUhBSFFLg4p9DEVry21fVg0pNDHXby225qH5dxzos5jM3/84T5K5Lp6Eal6ZUSWvJV5UqEjTvzs89fBzD/48uUVyWofHUWS2WiU9Ffws5++HhsCCCCAAAKJJEBIYdaahBRmfoQUhBSEFIQUhBSEFK4CtkMKnSNE5wpx26pcGpGG10ecyU51YlS37YzTo3LXHWHRiVV1FRi3rXixqHTpFHZWkdHVZLy2Qf3TnFBFl8712u6/LywlSkRlyHDvkOb2FmHRpXO9RrbosYsXE7nyikim++h+11/nb5+9f2b+wV/oOJGs9ilYUGTfvqxvIPLnEznwV9avl/WR2AMBBBBA4FgSIKQway1CCjM/QgpCCkIKQgpCCkIKQgoXgSAhxcSHkmXHTvcApv41ESekmP1Msny30X2fy6tEpEH9iCx8PUk+Xu0ewJx1RlRa3h6WD1ckyRtL3ffRUEVXt/n6m5DMecE7gBk8IE22/R6SRx713ueBjmEpWjQqQ0d6hzR33BaWs8+MyqsLvUfJlC59eA6UzPbJk+dwSONlmN48GkLZ2sfw9oniCCCAQEILEFKYNS8hhZkfIQUhBSEFIQUhBSEFIQUhxd8EgoQUEyanyM5d7m8kDR80pJj1dLJs/N49pNG/634LFiXJ6k/dAw8NQzQU0cllvR4LKlkyKlrvL78OyfNz3QOYpJCIhjRbt4bk/Q+8w5XatSJSuLAGMN5BTsWKEdHwaP5L3vuULRsVDaEym8hW5U44IRpX++TJK1KwYFR2eYRv6a2t9WZDAIHEEyCkMGtTQgozP0IKQgpCCkIKQgpCCkIKQopcGVJMme4dLuiIFA0pho3yHkmiI1s0pBg/KUV273a/kOgIGQ0pnpidLD9s8lim+IqI6IgbHW3yyRr34EQfK9LHizRYWbrMfZ/jS0VFRwCt/yokL8xzPzedxFYfd/rl15BMm+F9/vrYlIYUI0Z7n78+fqWPYWU2akd99HGuzPbREUA6d83LC5Jk/353I9XVOXDeez9Jtvyc+T4//eT9dz1OmTJR+fmXkEQzWfX5uEJRyZ9fZPu2rI9leCtOcQTiUoCQwqxZCCnM/AgpCCkIKQgpCCkIKQgpCCkIKY4SIKTwH1KMm5gie/a4X0h1rhkNKR6flSybfnT/wq8T66aHFGs+cw9gdILe9JDirbfd99FRHTqXzrr1IZn7onsAo5Ph6upGGlI8OtM7pNFVkjSkGDnGO6TR1ZZ01SV9lMtru+D8qOgS05ntc9KJUdGJg196NdnTUSfobdEs7Bl0pb9++XKMbDH8akTx/woQUph1BUIKMz9CCkIKQgpCCkIKQgpCCkIKQgpCiiMEgoykyO0hxdgHUzwnq73xhogTUjz2ZLL8uNk9pLmqaiQjpPjsc/d9zj836oQU776XJMvecQ9pSpeOSsd2YfliXUg+8piAWBv5nlZh0dEmXhMQ6z7Nbg6LzhWT2QTEdWtHREMRPTevrXKlqFxSOeIsi53Zpo9z2drH8KsRxQkprPQBQgofjDt27ZE+I2fK2q82SvFihWVYz9ZSucJZTskNP+4Xvbh6bXohO7Vs1EmSvWb4btIoLJUqRp1EWpNpt61mjYjUqRVxkm1NuN22iypEpWmTsGhCrsP53DYdoteuTVg0addhgW5bgQIifXqkOYm9JvdeW+/uaRImpCCkIKQgpCCkIKQgpCCkIKQgpIgRCDKSIh5DCq95UjR4GNAnzQkppj/ufY/cvXOaE1KMGuf9HaH1XWEnpBg9PsVztaBGDSNOSDHjiWTZssX9/r96tYjUqxORF19Ols/Xuu9zwXlRaX5LWN5+N8n5z23TESkd2oadY+gEw16b7qN10YmKvbY7bg1LcrJkOgJG59Epd2o008emrrgsKpUrRRzrSNj91c46Kyp1r444c9v8vs19n5IlDwdHGlBt2OBuFAqJtL83LBp0rViV+flrYKaraXlt+ijb2acW8Pw7f8hagJAiayPpPWKGlDmxlHRs1VjWfbNRug2eKgufGiX58+UlpCCkIKQgpCCkIKQgpCCkIKQgpCCkIKTIEDjWQwoNPNw2fWymX+80J6TQ4MRr69ElzQkpNIDx2trcHXZCCg1y9u9336vxjZGMkMJrrpQa1SMZIYWOgnHbKlwQzQgpdDSN23bySdGMkEIfHXLbdFnpvr3SnFE9mY2A6dktjZDCx3fszHYhpMgCMBKJStUbO8o78ydJ/vx5nb079X9Ibm5QQ2peWYmQgpCCkIKQgpCCkIKQgpCCkIKQgpCCkIKQ4r8ChBSEFIYZhRBSZCG4ddsOaZk6QpY8Pz5jzwkz5kmxIoWkdYv6hBSEFIQUhBSEFIQUhBSEFIQUhBSEFIQUhBSEFI4AIylMIwohpMiKcNOWrZLab7IsnD0yY9eps16RSDQqqa0ay+49Il37H/I8TO/OKXLmaSG5v9ch2X/AfbfWtydL1cuSZNj4NNm02X1W4RuuTZKbrk+W6bPC8vEa9zWfLr8kSe69M1lefi0sry1x3+e0ciHp1zVFPlgVkSfnuD/cdVxBkcmj8si330VlzENpnuc2aWQeSUuLSveB3vv07ZIip5cPSWrPQ55zctzTMlmuuDRJho5Lkx+3uJ//jfWT5MbrkmXak2H55DP3c9Nj6LFeXBiWxW+576N10Tq9vyIis593P/9Cx4nouX3zn6iMe9j73NTo4MGo9BjkvY9aq/l9PQ7JwYPulNpm2naDx6TJlp/dz1/bXvvA1MfD8ukX7uemfUj70vwFYXljmfs+2he1T773YUSeesH9/IsUFpkwPI98tSEqD07xPreHx+SRffui0muI9z4DuqdIubIh6dD9kBzyeJu0uztZqlROkkGj0+SnX9zPv3GDZGlwTZI88lhYPlvrfm7VLk+SVrcly9xXwrLkbfd9zjojJL06pcg7H0Tkmbnu51+saEjGD02RL7+JyoSp3uf2yNg8sndvVHoP9d5nYI8UOfWUkLTresiZv8Vt69AqWS6plCQDRqbJL1vdz//mhslSv26SPDwzTT5f575P9SuT5K4WyfLCy2FZ+o77+Z9zZkh63J8iy9+PyJz57hUqXiwk44akyLqvojLpUe9zmzouj+zcHZW+w7z3GdwrRU45OSRtuxySiMdSdfe1SZaLL0qSfiPSZOtv7ufW9MZkua5OkkyeniZrv3Tfp0bVJLmzebI892JYlr3n/mLnnR2Sbh1TnL/rfm5byRIhGTMoxXkdfT2vbdr4PPLHjqhTb69tSO8UOan04fP32lLvSZZKFyY5jr9tcz+3ZjclyzVXJzntoe3ittWqliR3NEt22lXb1207/5yQdL0vxekf2k/ctlIlQzJ6YIp8vi4iD8/06LQiMn1CHqe+2m+9tmF9U+SEUof7v9d2/73JUrFCkvM+2rbd/dyaN06WerWSnPejvi/dttrVk+S2psnO+1rf325bhfNC0rl9inN90OuE26b1HTkgxbnO6PXGa5sxMY/zftXrltc2ol+KlCh++PrntT3QLkUuPD/kXEe3/+F+brfenCx1aiQ512O9Lrtt+nfdT6/ren132/R19PX080E/J9y20ieEROutnzP6eeO2JSWJ6Pnr55V+bnlt6lisyOHPP69N20PbRT9Hd+x0PzdtV21f/TzWz2W3TfuH9hP9XNfPd7etYoWQ3H9vinN/oPcJbpu+X7Xf6n2G3m+4bTqEXfu/3q/ofYvXpu+jQoUO3/94bfp+1Pel3kft3OV+bvq+1ve33o/pfZnbptcHvU7ofZ3e37ltep3R643eH+p9ottW5qSQ6HVL7zP1ftNt03kW9Pqn96t63+q16XW0YMHD979em16P9bqs99F6P+226XVdr++jJ6XJf753P3/9fNDPiSeeDcuHH7mfv37O6OfNojcj8srr7uemn1f6ubXqk4jMfMp9n7x5RfTz7/tNURkxwfv89XM0b96QPNDH+/z181g/lzv3PeQ5cah+ruvn+8iJabLxB/fz1/sDvU947OmwrFztfv56n6H3GwveCMuCxe776P2K3rfoMfRYbps+7qD3P1oXrZPXpvdRKSmHz81r0/sxvS9Toz/3ue+l93V6f6fWau626f2h3idqm2nbuW16n6n3m9r22gfcNr1f1ftW7UPal9y2AvlF9P5X+6L2Sa9N76P1fpot+wKMpMjC7rdtO6VF+yGyfP7EjD3HTHlOSpUoKm1uvT778pREAAEEEEAAAQQQQAABBBBAAIEjBAgpsugQ0WhUqjVKlTfnjJPChQo6e3foPUGa3lBL6lx1Md0JAQQQQAABBBBAAAEEEEAAAQQsCRBS+IAcNO5JKVmiiKS2auKs7pHad7IsfnasHFcwv4/S7IIAAggggAACCCCAAAIIIIAAAn4ECCl8KO3Zu0/6jJopa9Z+64ymGNjlTqlapYKPkuyCAAIIIIAAAggggAACCCCAAAJ+BQgp/EqxHwIIIIAAAggggAACCCCAAAII5KgAIUWO8nJwBBBAAAEEEEAAAQQQQAABBBDwK0BI4VeK/RBAAAEEEEAAAQQQQAABBHJMQFdR7NXx1hw7Pgc+NgQIKQzbKRyJyLcbt4guVXpCqWJy9ullJSkpFOion637j5x4QgnnP902bvpZfvzpN6l++YWSrAtyB9h0NZIvv90k27ZrfYrL2WeUlWRd1DzAZrM+Xi87btrz0r19cwmFglkFOA3PXcPhsHz93WbZ9scuOaFksWwZpR/c5rFsnFvsMbb88rssXr5KXl+2Ul5+Ynigw+f0eU2b/ap0uKtRoDol0s7/+eEnmTzzRSlftrR0adss45rxx47dsumnrVKuTGkpUbzIP3bKOVWfffsPyJvvfCwlixeVGldclO3zsXlNsnGNzPaJ5HBBG+9bm9a2Tjen6/RvX49s3EfYso6X4+TENenRpxZIs4a1/nZt/XTtBrn4wrMzPfWcqI/bCxp9blu4H7Xd/vF0TbJ5Hcnpz5F/8x45vQ+kpYVl7dcb5aM1X8vHn30tjz3Yw3b38Dxe7aZdnPvWokWOy/I1tS3+je8SWVaMHYwFCCkMCDf//Jt0GvCw5M2TIt/98LOULXOCRCNRmTzsfil3SmnfR27Qsrc880g/KV60sOhFtNeI6XLeWeWcN+eQ7q18H+eHzb/K/f0fkpTkJCeg+H37TgmHI/LQ8E7/Sn204kvfWy3Tn14of+zcIxKNZpzL9p275fyzyktq65ukWpULszzHpvcOcsIbvRilb3pRypMnRQ4dSsv49zVLH8v0WBu+2+y0WYH8eR2j37btkLT/Gp1W9sQs6xG7g61jVa53j+vrlixRVN564cFAddLg5Y23P3KCCf3/ejUvlWtrVZGLzjvD93FsnZe+4P39HnJ93U/WfiOXVz5fypc9UW5rXEeOL1ksSaq9hAAAIABJREFU0/q5GeXNm0eOL1FUFj092ve5uR1H+5GGgWlpaRnHyaof6Y5e7XZ0ZdyOddcDo+SuZtfKtxt/ks/Wf+uEnPVrXy5zXnpLzjztFNm05VcnxLnpuquMzk0L++lHOVEffe17e4x3rkfaF5vfWFua3lBTNmzcIuu/+V4a16/u+9zi7Rrp1f5++2R639G+p58fB2OuYekoen1687lxvo1svW9tWZsaxZ64rTrZuh7Z+jzSczS5j8iJfhR7XdPron7mRiKRv/XDY/EaecUN9zn3VR3uPPLa2qztYJk7Y3Cm77Wcukbqi9r43DbpR7EnbvK5djRgvF2TbF1HbN1rq5ete2Rb7bZm3bcZocRX326Ss047RS656Gy5+KKzfN2rZ9WX/H5Gzp77hsx4ZpHsP/DXEff9R/exaWO6yqDxT8qbc7L+rDS5186Ja63vD/dcvCMhhUHjt+3xoDSuf5Xz5eKGlr2dL0vvrvxcnnjudZk9uY/vI197a4+Mm1E9ZqsW18kVF58vekF9/Zkxvo9zZ6eRcmfTa6VujUsyyry74jOZPe9NeWJCL9/HsVUffcHat3SVsf3byRnlTz7i9dt0HSuPT+gpBfLlk/z582ZZtyeeXyz6K3PLpvWkRLEismPXXnnmpaVSrEghad2ifpbl03e4I3WE8+WwXo1LM8rol/oXFrwtT070b6SFbR4rvTJ6Q7hz9155fdkqOXjokLRq7v/c1HT7jt1S48qKUq/6JXLheaf7dond0eZ5af9z20Y/8pz0uK+5fPXtj7Ji9XonpPO7qdGmLVvlocdflIb1qsrV1Sr7LXrEfpFI1Lk5fGrem3LaqSfJzQ1qZOs42SnUvP0QeeHRQaK/VFSp306WzZsot903TOZMHSAlihV2PphbdRkjz08bmJ3DOx/qQfpRTtXnmhbdnWvb3n0HpPuQqTJ9bDfZvedPuT11hCycPdL3udm6Jtm6Rh5dcZM+qdc2DZTvuuVaOb5kUdm9d58sWrpCdu35U1JbNfZtZOt9a8vappGtOtm6Htn6PFIjW/cRtvpRervp9eP2jsOlW/tmUrvaxb77oa0dc+Ka1KTNAOcaNGLy07Jn734Z3P1uKXvyCeInpMiJ+qiVrc9tW/3IVvvZvEey9f63dRybnyO27pFttdsFte6W888uJ3fdcp3zA5f+EGhjM/mMzOr1NeTXsD/IFvQeKfbYtq+1Qeqd2/YlpDBo8Vo3d5Z3XpzkHCE9pND/v+62nvLGnLG+j3zDnX1k7vRB8sPmrdJv9MyMofl1mnWVZXMn+D6ODo9aPn/i3/av17ybLA3wi7yt+mhFGrcZIC8/Puxvdbq782iZNam373O78e6+8uqTI/42pOva23r4SlDTX6hG407y3st//3W/ZpMH5N2XJvuuj+5o81huL9yu54PODZXf7e4HRsueP/dJraqV5JqaVeScM8r6LXrEfjl9Xuk3ZhpS6RZ74xCkwnv/3C+NWvUL9B5xO75+WNW/vVeg92z6cbI7TLtFh6EZAcQVDTrIytemOV9WHh3TNePRj0Z395NXZ40IQuK6r59+lFP1ubXDMJk1ubfky5vHOb8Z4w73Zw0vljw/3ve52bom2bpGelU8O32y4V19ZcGsv1/bYr38QNl639qytmmU03VKD839Xo9sfR7p69m6j7DVj7ROOrJrwNjH5VBamhw8mCZ1ql8cKDCPbft4ukZqSPHSf+9H3nr/Exk/7QW5pWEtee2tFRn/7tVvc+oaaetz21Y/0vPPbpsdbRdv1yRb1xGbnyO27pFttZuOCtcfW99b8bls+2OnVK1SQWpeWVGqVDovcBDg9l7KzmekrcdGvd7bfu6RYsvavNb6+WzPzfsQUhi0vl6A9YutDtnVkEK/ULz65ofOB176FzA/h9df8R97dpEcOHhIRvW5V6667ELR5xJHPfysTBnZ2c8hnH0at+4vk4Ye+aiJ/uLceeDDgeYksFWf2IrrF0H9dbhggfy+zyd2Rw1a9OaicKGCGf+858/90qR1/0ABjIYaL84cKoWOK5BxnF27/5Sm9w4MdBznZtbisY5G0V9WW3UeHehRBj3G1t//kMXLDz/usXfffies0DRcHx/yu+XkeR1dBx3N8NLi96Rpg5p+q3fEfn1GzpBRfdtmq2x6Ie2XDVr2keXz/AeCWtZkeK0OHR7dt63z5b1Z+yHOYz1Pz1/ijCrRoZXrN/zgzOWw/p1ZRufmtx/lVH1eX75Klr67Wm6qf5VMnfWKPHBPU/lozVey8tMvA40SsXVNsnWNzKxRgvbJus27ydzpg50RNOnbgb8OSsv7R8i8GUN8t7+t960ta5tG/0SdtL5+r0e2Po/0NW3dR9jqR/qeHTf1OSeUaNn0Gvnr4CHpPWKGFC9WWAZ1vct3f4zHa2RsSKH103uIBx99QeYvelfWvf1kpueWU9dIW5/btvqRyefa0YDxdk2ydR35Jz5HAr3RDO9HvF5L3x/vfLhGZr3whjN6dfUb04NWy3X/oJ+Rth4bdauM33uk2LK2rrVWMBP8IIQUBg08bOJTckfTa0TnMqh+0/3OB95llc6ToT1aZUyC6ffwO3btccIOfXwhu5umn0PGz5JralVxnvHXN58+76b18TPvQ+zr2qiPHk8T0HHTXnCCGx3arkPHrq9zhTNp5nEF/QcWj815zRkCrY/X6LnpYw0vL35fGtS5Qtrc1sA3mT5LqBOcxoYl+qvB5p9+c+ZHCLLZOpbe8MZukejhxxDUSG8Ss7vph4qGFa8tWymLnhrl+zC2ziv9BtzPC7uNboktZytJHz756SOqo3O2rFn7rVxxyfnSO/U2P1XN2MdkeO2Hq9fLwHFPSJ6UFLm+9uVyf5smznH139d9vdF5/GTE5GcyRmr5qZhJP8qJ+mid7+t95MiuUFJITjqhpPPIlQ6zDrK5XZP0mpKS4n9yYZvXSK27jV8c9dqmX5J0vg610fNc8OYHzmN7be9o6JvI5vvW1vXflpEex0ad9Iucny2r65GtzyOti637CFv96Ja2g2R03yMf0dQfGfRzvOd9Lfzwxe018tff/nC9Nztw4GCWj53m1DXyaNDsfm7b6kcmn2tHn0s8XpNsXEdsfo78+NNWZ942nSxfP89it+emDfD9frPdbu+t+kLeX/m5fLfpF7ms0rnOxNd67x50s/EZaeuxUZN7pNjztnWtDWqZG/cnpLDU6vqlsmjh47L1/JZOJDfrhcVSsngR6diqseTPl/UcDV7V/unXbbLs/U8yVhvRX9LTVw0Jcqp6HE3Uj75o6iiPIJsmpkWLFHImqtIJq/bs3edckPWDYkRv9wkjvY6vv76+/cEaJ6BQK52LQOfuCLJ9/uV3nrtXPN//5JJ6kMyOFfsiWR1X+07spka6KkeBAvkCDbG19UU+s/PSR0j0xuPcM0/1xa7t7GfTSWMz22wl6fpLSuyWnJwk5U85US6teI6fah6xj+nwWh32qD5eX9Y/W/8fqXTBmb7rZdqPbNfHd8UD7Hj0bOM68/iq16YFOIKIrWukzV8cY69tOqKi1pWVnGG2QTaT65FJ2czqaMvI1mekreuRnrONz6Oj7UzuI46uU3b7UXrwZzr6UesTb9dIfXZ98bKVzhfCQ+EjvxB2bXtLlm+3f+MamZ2VC0z6kWmbxSLaet/aOo7W7Zet22Xp+5/I79t2yPGlisu1NS+V0scfXlkvyGbrc+T21OFyfe0r5MLzTvvbSnwXnHOa7yrZajd9XL1ggXzOKNxqVSqI1iHoioXplbZ1/bf12KjpPVJsY9j4zPbduLl4R0KKgI3vjEyYMFvKnHS8zBjbzfklTUc/LPu/T50VPs48rYzUrlY50HI4N7XqLw2vqeo84qFBR+d7mzqrfLy+fKX07XRHwBqa764hwtyFb8uZ5cv87aI5dXSXQC9wddPOsnzexCM89ENXL4RBZq4P9KKZ7KzPf6ZvUYk6IygOHDwotapWlpEBQ5PYY2VWP30mPzubHj9IWVtf5DM7r85tm8r0pxfItNFdfZ+SjaW6bCXpWml9nxUpVFCKFM56aavMTtLW8FpN5b22ewKMEvI6RtB+ZFqfnPjCq9ckXQLtm42b5azTysglF53jPBajAWCB/Pl890WbO9r85UrrZfqlMPZ9G4lGnNFY+mWsSqVznVWn0je3a0pGWV0ROiry8edfyyknHy/HlyjmBMsbf/xZalxRMdDjh/p6toxsfUbaCnJNryM5cR9hWqf0/mFr9KMez9Y1Uo+lj6HoaEpnefXjizu/6ta/+rJA91pdBk1x3mcXnnuaJCUfuTR7kEmqTa+RsdehzFZlCLJyga5cM7DrnUeslKVtOXHGfOn3gP/7SJttZut9a+s4Kz5ZLwPGPuH0m1fe+D+nD+njiIO7tzJaItvkc0UfIwoy0b7Xa9lqt9GPzJFVa74SHV1UucKZcvFFZzuft0FXv7N5/bf12Kite6TY4/gZhWXSP3J7WUKKgD1Ah0JOH9tdvvvhJ+kx7FHnOWJ9/ECX6Lr84vPliy+/c1LZIB8K6ZNu6nrS7XtNkJnje4j+vz4nH2QCTr0h9NrSJ6zzc7o6kc9zUwcYjehIf53r7+gl82cOOeLxij/3HRBdwm3xs/5XLsns3GLPKch5ajl9Bnnq7FecG52Od9/kh+cf2UeN7kgdHmguEZtf5G2dpK2lumwl6br2uA6l13Bx8tD7nS9wOkmczuURdDUUW8Nrp8x6JYM7fQbsVZ9+6Yw+urVxHaOmyE4/Mq1PTnzh1Ruw0scXl1tuqOV8Wc7O6LD0myYb10g9hq1frmx+KTz63HTk2Qer10n/B1r67kd9R810HjWJXdFBl6LTVXCCzv9iy8jWZ6StINf0OpIT9xGmdUrvIDZHP9q6Rs58dpG8s+IzadWsvpxwvD7KenhVphqXXxTocc/YyS99vyFcdjS9RgZ5bb8rF8xb+I6oU/s7G0mT66uLfiFX/2trXSYP3HOz75e01Wb6grbet7aOc/M9A2V0v7bOsprpx/x563bp2GdioHutzO5HO7VpIk++sFgeHHSfL3O955887H5nfiqTzWa7aT10dZ/Vn33jBBb6A8EfO3e7TjqfWZ1tXf9tPjZ6dH2zc4+kn9kTps+TRW+tEB1dpXPc3VD3Suna7pZsz7tn0vaJXJaQImDrpi9DpV8mqtRv70wko/82Z0p/0TXFddPhW88+0t/3kfWCN6J3GyfsSJ/RXUOKa2/r6Uyo53fTC0n6pvX7Y+ceWbj0Q7mqyoWBvuzojdzMcd39vmym++mH5vurvpC7ml0nJ5QsJr9t3+lMwqOPagRZOjT23DJ7Qf3SGXRT66tu6iQrFk4JWtQZOq5J/O9/7JTSpYpL3RqXysmlSwY6jn4Bj930V9Cff90m+iu6uvndbH2Rt/lIjK2lumwl6Tor92vPjBZ9NnnSzPnOzYE+E9pz+PRAEzke3SYmw2vd2lffMzpPgdbP72arH9mqjx7H1hdevZ6t/+YHZ9bxd1d8LmlpaVL98oucWccvvvBsv0TOzVbsNVKf/9ZRY13uvSXw4xW2frmy+aXQDUIn+QryOaIr3bgFyK27jgm0lLXWxZaRrc9IW0Gu6XUkJ+4jTOuU3ndyavSjyTVSVzpbMGvkEfNY6YTH+qUzyDLtNu9tjn6vZeea7fvC5XNHDdwHPzjLeVS3UMECMqxXa2dEbHY3kzbT17T1vrV1nNjVRtJDiuys7pXZ/ahOUr5h42bfn0uPPrVAln+wRq6peenhOel0NNt/t+xOKG7abm6jTfX7ROzkzn76lK3rv5/X8rOPrXukIRNmOyud6Kj3W+4d5CwdP+OZRbJ9x67AQb6feufmfQgpArZ+s3ZDnOVC9Rf4qjd2lJWLpkqH3hNkbP/2zsoTOhN2/dt6ui4F6vVSuubu/EXvOL9c6bJY9WtfLp988Y2UKFZEJg1NDVjDI3fXX4w79pnkLG3od5swfa5UOPc0qVfj0kBDKd2Orx8Ary9bJYvfXpUxT4YmjtddfZnf6vwj+6VPXBfkxd5d8ZkMeXC286ujBhS//7HLmah0cLe7nS9Qfrev//PjEbvqPAknnlBSCsesQOLnWLa+yB/9SIx+OH3/4y/OF8Igq81onW0t1WUrSdeb2hcfG+pwxi7xGHQpWy1vM8xxa9/LG3QINN+CrX7k1deC1kePY/MLb3q9Dh1Kcx6v0wBUz9l0BRQNKroOnpLRL/y813QfW79c5dSXQq2jnlvbHuMDPVqny/SN7HOPXHTe/+bo0TBWh8rrZ1+QzZaRrc9IW0Gu6XUkJ+4jTOuU3q62Rj/avEamh0s64jF903sLXb46yFLGz7+6XP7zw0/SsF5V5wthzOHk1DKlg3Rt132zc430etyjZImigcJFrZA+Jz980tPOY3CffLFBOra6yTnXIJvN+R9svW9tHUfDLg21dNSCfjbppPI6AbtOYD2kR6sgTNb2PXoy79gDBxkBZ+t+xNaILJufkemfZToyUAMYnfy+TvVLpMyJpQK1g617pNq3dJUlz41zJu1OD7syu98JVEl2PkKAkCJgh3hgwMPOutqlShSVnsMfddL99GF1OgHeD1t+dX4FX7s88+WsYl9Wh4bFbkmhkPMlVee20NUwTLeW94+Upx/u6/swerOjb2a9kOtkl6GYaHf5/CNn6/d9UMMd9Qu4hic6YeaDA+9znpfWoGj33j8Dr4iiSzvqs62/bd8hJ5QsLjfUu9JZpjPopmslPzy80xGrgqRPFPTyf9diD3pMk/1tfZF3q8MXX30nC5Z8GGjYuB4n3pbqeu7lZU6Q2LzR1fLAgEdk6qjOzpKYwyY9HejxIz23o8Ocnbv2ynebDj+7r8c13TQY0lU+4mXLTn1sfeHVkS/6S+V7K7+Qdd9sdG7Cq19e0XmOWEegmW76ZcdkjhyTX65sfSlsdHe/Ixh0hNi2HbudRw+DfFH54OO1zqOMFc45XU4qXUK0X69Z960z0XGQ8PXoNjExsvUZaSvINb2O5MR9hGmd0tvL1uhHm9fIvqMfcz7n27ds6MwltHvPnzLtqQWy9899MqxnG99vf53bQMMNt02XkDfdsnONjH1NrduOnXvk5Tf+z7n3uzPA6l79xzwuGjAM79lazj6jrPMIo46qOHQoLI892MP3qdma/0Ff0Nb71tZxXnr9fbms8rlyyknHiz76o+GE/vhy5y3XOr+M+91y6vFjv6/vtp+t+xFbI7JsXv+XvPuxs9qZ3qfrD4Jbt+04/INg91ZS84qKgdhszElWvXEnef/lh5zXTQ8pNm76WboNnSb/xr1/IIBjbGdCioANpl9Cdc3wX377Q/rcf5sz2kC3Xbv/dH5tLlvmBLm94/BAc0kErILn7vpGjt30S/y6r793JpsL8vhGZjOgZ7UKw9GVszXBlC4dNGFwR/l+86/y8WdfOTcmn67d4PyaGmQSR32Odel7n8i9t98gwybOll6ptznPturNt/5bkM1rGLXWdWmAx3RsLUEVpO7Z2ffe7uOc+VKCbLaW6sqsH+kytG9/uEZua1w3y6o1aTNANv/8e8aNqs5arfMbdG/fwsrEWd98t1leeHW5DOx6V5Z1id3BxqRwNvuRjfro+dn6wntBrbtFV5Zp3eJ6qV/7soxH6wIhH7WzjQmvdLJk7eM6zLNk8aJyddVKgYMlW18K9fMndtMRWTo/UnaeddbJMvVZZGclpWJFnBv77E40a8PIpJ1jy9oKck2vIzlxH2Fap3SnnB79mJ1rpD73rb/wvvH2R4eXMk9JlgZ1r5Ru7Zv9a8+A27pGevVtHaEb5N5GPyNbtaj/t8nO9ceFG6/xP5rCdP4HbaPMRspqePp/H6/z9eVSfyzTHwT1v3jabD5+bOse2c0nO+81WyOy0utj4/qvffLhEQ8c8dmqx+02ZKq88uRw313D1iiRO1JHyKi+9zors+lIyHJlTnQeGx4zoJ1UqRj8kXPfJ5ALdySkCNjoOsnKi6+/J+VOKe15kdXhyEFGQGR2kYqtXlYz/XcfeuRSfHqTqkMYb2tcR7IKF3QI5OSZL0r5sqWlS9tmGUsO/bFjt2z6aauUK1NaShQvElBL5OgJpnQynvdWfO4kot3aN/d9PE330y9Gsc+VBh2mr6uKPP/oQOdXmfQP4wN/HZSm9wyURU//b+UPPxVr1WWM3HFzPalz1cUZu+sw9DkvvSWPT+jp5xDOPraWoLI13M+t4hpctek6Vl7KxggRG0t1xfajo+vXsN6Vzs1r2zsa+jbPyR2DPrtva1I4W/3IVn3SjW184dX3lY54+eizr2Xv3n2HZxy/8Gxn6djTy53suzltTng1/7V3ZeqTr8i1V1/m3ET/vn2n0w87tbnZmbjO75bTXwpjv3zGDpf3W7+j9wuyJKItI9OlI7M6Vx1dlZ0wJ6vjev09J+4jsluXf6Nc0GtkbB11LgqTFX30S/LX320+PGy8ZDFn1EFy0pErfWRlYvsaefTr6Q9MzdsPlnkzhmRVlSz/rl/Murdv7vvRXdP5H/TRHLdHcHSUh66o8fqylc6XzScn9sq07o88+bJzr6jvfV21ZMeuvXLpRec4E52nr6Snn/lB5kmwOSI3S3ifO+T0JKxB32u2RmTp6du6/seOXIhl9fp3L3pbo0T0GpSSnOx8z9MRHfqo/0Xnnf6vBaY+u9oxuRshRcBm0+ROP9g2//K7VLrgTOeDTr9wD534lGz5+Xcpe/LxMrRHa2dOB79bZl/AYo+Rk6tP6DJIdzW7Vr7d+JN8tv5bZ/4InRtDv3CfedopsmnLr9LhrkZy03VX+T0tz/30V5H+Yx6TSUP9Two4aPyTzmtXrnBWxlwCOleCzpK+bO4E33VymzhJbxibtRssrwUMKXRUR6f+Dzm/6pxQqrj8tm2H8wv9Q8M7OQmr383WElS25pI4eth4JBp1finu0aGFNK7v/8uX3/M/VvfT8CV202Uev/rPJnn4iZecx8D8brYmhbPVj2zVx+/5B91Pg079JeujNfrfVxJkmLbNCa/0EZGnHu7rDD9N33SI9d2dxwR+dMjNQG/qzz79FN88tpYytHUcrbgtI1tLR2qd9vy5X3bu2nPEsP9B42fJQ8Pud242/4ktJ+4jbNVbH63QxwzOPfNUZxnCIRNmOfM49Ox4a+BfCW1dI23Nk7Dhu83SacDDUiB/3ozP7LRwxPnMDrLEos1r5NFzEujnyJcbNskF55SX/p39r8qjX5Z0qWa9L5KYR1q279wt559VXlJb3yTVqlyYZTcxnf9BH2VyJoG/o6HkyZMsr721Ul598/8kHI7IDfWqSoO6VxxxzfSqkK4ypyvDbf19h7NkfbMba4nOSXDz9TWk2mUXOnNCrVy9XqaO7pLlOaXvYGtEru8XzOaO2ZmE1dZ7zdaILJvXf300RycRj/2s1X6uo41eeNT/PEk2R4nYCDuz2T1yVTFCioDNnd7J9Yt21YYdZfygDs4EahOGdHQ+wHV4mk5c9MwjRz4fHPBlnN2D3qSaDIlPn21ch1JWqd9Ols2bKLfdN8yZtVaTak0OdeTA89MGZudU/lYm6AooeuO0eNlKOev0ss7M1aeXO8lJ03Vt83Yt/f+CrvNI6PwcOpJCP7Buql9dlrzzsTPPiI6KCLrpxKR646Orlmh4dc4Zp2aMQvF7LFtLULm9XnbmkrA5bNzWIwi2bpxtTlKmI3Fit9179znD46eP7SZXXZb1zWB6WVuTwtnqR6b1STfWX+31OV/9Jezo58A11DOZA+Lovu73132bE17FTpgVWx8N+YIEJ+rzwUdrnS8XUfnf8/Kznl/sPI6mS1sHeV7a67rjdynDrK5bQY5jy8jW0pETZswTXapRr9Wxm36mnFH+ZGnX8kapW/2SrAjE9Dpi6z4iJ95r+h5ZPu9w8D9t9qvODzHNG9WWfqNnBv5l39Y10tY8CTpMW3+MSX9MV89RRz+9sODtLH/Zj+0UptfI2GPpa8duOgJWR64GXalM221s/3ZOP47ddASkjuwskC+f5M+fN8u+bTr/g14fnnjudZm36B2n7+jqS71Tb3Me1wuypU8uq2XSJyS9p9u4I+bXCDrfmq0RuUHOI7v7Bp2E1dZ7Lbv1dStn6/rvVSe/n/vp5W2NErEVdtq0TtRjEVIEbNn0L/Na7IoGHWTla9OOWCVA/11nEH9u2gDfR7Z1k2oyJD72JjD2vHRVEH1uX7egN99aRof3xW46jPGrbzfJlxt+kGen+F+mdf033x9xnFBIn7cu7kykGWTT45xUupQTvIyZ8pwUzJ9PalxZ0ZmIz3TTCXkWL1/lDGd8+Qn/z8nlxBJUseeSnbkkTC3Sy9t6BMHmjXN63fQDTn+V19VnDh465AReptvHn38ti5asCDRTuK1J4Wz1I1v1UUv9VU4fg7jrlmvl+JJFRYMcnbR2154/JbVVY9/ctn7dtznhlQ6j1sfpbrmhlnON1Mf8nntlmfNLfZBRb3rjrcsOH/3Yyptvf+Q8SqITg/mdsDLeft2xZWRr6Ugd7rtg9khnXfvYrVnbwTJ3xmDf/TF2x+xMdpgT9xG23ms6kauugKD3Jfr/82YMdh4X9VqpJyhadq6RpvMkpNcxdiRlbL1rNnlA3n1psu9TsXmN9P2iWeyoIw/cJu27u/NomTXpyEA9O6+po2mCLGeq93o64u21ZSvk/1atlYvOP8MZdVyraiVfj+s0vXeQzJ0+WCKRiGj7fLDgEWcOAg2ZdOUhrY/O/7bqtSMfc87s3GyNyM2OX9AyppOw6utl570WtJ6Z7W/r+m/rkXhbo0RshZ02rRP1WIQUAVtWby5mT+rj/OKlQ9D0g01nnT3x+OJSpfK5sv7rH2TUw8/KF8uf8H1kmzepvl/0qB11qPjovm2d53KbtR/iLH319PwlsmL1ernkorNl/YYfRFfFCLrcnw6vjt2c59M//dKZBEcflwmy2boBtzG7b3q99ZcC/SVGgwn9/3o1L3U+iGOX78tJcDleAAAgAElEQVTqHG0tQeX2OtmZS8L0V8LYeth6BCGnb5zb9XzQGQFhYwv6646tSeFs9SNb9VFLHbm0YNaIvz0PHbv8qw1zv7/u25zwSh8102HZ+lxqoYIFnBUHdGSVLoum89ykb+/9dxZwr/PUEV36DPfR80UE/eJs69cdm+9/W0a2lo7ULylDuv99qUG9mdbH2Uw3v5Md5sR9hK33mgZCGox9+/0W57nrAV3udPq2/pCh4YWNLeg10nSehPQ66xxWL84cekRIpZOeN713YKDJrm1eI7VutlYcs9E2Ry/TmH5Mva/VvnBy6ZKBn73XAPf9j75wfhBY+cmXzkS8OhF6ZpveVx9XML/z6Ij++KOjk/WR6l4jp8t/vv9JTjqhpPMY8pqlj/k+bVsjcn2/oI8dbX0B93qpoO+1zH4QiH0NP+62rv/pP8Du2r3X6QtNb6jlLP959BbkxwEfTeO5i62w06QOuaUsIUXAln72pbfkrfc/kVLFi8ihtLBMGprqPAox45lFsu7rjVK+7EmycMkHzggLv5utm1R9PX0ubem7q+X3P3Y6z2/VrXGp86GS1fbh6vUycNwTzpJM19e+XO5v08Qpov+u56UTHemHxjsvTsrqUP/f3nlAR1F9f/wLAQGVGhJAQAQs4F+kKFWaVCOgoAE00kKvoZcgCAmhQ2g/OkICSkd67yBNQFARC4IoRekdEST8z32466TuzO6d3dnNfed4joe8eeXzZt7O3Hfv9zr8O3049x8+05ByNdcLOJe6L02S3CjJvZ88MWpWeg3FihZyOHczK5ihJeHMKaF2jlwhCGa+ONNJf2i3EYaFU0lsT1tsmhQU/uWMwCi15aooHPf95ep4KAMOnYZpxc3oA75pl6GGXMePHvtFZWGh/6hQuq/fz11EpbLFDGX64BS8SikLknYdHIkWk7hYcJ0qiZaODJ9vVy+ne0nNON1x9fnnYmRG6sgZn61mFds1InZoxnsE17NG+yEJQ5LxrWPz+upDkQ4Xjn7/i26PHttNy7VHuqqTYBvP6TN/IjBntngf2WRYPHPuYrxU4rofOoY9myvjWEppMWeM1m+AJ+NoUuXk7+fxXL7cSnuLwqKcCY+ldkm8mISQHaVFpt8J8g6k9NOtP6qTpBdH78ipGP1JB93LxeWRq7tDHRW5PsC5njUdQ9ZdhWv/t3VIqbBJU4bCoUhDSI+Yf0qC8tqJGPGm5jJ26gaZiiuKkcKJxd978JhKQUqp8J7MlDFRC+SB0NRAfmuul9Sd+44iYmwsalR+TRkoLl298TiXcM8Wul4u6HSANpXkRB/pJcWo90NyeI1ad7lewLnUfWleJFR5685d5b5Yq0ppwzGXNjZcegucWhJJrZveU0LttVwhCFwvzmQQ1BYSBSUPGFI/N/LMUhsUFqUtfn5+yJsnAD3bNULZUkUN7SxkXKS4eNKE0RYj2hZc9xH1zzEeaodOiZau2YngulXUyRftL6s27lF7lJFsLHWa9lMnafTBTwaLvkOno+gLBZA1y1NJnoxrGZqVucjQAqdQmUsU0OzTHWeefy5GZrTz+lvtcGjDdKea5hA75H6P4HrWnAKSzEVce6SrOgna4f129oISYFTZPXJmQ/VKrynvJ6OFa4/kyjimTYtJxkWa5+LV29G9TUNUKP2K0eklqm/z7KJwNvI82Th/tK42ubxEyJh04tRZJepO6/ZiofyG9b/I2EYHcTZtDjIsktEkYfiXrokxV3LmA1w7BK5njXlaLM2RJ86kOctBIZBD+rTEzVt3MXH2MoyP6Owwu5ddUJ6i1h89DoHJ90wAAnJkU8bXU7+fR+VyxTF5WDfdYzXD2Km781RWUYwUPrTg5O45KSos3okAffiQ5TGpWMXkps710kztf/nVd/G6sWlSkHqxEXFRrhdwTnVfmhip+a/f9jjc4/bdv5SxgsI96ANKbzFDbyGpvo2KDGnbMHJKqL2OKwRBL0tH9ejFVFvoR4rcBzNlysCiSeGo/6T+Tors9DJJ8b4JU+EZUS7nuo+4xmOb6/6vj6uPAvI6Io+KquVLGH5ppiwRNqFNOjEM/eAtlCv1Msh44cgF3Z2Zi5xZfy5RQDNPd5x9/p3hkdQ1pPVRpkRRuyjgF+t2q5h0ik/XKr4b6c8VIwWX2KGR8eqpy/GspXQirx2DkdN5PWN3po5RcfFNOw8qj1D6jab75sLla48PcnqFJptS3sw9m9rmzDiWcKxkqOgxeDKWzYp0Bm+8ayis9a03y4D2AjJS6PEW5PISsb3HkoAwCabnzxsI8lykjA8F8uXSPTcKWRrev63K5EIeGiQGTx4IbULq4MMG1XW3w1nRlQ9wznHY2uIM9+MaH+mtFCmcH/27NkXmf/WEyEOCPLKNZOWj+nRAUu2NUvahkUYe3ad0X+gtnN9IevtMrfXESOFDK0/unqQlkbDQ6fHmJP49ualzvTRT+10+nhivG1KuzpcnQLkK2ly39SwB1ws4l7pvUmOmFwIyVqzduh9r5g7XMy1Vh0tvgUtckOOUUPfkdVZM6cU5rNV7oJO2sYM66mwtcTWytsdMMC4uRoaf4yd+w2XK7pIzO14snD+RocHRoOgHeMGUgciYwbHyekptcd1HXONxNG8jf6/bLByLpw/C6TMXVJYBmzAtpQJ0lILY3ZmLjMyL6nKJAnKd7ljx+affNjJG0UfKqk17sXTNDtSuWgbbvvxaZS5wppCAa92a5Z251Kev0Z7I0wcpGXYpI0q1iiXjGd/1Zp/g2CO5xMXpWSM9LApftRX66CVBxhVz9Itdc+6R3BnHEt6cWgMv141L94VNUD2lNrm8ROj3v0FQRQRVK2vfL3fu/0ZlEYmdEK57Wtp3ZApv/r+XCuLd2m+ARDqNvLPp7lBHRa4PcOqK41nTDtnVcD8d09dVhQyJ2ow8totIo4S8IvSW5MR/W/YYidnRffU2A85vJN2dptKKYqTwoYUnqzB9/Fev+J+VkGL/5n+xxdCLHNdLMydarhdwLnVf29w4XBDN1FvQroFecUHOU8KU4gGNxABqX5wT3lfktfLzqTMq1Zkz5c7de2jSOcpQRhbqh+7JLgMmIp1fWmWgoJAUygU/MSrM0OkOV+YCrvuIazzEiEsUjO7JWZ+vwb37DzA8vI1K8UoCuCTm5shN06zMRVwvhVyigFyxt5zPvzPPY1LXaF8uG7QcoET36EOTPGmMnKRxMVq37QCipy9W2aXGftJRvSjTh9vN23dUemtPlJSetdYhdVwaErnEh3SMMvQhz7lHcomLa7P7aIEk9+/JQePcIzkzjnGKgrt0w/x7MZeXSNX3u9n10LRpLckIsmH+KN1DpX2E9gsKOyTjtc3waYYhR++guD7Aud5Hkhu3L4T70WHHsPDW8YTtKWyr+6DJ6hBEb7HiN5LesXtbPTFSeNuKpTDeX8/8ibABE5E+nZ/6aCKBI7KE0kdTcjoTSTXH9dJMbXO5RXG9XHIuN5cLIpfeAufcuNqyxwOqcMBHSqDs3v37qFqhJIb1a83Vje52KD2wtlDqx/N/Xga9xDdv9Jbudqhis7BhaBZcW7kP2grpwsQu2WjIKk8fO68UKahOChJmeDAyIK77iGs8NPaU0iJr56ZHlZteLImP0Y9AszIXcb0UcokC2p41+lC+cOma8uohl+iExRmPISP3oc2ji9aKPB/IOEq/Q9pCv0+28B09bVM8fFTfVirLFLmdUyYecpMOatI3Se/B5NrU7kcp9euIEXknkqGEfnMPHv0BQ/q0wtff/awEJ6eO6OFwSrR3zJ3YP8l6j9Mi78eKDXsMvThrnzWbJgFl0urQ7F0WV3ZtOJnDCf5bgWuP5BIXJ4MlhQhoQ4SuXr8F+gBbNE3/R4qreyQZxpet26WM2ZRJhaNwioJzjIfa4PISIWMHZdKjPYU+EFfGDMXKjXuxdss+QwdwkdGxoPX+4+IV1KleDs0a1lb6S10HTsLSmRFc0zbczh8XrmDz7sO4dPkaAnJmR+0qryNXwGORaL2F61lLqj9nw/3IQ4VErrX7P60hifLS/m37dz2ZQvRySKnenoPfofeQaXjlpULIkysHrt+4DdICGdqvtS7dPlvbnN9IHPPy5TbESOFjq0sn+5QJ4yK5n/tnw0uFn9XllqfFwPXSTG1yuUVZ5QVcy4nLBTG5W9Couj9X6igzTwnpx25K7Ar1sqHnw1T7o5AcJyOx0QnTq1H4Ue5Af3uco5HtgERYty0dl+gSo+FVpJNC46L0vyQEmQak8PS4JNW+kTE6U9dq46E5uKJJYFbmIq6XQk5RQGJFxpx3Wnys1PNJEFaPW7b2PuF8/um3hIxnzRvWRoB/Vty8fRcUZnHj1h10Dm2g+/Y8/O3PiBo/V4nekZo/fdyRnsCK9V+iXdN6utvhqki/a7bwAO2pOoUl6hEUpHqzxvS2Hx5Qeu1d+7/Fyo1f4sixX/DmGyVRt0Z5vF78JZeGTNpPJFxLH+Z6C+k2aMs/D+Ow79AxXLpyA9NGOjbAaK/l2iO5xMWTY2BUr8nVPZLCS+j97Mwfl5QYOYXUkE5G5Li5Ks1m/mcCENm7pTJe6y2couB6+3RUj8tLhDJmNQmupbQkKtXvAhLvJI2ayN6hhsKG6f14+5dHkD69nxJLpPcQWnsy6hoJP3Y0byN/33f4ewwcNRtBb5bBig1fqoxOlKGPdFIql3tVd1NczxpnuB/t/1ev3UTT4JrIkS0Lrt24jc++2KwOGlp+EKR7bpwVSYfswJEflEaWf7YsKh1ulsxPGeqC8xvJUMepsLIYKVLhojuaMudLM7dblKsv4JyiQFwuiHQat3jVdly7fkt5G9jKlwe+w/t1KqPB25XVj7O7iqunhI7GSS/kFeuHYd/qyY6q2v+eULmcTkNWb96LiqWLsZwS6h6IpiK5nY+PjC/cRbok3T6ZZCh0JKU0XY7SV2rHzSV4xzUe29g41N1d1SQwI3MR10thcveeUVFAaoc+SiOiY9EgqJJSLif379ED2yNTxgy6b3HO559OUlfFDE3kIUT3qhHjou7B66jIEaI3aMwc1H+rIkq+8gJsc6E9qWHbQQ41UmiIFE9Pp7okIkveJru/+k7pPZAwYeWyr6qTRq5Stk4HHDCQEr1XZPz06WTIpdSTH71Xw/DLPNceycWCK/zM1T3SJuBN+1KFep0wZlAH0Id4dEQnlC5eRBmto8bPMyQuzi0KzsWcux0y6GTN/JTTzwh5TpAR4NLV68qjpkbl1/FMLn/uYepuj9ZtxMdt8ULBfHa9jfMXrqBT+DhD7xFczxpnuN87Lfpj5ZzE+79eY64WIldWHt0Lk0JFzm8kjvH4chtipPCh1eX8AOfCwukWxfECrp0XWdAfu9YewP0HDwxnd+ByQaQX+berlbUr19vGOHb6YpXOsnCBvIn+xrU+SbXj6imhnrHZ0lLqqZtcHfrY6BQ+3vDpnit9aq+lD42IMTGoVbU0AvyzqRNjii+l0503Shfj6kZ3O9yCd7o7TqEil7o7lyYBp5cA10shlyggGSfoHhjRv639BPazZZuV0KSReFvO55+MS4unD1ZZXWzl3t/30bTLUCyZod+9mmvduEL0KN3v+q378UKh/Cp1cKECeVTWgdDGQbo9O8jln9zV12zZB/p/0pKqWeV19bHCWSg1tVYokrNtR21ZbY/UhsTExcUpD4Zte44o1//MTz9pn44RLz9HDJL6u03Ml/5GqSP3r51qN3bZ6lNo4oKpA3U3b6YouO5BJKiYkuHcE0ZKCseMGBurQjTJQHHp6o3H2V16tjDk7u8sj6SuS0q3g95N6TfPiN6G1Z41misZvCkLjPbZIi+Y91oOMCTmz5WVh+sgh3P9pa2UCYiRwkfvEFdUeTl/WLjcorhewJNb7nZ9xqo4ZyOFywXRlpUhYd+2vOR6x8QV7uHqKaHe8XLUa9plGOZNSjq2m6N9R23QqczW3YftudspBa1Rt1EzjYvOCN5xjodL3Z1Lk4DTS4DrpZBLFJBSK/Zs3yhRlhgST9aKKTu6pzmffzq5thkk8wT6q1CUVRv3qI+Etk30h2lwrRtXiB65sWtLmjRpkSsguxLSdKZQOkQyxJDRgoxW5PpPXhWUllhv4cyAxBEjbxs3xx6pl4Ez9cjIRB+us8b21n25q3skGSlix4crz0naI0lvgZ7f3AHZUbpkEXz/42klCvztttm6x8QtCq674xQqWs0Dkg6EJkWF4TmNZ6rNcLn80/h6VRzz19MGZagiAU8K9yTDBB1yLF+/W4W2RfQO1dOEvQ7Hs0b7Dxlgfz93EQ8ePozXf4+2DQ2Nh/Z/Cu+jzCx0kEMhFjQ3Mgq2MiDmy5WVJyUBdu3EHGUuMlOk2BDgVFBZjBSpYJGNqvIm/GEhN6vFq7eje5uGqFD6FUPEuNyiuF7Akxo8nYCHdhuBNfNGGJqbtrIrLojk2lnk+WcT9U3CfNofU6cHZ/BCjlNCg106rJ4wTpq0LY79+Ct+OnUGM0f3cni9t1RwxbiY3BydEbyzteXqeLjU3bk0CTi9BIgRx0shlyigdv3v3buPjBmdS2nL/fzv//o4tu85ol5QyaOCQhyM/o5wrRtXiJ6Z+wl5PpB3BXn4rf98pO6uuDIgccXI6x64zopmunvrSWWc3DCd2SM//2ILtuw+jJzZs+DBPw8xPrIz/rr3N2Z8tgbHfjyF5/LnwepNe5SHha8VT3pAalOQarka1ZHiXJMv1u1Wugj58gSAhF3JOFGlfHEl6kmhYO4ulOmC7uliRQoirV/aeN2Tp5jRot3/yYhLejvlSr1sqBmurDxcv5EJRYopVHv73qMqpbVRQ44hEKmwshgpfHzRnVXlTYiFXhB6DJ6MZbMiWYgZFYVk6fRf9zNtW3GPHueBJ4G5psG1uLox1A6XKzN1ypGCjPuU0BCMZConFSf9bN5cCGlQHUZ0GzjGYmuD0+MoqXEZNS5yCt5xjIfa4FJ351o3Ti8BrjFxiQKS10z09CXqA5di3Z9+KpMSX+zRriGezJRR93Ct+PxzrRtXiJ6rJ+kJF4M+Co6f+A2XSfA6Z3aVmcUvbfwPBN0L6GJFrhh5GgbXHsnl7p1QS4JSRu85eAwUlsbxbmNkz9578Bj+uHgVQdXKJPl8zlu6yel3Emc8Q128bQxd7ikPyNDuI9Hk/ZrxPMvI02z+F1sMZQkxNNkkKlOGIvKUSq6QbteXB48ZyvzC9axpU3a7Ok+u67my8nD9RiY1LwodJ4+scRGduKYt7QAQI4UP3QacqrxJYXEml7TVRCHJIKEtJC63ftsBZMqUwbAmBdetw+XKbMUUZFyMrNiOma6szhgXOQXvEvJ2ZjzUBpe6O9f6c3oJcL0U0tw4xNwoJI5O3rq1CUbDNoMwf8pAdTJ75doNDO/f1imEdLprRHQzqU44hFO51o0rRE87T2dO0rXXc6Wy5Yq35oqRpzly7ZFc7t40N21J5+eHAvlzo3eHD/DyiwWcekZsFzm7R3KladcO/vW32uHQhukuzYfjYqt5QNL7aNiAiUifzk8ZAy9evqa8BiZGhdkz7XDM21EbtT7ohU0LxySqRvcCZfigQzzSkZkzrq+jpux/53rWtNmKdHeeQkWO/T+55o1m5THjN1I7NjKCGVkzDr6+3oYYKXxohTlVebmwWE0UMrl5UYrTmAn9uKZtqB0uV2auFGScH1+GQPhAZWdcWc02LhrFarXxGB1/SvU5vQS4Xgq5xNworGfTgtFIl87PrhJPLLSio3pY3rh5ByMnz8fmXYdBJ3qUaSKoWlnlbUbeGUYKl3Aq57rZxu9KiF5yDIycpNva4Epla7sfaf3GTFuEDs3ewTO5cyYaqqN4a84Y+aQ4ObNHmuHubeQ+TliXc4/kStOuHaNVjBRW9ICk++/nk2dwkbyW/LPhpcLPGk7T7Mq9Q9d2HThJaTSQLg+lQ127Zb9KP0yePXVrVkCdGuWUsKerxZlnbeHKbfjl9DmVwppShab5LyM6yHvVSOHa/7my8nD9Rib0yHoU9wjf/fQrpsSswKJpg4wgkroOCIiRQm4RUwlwiUKaOUhSVm/SOUpXuieVvSE6FnnzBGDGqJ6gHwHayMllkNTdny+YF9XeKJko5V5K4+dyZeZKQZbw48uWAeW1V1902v3UzPWzWttGXVm5jItcYk5c47HaurhjPM68FHKJuWk/5Gypn0/9dh49I6fCiCgcfVjkzJEVHZq9i6xZngJ99E6OWY7bd+9hWL/WhjC6IpxK+/KydbtQIF8uQ27PKQ3QjFNrW3/OnqRzprKl+2/OwvWYv3wrnsyUAUP6tFRpUo0Ud8TIG90judy9vzl+MlkULxXOD/JqSUofKuFFnHskd5p2GisJn+b5N63mVdKCcVLQ1ch9I3X1EyBxytkL1mHJmh0q3LhUsRfRr3MI6B7kLkafNTKakYdCUmVlzFBDw3Nl/9d2xJWVh+s3MimPLDLgkHB1saKFDDGSyikTECOF3CGmEnBFFJLLfVU7QUrrpS1xj+Jw/s/LaB1SB80bveWQRcO2gzB9VC+cPH0OvYdMU0JwZBGndGZlS72Mb4+fRK6AHPi4axOHbdkqcLkym5mCjH60OoaPw9QRPXTPy9crWs2VNaGYE+nIHPj6uPrY/LBBda9fDg7hPHd4CRl9KeQSc2vSeSiG92+j3JbfDO6GAnlz4/dzFzByYDuULl5E9/qTuOTWJdHxNBHIo6Jm417YtnSc7naooivCqT0jpqiTzjN/XEKJ/3tevcxT1ovIcXNx9vwl5H8mAJG9W9rTreoZGNepNedJOlcqW8pS0G/YDOTImgURvVrg9t2/EDZgEtp8VFedzHqimL1HGnX3Jo/J5Eq3tsGYPm+V23/jONO02+ZGaR4p69Tarftx/KfT2LPqf55YfnAZzrkGz60l4+q4yLBJh0Jrt+7Dlwe+w6svF1Z7XNUKJQyH2Zn9rP19/4HKQGKkuLL/O+rHmaw8XL+RjsYmf+cjIEYKPpbSUjIESBiS0hApUbCA7Hi7ejkEvVnGobeB/UQ/DXDo6E/Ye+h7NKxXFQH+WUFaEhS3V6xIIUOpjMhooi1+fmmRO9AfmXW6Mdvym9PLUemg9iruk/5t/uQB8PPzU01/1DkKn/9vgO77gcuV2cwUZHRCF9z6E13eJron7uUVuVxZ//nnoTox3rH3CK5cvQn/HFlQ7Y1SeO/tSvZ7yllUuw98q1JAThjSRXcTZo5H9yASVOQSzuMK0aDhcb0Ucom5kX4ExdhTeAZ5fFFu+leLFjIkmknzIiPFlkVjVdiIrdDJH2nnUKpEI8UV4VSbZxiJgFao1wljBnUAaUpER3RSRhfay6PGz8Nn//tY95C4Tq05T9K5UtnSuoW1el/tG7ZCXnCd+08wxIjTkMe1R3K5e+u+URxU5NwjudK03/v7Pnbu+0a9Fx05dgIVyxRTH7wVXn9F7QmeKFbOguCqlgw3zwcP/sHur75VWX32Hz6uMn5ED9Yvwsj1rNG8yMh1/cateB4Vg8bEYOKQLup3RW9xZf/X04fRrDxcv5F6xiZ1eAiIkYKHo7SSDIGZn6/Bjn1HEdooCIEB2XDpyg2lpF257KuGjAvkwTB3Yv941mWyQrfrO9atKSgbtYvA4umDQH1XeKcT9q+ZAopDHjWgvdq8ydocFNLH8ImjlW4g8uzQlkdxcfjp5BnliuisAJ+V5me1sVB63dNn/kBIgxrKzZ5iZT9bthkvFsqH8C4fuTzcsnU64ICBVHZmj8eZCXEJ5yXVtzMhGtQO10shl5hbSq7sxV8urBs7CQmXLVk0nos4GQp27f9GGZiNFFeEU20GYeqvXJ0OKh0jfUDPGN3TPgTyjFswdaDuIZlxaq278xQqcqSypTbyJqFBYfQElDMFOQcbaoPL3ZvrGeHcI7nStJd5u70yTLz3dmX1/HrKMOFoza2YBcEZLRlH83Tl75SFgkKISRfC3SV6xhIsWb1DebFpC3kuFH7uGbRr+g5qVHpN17Bc2f+1HZidlUfXZKSSRwiIkcIj2FNPp2TpXBUzDE89+V8KPLJm0inZus/054AnwZvNC0cnOlkO6ThEqdi7q5DgEXlz0Mdkn6hpam6UV55O+MjN+vTZP1X4yHfb5ugeEufJle5OU6hIni/aQl4rW3YdUtlPKpR+haMLaUNDgJ6RDZ+PivdSSSfXdZr0xeZFY11m9evvfyilcL3F7PHoHYe2ntnCeUZDNJyZQ0rXcIi5aV3ZH+ERrl6/BVr7KuWLY/KwbrqHnNKHnLYRI4YP3Z1rKpKRInZ8OGguFNtMXhz0cZg7IDtKlyyC7388jeGTPse322brbp7r1JozbbTuwTuoaOaYuFOQc8zZGXdvrmfEinvk/+YsB6W2pBDUmpVfR60qr6vQUysWK2VBcFZLxopcOcZEGjmrYoclEklu1HYwFs8YzNGF4TbMzMpjeDBygVsJiJHCrbhTX2eUamnjgtHxQjvIzY7SmSaVgik5QuHDZuDuX3+j5YdvI0+gv3JFW7x6B+iEb8THzqXXc2Y1VNzv0Bkqv3l4lxD1MkCFxOXogyB/3kB81CkKG+aP0t28FU+uEg6eYtJb9RjtsQwoumF6YUWKk1/2aWQiDYDG7SOxdGaEoRk5G1ql7YRzPIYGn0JlLuE8rhANGiqXCB8Xo6Ta+faHk1i1aS8GdG2quxvthxxp9pAWxO/nLoKyQpCKua0klw2JS0vo8y+2YMvuw8iZPQse/PMQ4yM7gwzclFb12I+n8Fz+PFi9aY/ysNBbuE6tudJG07i5eHGOKSmezqQg17suztYz6u7N9Yxw7pHcug3f/3xahXyQwSJ3QA4V8tGsYW1nEbt0ndWyIHBqybgExsIXk5B7RK/QRCOkFPeUqtdI4drbjPQpdX2LgBgpfGs9LTcbCh2g7Bftm9ZDlsxP4eatO5g6dxVu37mLIX1a6R7vvXv3QaEj21Tc/g34Z8+CKuVLoF3TeoYFhnR36mRFii101c538oYAACAASURBVNXSiidXWvdrJ9F4/WVG9Ub0THjxqu34+rsTaPROVfWMkC7FghVb8Xrxl/CGxnPFkTcEV2gV13j0zN3VOkaF87hCNGjcVhThS4pnm16jMXNMb5dQb99zBHsOHdNl7ODUEtp78JgyCAdVK5Oktsa8pZtYMg5t2XUYNSrrc2EmkFxpo6ktrZE6pUVylDqUc0wu3SwmXGy2u7fRZ4RzjzRL8Jj2xsPf/qzEMwf1aG7Cqjhu0mpZEDi1ZBzPXmpw7W1EkrwNT5w6i4uXryMwZza8WCi/4dSxR4/9gtyBOdR/VCj7FRngK5Ut5rL+l6y2OQTESGEOV2n1XwLk6UAWWLLqk9hU+nR+qFOjvErV82Sm/0JAvBGYme61xMOZkyuOjZxiErWFNCl+OPE7smd9GqM/6eCNS8U2Zjqt7NflIxXuk1Ixks4upZRf2j4cpf/iCq3iGg8bdMbTZs4xeUNb9HHXqscofPFp/KxGzow9uSwkKbXFqSVEaRU37z6MS5evISBndtR2wp197tJNSQ530cptaPJeTRTInxvlSr3s8OWXK220M+uQ3DVWHBPX/Mx093bmGTF7j3RG8NgbPLu47gdpJzGBlj1Gqkw+5V/7v3h/5DLkepI5eTCHDZyEJ9Knw8nT55XHMnn1kSA4pajWW+o07adEhLNnzQwyWPQdOh1FXyigUm0n5T2it12pZx4BMVKYx1ZaTkCAXHUzZczgNJeNOw6qLCEXr1xDoH921K1ZXrkyeqpwuteSAYfU6q9cIy+RrCpXu1ZdX88cuTbyhC/y6fzSIm+eACXK5Zc2rZ6h+Gydg9/8iM+WbsaNW3eApFOJq7l7Ip0dV2iVFRdPeyJDMcQUgkDiXtUqllQvGbbi6LSZ6nGExNj6I7HCzTsP4dLV68iVMztqVH4dz+Ty9wjCd1vEz3IR9+iR2k/IRbdB0H8ZH5wZHHl2te09RoXuGSlcWkKk+zNw1GyVFWrFhi+VgCdxH9wrFJXLvap7SGQwT6qs3rQXdaqXww+//K5c5B2FEHKljaaxcLlEc45JN1Avq2jmM8KNwqjgsVU9uzgOTrjYphRaQ8//9r1HlIC1Nxbaa/ME5lCG1j4dP1AezFQ8qSXBtbdROw2CKiKoWlnYMjRRVqTZC9YhdkK47uXSHvxRm6EfvKWM0mS8MKKRp7tDqegyATFSuIxQGnAHAcoIsnnXYWUpHjIuFn07h6gsIZXKvqr+zROFy72WTkB6RkxRPyoqu8PlayrF6riIznilSEHdU+PayG0dkrsoGZa83eNFN0Avr8gVWuUtGEgBPaRjFFbMidI9ZK6QGOpw576jiBgbq8IEyEBx6eoNlfpzcM8Wal9ydyFNHG2h9MoknGc0t33CDznSo7l87SY+7trEsNo8l5YQCS2T4eCFgvnsL6nnL1xBp/BxLGmRbS/ytOeRSKcjYwxX2mhaL5sBjnSNxkxbhA7N3sEzSWTpcGSA4xyTu+9dPf1xfOxyPSN6xutqHaOCx672Z8b1XAcnXGPThtYkbLNezfLK47dtk3pc3bm1HUpBv3RmpAoVnbt0I7q2el8Zcz1ppOAK96D0yjuWjVc8bUYK+n/aq43ov9VtFq6y850+cwEfj5hp/+3g0LZx62Knos7ESJGKFtubp0qb0cJpn6gPedsmRXnBg1t/gjXzRnhkalzutfTj0rdTCMqWKmqfx95D32PstEVYNitS99y4NnL6+Bs9dRHWbtn3OEQnfTr1Y9erfeN4WVp0D8yHK9JJOr2IESdtIa8TdxdfDq1KjiWdHm1bEq0bNVdIDHVIOeAnRYXhufy57f3bXsqXM4RX6J4Uc0XODzkuLSFy99+1fGK8l1QyKAR91NfQS2pyqGjdKDsTeekMHjsHkb1bMlNNuTn6AJ+zcD3mL9+KJzNlwJA+LVHylRfcOgZbZ2TsbBZcS3nz0fpFRMfgl9Pn0KfThyhdvIhHxmS1j12PQHDQKVd6Vc65cR+ccI7N19qi90hbWN+fF68iMjoW5E3365k/sHG+MQ84q7Gh/Z+yO6VJk0a9/1Po68qNe9U76qfRfXQPlzRJZn2+BvfuP8Dw8DbKO/jsH5dUligjGbB0dygVXSYgRgqXEUoD7iCQ1Evqnbv30KjdYKz1kJGCy722dkjvJH9EyAXNyNy4NnI6/cya5Wl0aPauitUjr47p81aDYneH9mvtjuX2ij6IyeLV2/H8c3kThcFMGdHdo3NwNbTKo4NPovOEWTn+eRiHfYeO4dKVG5g2sofu4XKGxCSn0UBhYBypY3VPKhVUJOMSueOSVwgZJiJ7h2L5+t1Iny4dInonVqL3JiQqY9SwGciRNQsierXA7bt/IWzAJOUhWKdGObdPRWv4mxq7UoVWNX63mjp5XDLDWLYhrsFzfeym5H4e1uo9UPaXsYM6cg3bre0kTK965txF3Lt/H1UrlMQwD/1ucx2ccIHkzqTCNS6Odtr0HoOZo3vFa4qyvMxbuhkLpg7k6MJjbQwZNxdNgmuhYP7cqFS/C27d+QtlShRVvwM2EczkBkdGiHx5Aux/pvdYMnbYwmHoD+TFRu+6UqxHQIwU1lsTGVESBOjUct6k/mpjoY+A+kGVsGnHQTSsVxVN3q/pEWZc7rVdPp6Izi0bgMQWbYXajlm0wZBQpSsbuRbgm8HdsG3JuERpY/W4QXtkITzUaYNWA7FgykBkzPCEh0aQuFsraSRwQkkqK8dz+XLjo/dqqIwoegtnSExo95Fq76lesZS9+61ffo35X2wxdLqjd+zeUi+lDwHtHFqH1NE9pS/W7UaZkkXUyyaloyXjRJXyxVVqRRJT8+ZCH3Jhrd7He2//pxty/eZtdO4/QYm8ubu83aSvMgjdf/AP6P+XzBishObIOLT+85HuHo7qj+tjNyX3c9K2+fnUGZQq9qJH5sjdKXkFTYldoX7HO7Woz928rva4Dk50daajUsJMKteu38L2vUeVvlmPtg11tOAdVcgDKmNG67yXcFIjo2nWzE/pzqBn288SjoHCGHcf+E5pHNG+sGfV/ziHKW0xERAjBRNIacZcAvTRnidXTuTIlhkjJy/AkxkzoHL54ij+cmFzO3ZD6wNHfaoEQenlSKWgvHZDKQ9Xq1gqnnjmGAOZNYxu5Npp0qa+dGZEPC0K8loJbjPIYy+pblgGw10kdXJhuBFAcaVUWOS+biv0YklhNpTO1vbvRzbPSrF5Lo0ErvE4w8LsazhDYn498yfCBkxUGYsCc2ZXWjK0VhOjwlToQGottg+BNAAuXrmuBC5J4DTAPxtu3r6LXfu+UYYd0hWSApBhMW8SGhR/339gWE+Egyfta1XKFceJX88inZ8fBnZvplKHk3HIU+JyVvjYLVnzsRch7c1kGCMjjnbPpr/RPuBIz4RjjfS2QR9iFeuHYd/qyXovYa3HdXDCOqgEjZFBkLSFxkV0MrMb09umMN3o6UuwZss+0O/c009lQt0a5dGjXUOf0BVzNrsTZZhq9WEdvPVmGbUGP588g+UbvsTG7V/hpefzK52lam+U8lmjjuk3nskdiJHCZMDSvO8SsL20aGf4xBPpEZAjqyGdjISu7MkRq1Ul5Uwm5JHxSY9m6mPAVuiHa9yMpUr0Tm8hcUFKgda80VsI9M+mPjTIq+PNN0qi5QdBepvx+XrR0xcrYdOalV+P53VidOKzF67H1Ws30TS4JnJky4JrN27jsy82K68hI7y5NBK4xmOUg6P6zr6kJNcuR0gMaQnQSw89I/SsvFT4WYfpKx3N09m/t+szFho7V7LNzBjd09kuDF9HafEie7VEvmf+c7clV92+UdMxZXg3w+05c4EZnh3OjMNbrrl05TroN4CMpB2b11c6RBTyd/T7XzwiCEvcrPaxS3skcWresDYC/LMq4xsdNFDWp86hDSy11EvX7ERw3SoeH5MrBydmD5684uaM62t2N6a2HxEdq4xn3doEo2GbQZg/ZSBmfLZGHXoN79/W1L61jZux37qS3YnC6Ug/jkJDiQ/tZ2SYIMFr8hCTYm0CYqSw9vqk6tFxpS9yB0Q6UaE0fRM/XaY2QPqgd3ehlIz0ctm+2bvKdZg2dnq5q121DLq2fl/3cGgu67YewPrtB3Dx8nUE5symLPI2S7Tuhny8ImUcoLSxFCdP8YxpQGfHj8u2peN0z/6dFv2xcs7QRIaO5LRKkmuYSyOBazy6Aeio6MpLio7mfaLKqk17sWzt4w8S/3+NXUvW7EDZkkXxeomX7ClzHWWJ4ISR3D3ZvOtwQ6njXBmTeHYYo0eGbUr3TamwjaR3NdaL87Wt8LFLBuFVMYn3bHpncacRkLIJkUAipQifMaonyGhKxm0KOzt5+jyeL5gX1d4o6ZIR3fmVst6VpEegLY/iHuG7n37FlJgVWDRtkPUGbGBEpCWzacFo5X2rzYDh7jAtM/ZbjuxOJAhNXia0t1EWvVpVXlcHTNpDPQO4paqbCIiRwk2gpRvjBOzxo2mAQ0d/AmW8IA0KOrmgkx0SBSpWpBBaGYhtNj4KY1eQm927oR9j62L9GQeM9ZBybTIqDB4bozJOPP1kJgzp21IJO0rhJ5DwhUfbgxELPWmskCp35qeftDdBp83vtRxgSICRSyOBazycxDleUjjHQ20l5UlF/+6fIyu2LBrL3Z3D9sitde7E/siUMYO9LmVAInHhVTHDHF5vRoVmYcNUaMdH79VUL89kAN2085BKkxczvp8ZXabYphU8O9w+aYMdUrhHOr+0jwUz36mmjF4/nzoLCrlsEPSfbobBZl2uzu1J5cqAyPi2ePpgFX5qK/SsNe0y1K3iovTMTx/VCydPn0PvIdPUeOijKy4uDmVLvYxvj59UaYiNeFK6wsXq11LYkLZQONOzeXOhZ/tGKFa0kNWHn+L4KjUIw+4EGZAojLRn5FR4KtsU137Lnd3p2I+/qswgG3ceQv5nAtQB3If1q3v1+vvq4MVI4asr62PzSuoFnISh2vUdm0jR2NNTp+wY7nSv0853/9fHETV+ntLqOPztz+gUWl95dhgpvqyAbYSDq3Xpg4zilx0V4k2uwg2CKqoXzCvXbqrMBXWqlzNkgOPSSOAaj6N5G/k790uKkb711KW1JhE2inUlN3lK4ejuQhkwNi8cGy/chPbImh/09JjR9Oz5SwgfPlN5HJFxmeK/Cz6bR6V/o48DdxcreHa4e85G+7NlwLl99x56RUzB9FE9lSbFR52HYnWsZ4xdVvOkoj3SFkaRJ9BfZb5atXGPciFv26SeUeRO12/cPkJ5AND+UzqoPQ5tmA76t/mTB8DPz0+1+1HnKHz+vwFO9yEXegeBJp2HYnj/NkoPicTPC+TNjd/PXcDIge08ljqYa781K7sT/T7SYejarfvcnnbaO+4qz49SjBSeXwMZgQ4C5Mq2eeFo+w+v7ZKQjkNU7J0UYMDIT9WJV1SflnixcH5cuHRVeVU8ePAQs8b21o0otShg6waSTMXkTtKp+tSRPVQcpN785GRc2r7niDJQ+GfPosKFypV62fAQuTQSuMZjeALJXGDWSwrX+LTtdOgXjakj9KdF5RoDGUfJKNbk/VrKIHD1+i18tmwTHj6Mw7DwNlzdONUOfeTSvU2aK55M9WY1zw6nYJp80YcdhiBmQj8VxqYNXyDjxaaFY0zuPenmrehJpd0jyYOhavkSqFD6FbfyadQuAounDwJ9bFV4pxP2r5kC2n9GDWivPPNIfDUopI+h8ENXJ/DN8ZO6mnCX6HlqCYkhjSXyDCEjOc2Z1v/VooU8KprJtd9yZXdK6d501/2o6+GQSnYCYqSQm8ErCNAL+N2//kbLD98GnVxcv3ELi1fvUCrGIz52nyiQFlZKH6naeo6yMnAtAJ3uhH4QBL+0aeM1SbHq79Qy5k2RcEy+ooDNxVpPO6T+bjQ9oi+nDtPDLLk6XC8proxBz7X0sdC4/WC3unzbxkX3DmnSbNt7BFeu3lBhJ9UqlESbj+p6VLmcDGcnTp2169u8WCi/x8RFrebZoeeecnedddsOqIws9YMqqlj9rq2D8dWRH0Af5QunfuLu4aj+rOxJ5ck9u+vASSoElmLs+0RNU2FdNi0qOlE/ffZPnP/zMr7bNsdt69ai64jHfZET4SPg4Dc/KuHcgBzZVJjuqd/Po3K54pg8zD3CuaklJIYywuUOzKH+o0KhHr+fu4hKZYslOtxz181gtf3Wfm+qW/MRzpy7iHv376NqhZIY1u9x9h4p1iIgRgprrYeMJhkCiV7As2dBlfIl0K5pvXgx2AIwMYHRUxeiV/vGukIPUuLnCwrY3PcHpXj78eQZFb9N2R3IgyWhkchRn1ypw7g0ErxJsNYRWzP/HjVhXrzmSYTt+M+/4f9eeg4DujU1s2uvaZu0ccIGTlLGOhLyy583EMRpwpAuKJDP/eEeNnBW8eyw4kJ27Bdf9DdN2jTqYKB5o9oeS61rNU8qrj3b1fWn56vf0Bn44+JVhHcJUUKAVG7cvAMSCqTn7aNOUdgwf5SrXTl1ff/hM1UIDKV4tJUfTvyGuUs2ui0kNrWExNRp2g+f/e9jlbGCDBZ9h05H0RcKKM+1iF6hTq0f10Wu7rf9R8xSIZRFnn8W9C0QER2DX06fQ59OH7oUykKHClNiV6h3404t6nNNV9phJCBGCkaY0pQQ0BLQq0nARY1c/KbPW63cvLW5CK9cv4mXX3gOnVvWxxuliznszpcVsB1O3kAFSj1JH2CZMj6BwJzZcfHyNfzzMA4To8JQMH9u3S2ZkTqM7j3yfqEsLfcfPEBoY/2pY+2CtQ5m4M4sETQUUuUm7Y6LV64h0D876tYsj9pVU07Lq3sRnKi4aNX2eFf5+aVFgby54G4utkFY0ZWVDF6ktRJUraxdcX7n/m8we8E6t2X30C4ShcPFLFqvQqo6hTZAxgxPOLHycom7CVjNk8qMPdsspg8e/KNCADxRksssQYKKs6Pdk/LTiiExZqxF7Q97Y+OC0app2ndDP3hLhYyS8WLdZyPN6FJXmxyCtxTuvW3JYzH6qbErH4v6vlsNH4+Y6bLXIh00Vawfhn2rJ+uaj1RyLwExUriXt/RmgIDVYhsTDp1Tk8AAlmSr0kY+akA7FH7umXh1WvUYhU+j+yBThgy63L59WQGbg7OtDRKqotNF2+kV/fuG7V+BPl6N5Fw3O3VYuz5jlfidkXL2j0vI8vSTyJL5KSOXmVaXTt427zqsQheGjItF384h6jSuUtlX1b9JAazoylr1/W7YsWy8Wh5tWry3Qvp45HS3fugA1KtVAXR/Z838FLq1CVanjuu27Uf/sCZyGwGw+u+uFRbJ7D3bmTmm5AEX1uo9zFm0HmMHdXSmaaevqdssHMPCW+PVooXtbZz78zK6D5qstDTcUawYEmPGvIk1MT195oL6eF8+O0p1Q15Inso2xyV4+3aTvsrQQiG09P9LZgxWHiNc6VVtIrhmrIu06RoBMVK4xk+uNpGA1WIbjU7VGU0Co31o6zdoNTDJVFMtuo3wSLo/V+biDddq46S1463yXlfs/GKC7imYmTrs0pXrCO02Amvm/RsnrGNUFB5ESvWkJTAhsovyDKDUtiTE6qk0bfRRu3DaJ8iW5Wn7xy6l/Atu/YmhuemYvs9UsYIrKz0j9CyQOy0ZKVbGDMXKjXtV+jcynLq72AwldHrWvm80Zo7pDfr/Ok3DPWI0cff89fSnNXalVJ/ENd1VzHL3dnb8Zu7Zzo4pJQ84cvv/+dQZlCr2orPNO3XdnoPfqdSor7xUCHly5cD1G7dx5NgJDO3XWhmY3VGsHhLDxYAOR2Z9vgb37j9Q2ZMqlimmjLHDJ33uNv2PhHPhEryltMhVyhXHiV/PKnHQgd2bqYxDH3SINOwlQkYyuif++edhvOESLynWIyBGCuutiYwoCQJWiG1MamE4NAlkwb2TQO2Q3lg2MxJPP5XJPgGKBQ5u8wk2Lxqre1JcqcNqNo7vLRH36JFyiyQ9kqYGUmJWC+6OtZ+NwJ8Xr2L8zKVKP4BSmfWJmm4p4bw7d++hUbvBWGvAAKN7UXykoqddWYeMm4smwbVU+FOl+l1w685fKFOiKCJ7h9oF3tyJmk6bh/ZrpVL92jJXEKPaIX2wxcAz684xW6UvyhRBGT88Ucx093ZmPlx7tjN9e9s1JJZ54MgPjzNXZcuCMiWLWMZDz8bSkyExnOtJobpkECZjvq148rnlErylwxYShaawpY7N6+OpJzMqEdaj3/9iyNhF4dCLV2/H88/lTaQdNmVEd86lkLaYCIiRggmkNGMuASvENiacIZcmARe5lNw9Z4w25u7PNSZfbuf0mT8RmDNbvBRf5H1AitHPGdCk4EodRgYJbaEf8fXbDiBTpgyGNCno9GPZrEjVlDYFIRll9KZU5V73es37Y96k/urli4wx9YMqYdOOg0rZvsn7Nbm786n2rOLKSvcnhVh4Kj6eFnX2wvVYumaHEvLbsvuw0so4/O1PKjXq+MjOPrXurkyGjEmUQYu0bWxl0JgYTBzSRaU2dHcx293b6Hy49myj/aZU36q//1bK7sPJ24ptWe255RS85biPyNt4wZSBokVkxZs3mTGJkcKLFis1D9UKsY0J+XNpEnCtq9bdk14ufzt7QVmNu7dp6Pb87Vxzsno7HKJQNEeOH+DkWJH7thHX7AXLt4JOXxq/+ya6DvwfpgzvplIQDhk/D+s/94wA1/c//Yo8uXIiR7bMGDl5AZ7MmAGVyxeH5DaPv+qUPpLERS9fuY7AgOx4u3o5BL1ZxuXMPs4+h1YT86S4fG1JmyYNcgf6o9obJT1qPHGWrxnXRc9YgiWrd6hsRdpCLtKkd9Su6TuoUek1M7pOtk1Od2+3DtyNnSX8/ScB7dWb96Ji6WL4sEF1N47kv66smt3HIzBM7tSKzy2X4C3XfUT7yMzRvUxeCWmek4AYKThpSlumEbBCbGPCyXFpEpgGDVCGih6DJ9tPxs3sK7W1zSUKxfUDnBR/Colo0jnKLqKlZ43eazUQZ85fsp+ipk1LH3I50Kv9B6hczj1xxAnHSV4h6dOlswu/kt4CpQHUhtromZsv1yF32B37jiK0URACA7Lh0pUbSly0ctlX0SqkjkembkUxT4+A8KJOKdxrVeywRM9Wo7aDsXjGYI/MhMvd25XB24SyyZ2eUuqS5pTW04TapixPtgwLrvTFdS0ZvzuFj8e0kT24mjTUjtWy+xgavJdVtuJzy4WQ6z6Knr4YrxQpqMTO6TmWYn0CYqSw/hrJCP8lYLXYRi5NArMXWJuayuy+UlP7XKJQXD/AH3YYEg9/3KM4nP/zMlqH1EHzRm959dKQQNbw/m2VtgFpZYR2H6m8PdqE1PHYKaHVgJJr7aqYYSpe11bILZ3uU0+moNNy8rSY56z5a5NdNnpOpACDxsxBRK/QRChIULd3hw88hshMbzOjk6KwITKcNG9YGwH+WXHz9l3lwXTj1h10Dm1gtDlT6zftMkyFynmiWC27jycYuKtPqzy3Ke2xWhZG9luu+4h+C3/85XelrZM1y1NIg/8MFduWjnPXUkk/BgiIkcIALKnqWQJWekkhElyaBFxU6WR5446D8M+e1WMn3lxz8YZ2uEShuH6A6cdXW/z80ipX9swaYU+9XK0mCFujcU+7sOEno2fj/14qiHdrv4HgNoOwZu5wvdPy6Xq1PuilTnG1J0R00ktGyk0Lx1hm7p4U85wcs8LOwRYSd+Dr4+jQ7F0xdlnmDkk8EDO9zZyZNmnkrIoZmug0Vqvh40y7rlyzaefBeJeTQfDYj7/ip1NnPObibrXsPq7wlWv1EbDtsfT5f/HKdWzeeQjVKpZUYsVkzNu17xtUr1hKpRHXW7juIxIWTa5QSlMp1iMgRgrrrYmMKAkCVntJseIiUbxdOr+0KqND43eqIbhuFfx86iwonr9BUCUrDtmrx8QlCsX1A8wF02qCsDQvEs6lLB70ktG4fYTyDCCXa/ES+m/VKU0jCYu2b1pPqedTirapc1fh9p27GNKnFdftwdKOVcQ8aTK7D3wLGg9lsZFiTQJc3mZcsyOj6eLpg5VGjq1QSuSmXYZiyYwIrm4MtdMrcmq8+mSkfjZvLoQ0qA5PfYBZLbuPIaBS2WUCLXuMRGSvlsj3TIC9LRL37Bs1XWld6S1yH+kl5Xv1xEjhe2vqkzOy2kuKFSHbTlJv372HXhFTMH1UT/Wh8lHnoVgdO8yKQ/bqMXGJQlntB9hqgrB0k0RGx4KE4P64eAV1qpdDs4a1QfnOuw6chKUzPfNRYLWb9/adv0Au+Ru2f6VywKdP54c6NcqjZ/tG8TLQWG3cVhhP2TodcGBt/I88K4xLxvCYAJe3GRdPcmm3GdryBPor4+mqjXtQo/JraNukHlc3PtWOFbL7+BRQL5iM1gNSO9zmXYcjdkK4UzMweh95o5aMU2B89CIxUvjowvratKz2kmJFvqRJQFkcKN5O63ZKxgsruXtbkZ1VxqT9AaaTuYwZnnD70KwoCEuhXtu/PIL06f1QuVxx5WZN7voXLl1Top5S4hMgLYpMGTOofyTtDtoTpCRP4Nff/0DBZ/MIIosSsJq3GWHa//VxbN9zBFeu3VQeFVXLl5AsWgBSyuijvb0kM5NFHzbGYTULG6ZCOz56rybSpfNTv9mbdh7CghVbETO+H2NP+pryJi0ZfTPy/VpipPD9NfaJGVrxJcVqYCn9IMX/1Q+qiCkxK9C1dbBKHUkvUwunfmK14cp4HBDoPWQaRg9s73ZOVhWEtZomjdsXRkeH5Ep7/cateFkHBo2JwcQhXZD56Sd1tODbVSgkpllwLRR5/lncu3cfEdEx+OX0OfTp9CFKFy/i25P34tlZzdvMi1GaPnR7Rh8SJXgEHPzmR+XuH5AjG0j8/NTv55WhefIw/e7+pg9aOjCFwNnzlxA+fKYSqySB2es3bytj8PDwNioUyd3Filoy7mbgbf2JkcLbViyVjldeR8JWcgAAFYlJREFUUhwvfMd+8dWJ06RNA3JFbd6oNvI/E+i4AanhEQLl6nRIst+7f/2ttAUK5M+FHm0b4bVXX3TL+KwmCEuTFk0ax0sfPWMJlqzegUD/bPEqE7vCzz2Ddk3fQY1KrzluyIdrVGvYA9uWRKsZTo1d+Vi/591q+HjETI9pCfgwblOmZtTdm2sQ5J2op8wY3VNPtVRRp//wmSoEptobpezz/eHEbyo1MmVrkpI6CFDY8WOPoywqq4anihW1ZDzFwlv6FSOFt6yUjNNOwFMvKbIEQsAMApSVJanSLGw45ozvhx9P/IbIcXPdpitiRXdd0aRxfOdVC+6OVbHD8HSCbC6N2g7G4hmDHTeQCmq83aSvEl29/+Af0P8vmTFYiQqSMOv6z0emAgIyRWcJHDz64+NL0wCHjv6EvYe+R8N6VdUJMXkIrNu6H8WKFEIrD6ayJZ0e8qa8dPU6cuXMjhqVX8czufydnbLL1yX3XJGg4uzovi63Lw1Yj4AV3x9slERLxnr3i6MRiZHCESH5uyUIpLTxSWzjf0v029kLKk6WDDmBObOheqXXkDd3TkusoQzCGIHo6YvRo10j5br/VkgflV7SHcXmrnvz9h2l+fBi4fx4FPcoUdekf+KuIpo0jkkPGjMHEb1CE1UkMc3eHT5w3EAqqEEZkKqUK44Tv55FOj8/DOzeTIkLf9AhUhkvpAgBPQQath2EuRP723Vf6BpK+dmu71iPpfvcue8oIsbGKs8FMlBcunoDm3cdwuCeLVCp7Kt6psVep26zcAwLb41Xixa2t02GlO6DJmPx9EHs/UmDnidg9XAf0ZLx/D1iZARipDBCS+p6jIB941Nhjo9w5txF3Lt/H1UrlMSwfq09Ni4rdUx50odO+Ay1q5ZWLykXLl97/JLSK1S9mEvxTgJkpDjx6zm8WCifWydAivXvtPgY9WpWQK/2jZE2LQUZe6aIJo1nuPtar5euXMfMz9cgffp06Ni8Pp56MqM6BT/6/S8e+5DzNcapYT4UNrR54Wj4+fnFm25IxyGYP2WgRxBQvP2kqDA8lz+3vX9bmNzyT4d4ZEx7Dn4H0lZ65aVCyJMrB67fuI0jx05gaL/W8rx5ZEXc26mE+7iXty/2JkYKX1zVVDAnOrWYErtCqfx3alE/FczY8RTrNu2HSUO7xlOpP3n6PHpGTMGKOVGOG5AaQuBfArsPfIuI6Fg0CKqkPuLO/nFJiXjaMka4G5Ro0jgmbku1pq1J+yN9SP3zzz/2fz6yeZbjxqSGEBACyRIIHzYDpBnU8sO3le4TidUuXr0DlAZ4xMee0VpILt1jzcY9sXmRPj0NM5acfj8OHPlBaRL4Z8uCMiWLKK0lKb5PQMJ9fH+NzZ6hGCnMJiztm0bg4cOHqFg/DPtWTzatD29quFKDMOxePjHRkJP7d2+am4zVfQTIOEHx1yP6t8UrRQqqjj9bthmrNu21hIuuaNI4vhfIiEucSKCO1NTfr1PZ8UWpoIaIH6aCRXbDFCkzDHnkbNt7BFeu3oB/9iyoUr4E2jWt5zFDbmj3kWjyfk2V8tFWtn75NeZ/sQWfRvdxAxXpQgjEJyDhPnJHuEpAjBSuEpTrPUpg6ZqdCK5bxaNjsErnFFc9YUgXFephK1ev30KHftFYNE3iP62yTlYfB4UM9WzfCBkzPBFvqPTCq30Btvo8ZHxQeiZ0mrVh/ijBASjjm55SuoSkI9XDSepYh8CvZ/5E2ICJSJ/OD4E5s+Pi5Wvq+Z8YFebW7F5iCLTOPeHpkUi4j6dXwPv7FyOF96+hzEAIpEjg55NnlPihFCEgBFIXgb/u/Y06TcPtaTdT1+xTni2dhmfMGN8QJ3yEgF4Cf1y4gs27D+PS5WsIyJkdtau8jlwBOfRebkq9h3FxoN/7i1euq1TELxV+1u1aQt6QBcUU+NJokgQk3EduDFcIiJHCFXpyrRCwEAFKq7fnq+9A3hMkLmorMQvXo2/nEJQt9TKeSJ/OQiOWoQgBIcBFIGrCvHhNPXwYhyPfnUC5115Gv84hXN14dTuU7jd6+hKs2bJP6QdQuta6NcqjR7uGeDJTRq+emwzefQT2Hf4eA0fNRtCbZbBiw5d4u3o5lfqTRKorl/NMJg33zV5/T1bMgqJ/9FKTk4AYhTlppp62xEiRetZaZurjBFr3HI24R3EoVOCZeDPduP0r1H6zjMrw4alUZD6OXqYnBDxOYNGq7fHG4OeXFs/ly43Xi7/k8bFZZQCkt0KG2m5tgtGwzSCViWHGZ2tw5doNDO/vGcFDq7CRcegn8H7rT5RA5gsF84EEq9fMG4HzF66gU/g4LJ/tGZHqpIRzk5qRO4VzrZgFRf8qS01XCYhR2FWCcr0YKeQeEAI+QoBUvDctHKMynmhLo7aDsXjGYB+ZpUxDCAgBIeAcAfpo2rRgNNKl87N/XFJLyanQO9eLXOXrBCgl8q5/RaptRgrRf0m86lbMguLr96aV5idGYSuthneORYwU3rluMmohkIjA0rU7EVwnsYjouq37lTuqFCGQHAHbKRwZuOikmUKH6KVbW0iMbeOC0QJRCHgtAW2mI9vH5anfzqNn5FQs/3SI185LBu5eAtUb9cC6z0YiwxPplYErsncolq/fjfTp0iGid6h7B6OzN9rPEx5g6LzU6WpWzILi9GTkQsMExChsGJlckICAGCnklhACQkAICAE7gdkL1+PSleto3rA2Avyz4ubtu1izeR9u3LqDzqENhJQQ8FoCTToPxfD+bVS2gzeDu6FA3tz4/dwFjBzYDqWLS0YPr11YNw/8i3W7UaZkEeTLEwDKqkXGiSrli6NZw9oe031KKdxj6sgeGDRmDjbOFyOzm2+VVN2dGIVT9fKzTF6MFCwYpREhIASEgG8QqNe8P1bFDE106kap5WaM7ukbk5RZpEoClO0knZ8f0qdPh827DiHz00/i1aKFRDQzVd4NqWvS5B3nCeHsjTsOKiP3xSvXEOifHXVrlkftqqVTF/xUOlsxCqfShWecthgpGGFKU0JACAgBbydQo3FPLJ4+GDmyZbZP5d7f99G0y1AsmRHh7dOT8acyAs3ChmHuxP5Jzvr6zdugcLgVG/Zg8fRBqYyMTNdZArPmr0320tYhdZxtlvW6s39cwvptB9T97Skxz7lLNmLzrsNo81FdDBkXq7KM0b+RgDf9mxTfJiBGYd9eX3fMTowU7qAsfQgBISAEvIQAvYAvXbMTwXWrIE+gP67duIVVG/egRuXX0LZJPS+ZhQxTCDwmUDukN2aN6a1CPKg8fPgQu/Z/i5Ubv8SRY7/gzTdKqjSkkgVF7hi9BCbHrLBXJa2H385ewIGvj6NDs3fxYYPqepthr3f56g1s2P6VMkzQ/9es8rryWni1aGH2vvQ0+FZIHyyc9gmyZXnaLlRLBu/g1p+ojChShIAQEAIpERAjhdwfQkAICAEhEI/A/q+PY/ueI7hy7abyqKhavgQqlH5FKAkBryOwc/83iIyOVfcwubvv/uo7FH2hAN56swwql31VhX5IEQKuEth94Ftl3J0wpIurTTl1faseo9R+Xbl8cdSs9BqKFS3kVDucFyWVBeXO3Xto1G4w1oqRghO1JdtKSifliSfSIyBHVjFSWXLFrDcoMVJYb01kREJACAgBISAEhAATAfowWrtlH9Zs2Qf6/+oVS6lT5hcK5mPqQZoRAkDZOh1wYO1Uj6Bo0XUEbt25i6oVSqBWldJ4qXB+j4xD2ynpG82b1F95UlCK9PpBlbBpx0E0rFcVTd6v6fHxyQDcR8DmcTTx02WoV7OC8mCTIgQcERAjhSNC8nchIASEQCojIGJnqWzBU9F0/7x4Feu2HVBGCxITJHd48qp4/rm8qYiCTNUMAr/+/gcKPpvHjKZ1tXnh0lWs3/Y43OP23b+UsYLub/Ic8kT5/qdfkSdXTuWNN3LyAjyZMYPy9Cj+smfCTzzBQPqMT+D2nb/wbujH2Lo4WtAIAYcExEjhEJFUEAJCQAikHgIidpZ61jq1z5Q+Ksm7Yt3WA1j/+cjUjkPm70MESCeDjBVrt+7HmrnDfWhmMhVvJxA+bAaG92/r7dOQ8buBgBgp3ABZuhACQkAIeAsBETvzlpWScQoBISAE/iPwMC4OJ06dxcXL1xGYMxteLJQfadOm8RgiSludXJF01h5bFulYCHgNATFSeM1SyUCFgBAQAuYTELEz8xlLD0JACAgBTgJnzl9E2MBJShz25OnzyJ83EI/iHikhzwL5cnF2pbutg0d/tNe1aRIsXr0d3ds0FCFm3RSlohBIvQTESJF6115mLgSEgBBIREDEzuSmEAJCQAh4FwHyWmgQVBFB1cra031SZpvZC9YhdkK4ZSZDYSg9Bk/GslmRlhmTDEQICAFrEhAjhTXXRUYlBISAEPAIARE78wh26VQICAEh4DSBqu93w45l49X1dZv2s6d4pPC9DfNHOd2uGRfW/rA3Ni4YbUbT0qYQEAI+RECMFD60mDIVISAEhIAQEAJCQAgIgdRFgML0dn4xAWnSpFFGipUxQ7Fy416VxebT6D6pC4bMVggIAZ8gIEYKn1hGmYQQEAJCwHkCKQmcaVsVsTPnGcuVQkAICAGzCAwZNxdNgmuhYP7cqFS/C27d+QtlShRFZO9Q5A7MYVa30q4QEAJCwDQCYqQwDa00LASEgBDwDgJ2gbM0wKGjP2Hvoe/RsF5VBPhnxa3bd1Uqu2JFCqFVSB3vmJCMUggIASGQSglcvnoDWTM/hfTp06VSAjJtISAEfIGAGCl8YRVlDkJACAgBJgIN2w7C3In9kSljBnuLcXGP0K7vWMwc3YupF2lGCAgBISAEhIAQEAJCQAgkTUCMFHJnCAEhIASEgJ1AtYY9sHnhaPj5+cWjEtJxCOZPGSikhIAQEAJCQAgIASEgBISAqQTESGEqXmlcCAgBIeBdBMKHzcDdv/5Gyw/fRp5Af1y/cQuLV+/A7Tt/YcTHbb1rMjJaISAEhIAQEAJCQAgIAa8jIEYKr1syGbAQEAJCwDwC9+7dx8zP12Db3iO4cvUG/LNnQZXyJdCuab14ISDmjUBaFgJCQAgIAaMEHj16hOMnfsPlK9cRmDM7XiycH35p0xptRuoLASEgBCxBQIwUllgGGYQQEAJCQAgIASEgBISAEDBO4PSZP9FlwESk80urDBSXrlzHw4dxmBgVhgL5chlvUK4QAkJACHiYgBgpPLwA0r0QEAJCwNMEZs1fq2sIrSW7hy5OUkkICAEh4E4CzcKGoVlwbdSo/Jq92537jiJ2yUbMju7rzqFIX0JACAgBFgJipGDBKI0IASEgBLyXwOSYFWrwaQBcvHIdm3ceQrWKJRHgnw03b9/Frn3foHrFUujbOcR7JykjFwJCQAj4KIFqwd2xbem4RLOr2bgnNi8a66OzlmkJASHgywTESOHLqytzEwJCQAgYJNCyx0hE9mqJfM8E2K+8decv9I2ajinDuxlsTaoLASEgBISA2QQatByA8ZFd4oV2/Hb2Arp9MgnLZ0eZ3b20LwSEgBBgJyBGCnak0qAQEAJCwHsJ1GjcE1uSOHlr3nU4YieEe+/EZORCQAgIAR8lsHP/N4gYE4NaVUsrDzjSpNi86xAie4fijdLFfHTWMi0hIAR8mYAYKXx5dWVuQkAICAGDBCi2mUI7PnqvJtKl8wMpxm/aeQgLVmxFzPh+BluT6kJACAgBIeAOAuf+vIytuw/j4mXK7pENtaqURu7AHO7oWvoQAkJACLATECMFO1JpUAgIASHgvQTOnr+E8OEz8eMvvyPAPyuu37yNgs/mwfDwNng2r6jEe+/KysiFgBAQAkJACAgBIeAdBMRI4R3rJKMUAkJACLiVwM1bd3Dl2k3kyJYFWbM85da+pTMhIASEgBDQT6Bt7+TFMcNavYc5i9Zj7KCO+huUmkJACAgBDxMQI4WHF0C6FwJCQAhYjcDDuDicOHXW7jb8YqH8SJuWcn9IEQJCQAgIAasROHj0x2SHVPSFAvj51BmUKvai1YYt4xECQkAIJEtAjBRycwgBISAEhICdwJnzFxE2cBKeSJ8OJ0+fR/68gXgU9wgThsRXjhdkQkAICAEhIASEgBAQAkLADAJipDCDqrQpBISAEPBSAuQ23CCoIoKqlUXdpv2wZt4IkHL87AXrJLuHl66pDFsICAHfJpBSuId25jNG9/RtEDI7ISAEfIaAGCl8ZillIkJACAgB1wlUfb8bdiwbrxqyGSno/98K6YMN80e53oG0IASEgBAQAqwEUgr30HZUukQR1n6lMSEgBISAWQTESGEWWWlXCAgBIeCFBCo3CMPOLyYgTZo0ykixMmYoVm7ci7Vb9uHT6D5eOCMZshAQAkJACAgBISAEhIA3ERAjhTetloxVCAgBIWAygSHj5qJJcC0UzJ8blep3wa07f6FMiaKI7B2K3IE5TO5dmhcCQkAICAEhIASEgBBI7QTESJHa7wCZvxAQAkIgGQKXr95A1sxPIX36dMJICAgBISAEhIAQEAJCQAi4hYAYKdyCWToRAkJACHgHgW+On0x2oMVfLuwdk5BRCgEhIASEgBAQAkJACHgtATFSeO3SycCFgBAQAvwEWnQdYW/0ER7hzLmLuHf/PqpWKIlh/VrzdygtCgEhIASEgBAQAkJACAgBDQExUsjtIASEgBAQAskSiIt7hCmxK5SQZqcW9YWUEBACQkAICAEhIASEgBAwlYAYKUzFK40LASEgBLyfwMOHD1Gxfhj2rZ7s/ZORGQgBISAEhIAQEAJCQAhYmoAYKSy9PDI4ISAEhIA1CCxdsxPBdatYYzAyCiEgBISAEBACQkAICAGfJSBGCp9dWpmYEBACQkAICAEhIASEgBAQAkJACAgB7yIgRgrvWi8ZrRAQAkJACAgBISAEhIAQEAJCQAgIAZ8lIEYKn11amZgQEAJCQAgIASEgBISAEBACQkAICAHvIiBGCu9aLxmtEBACQkAICAEhIASEgBAQAkJACAgBnyUgRgqfXVqZmBAQAkJACAgBISAEhIAQEAJCQAgIAe8iIEYK71ovGa0QEAJCQAgIASEgBISAEBACQkAICAGfJSBGCp9dWpmYEBACQkAICAEhIASEgBAQAkJACAgB7yIgRgrvWi8ZrRAQAkJACAgBISAEhIAQEAJCQAgIAZ8lIEYKn11amZgQEAJCQAgIASEgBISAEBACQkAICAHvIiBGCu9aLxmtEBACQkAICAEhIASEgBAQAkJACAgBnyUgRgqfXVqZmBAQAkJACAgBISAEhIAQEAJCQAgIAe8iIEYK71ovGa0QEAJCQAgIASEgBISAEBACQkAICAGfJSBGCp9dWpmYEBACQkAICAEhIASEgBAQAkJACAgB7yLw/3OcNhz/6A6SAAAAAElFTkSuQmCC",
"text/html": [
"<div>\n",
" \n",
" \n",
" <div id=\"16093fc4-274d-4637-b887-e7baec225874\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>\n",
" <script type=\"text/javascript\">\n",
" require([\"plotly\"], function(Plotly) {\n",
" window.PLOTLYENV=window.PLOTLYENV || {};\n",
" \n",
" if (document.getElementById(\"16093fc4-274d-4637-b887-e7baec225874\")) {\n",
" Plotly.newPlot(\n",
" '16093fc4-274d-4637-b887-e7baec225874',\n",
" [{\"histfunc\": \"sum\", \"type\": \"histogram\", \"x\": [\"egg\", \"butter\", \"salt\", \"milk\", \"onion\", \"cheese\", \"sugar\", \"olive oil\", \"tomato\", \"garlic clove\", \"black pepper\", \"water\", \"cream\", \"parsley\", \"clove garlic\", \"bacon\", \"mustard\", \"pepper\", \"vanilla extract\", \"garlic\", \"cinnamon\", \"thyme\", \"flour\", \"cream cheese\", \"raisin\", \"nutmeg\", \"ham\", \"celery\", \"lemon juice\", \"vanilla\", \"ground beef\", \"sauce\", \"mushroom\", \"tablespoon butter\", \"ground black pepper\", \"vegetable oil\", \"apple\", \"dijon mustard\", \"swiss cheese\", \"ground cinnamon\", \"oregano\", \"basil\", \"red onion\", \"avocado\", \"potato\", \"peanut butter\", \"chicken broth\", \"eggs\", \"spinach\", \"chicken breast\", \"red pepper\", \"chicken\", \"sausage\", \"margarine\", \"flat-leaf parsley\", \"pineapple\", \"banana\", \"carrot\", \"egg yolk\", \"yeast\", \"paprika\", \"ketchup\", \"kosher salt\", \"wine\", \"lemon\", \"honey\", \"goat cheese\", \"shrimp\", \"zucchini\", \"almond\", \"ground pepper\", \"chicken stock\", \"vinegar\", \"pork\", \"extra-virgin olive oil\", \"cucumber\", \"leaf\", \"mozzarella cheese\", \"cayenne pepper\", \"parsley leaf\", \"sage\", \"plum tomato\", \"seasoning\", \"turkey breast\", \"oil\", \"green onion\", \"turkey\", \"tuna\", \"lemon zest\", \"green pepper\", \"walnut\", \"all-purpose flour\", \"red bell pepper\", \"broccoli\", \"jack cheese\", \"cilantro\", \"maple syrup\", \"crabmeat\", \"pecan\"], \"y\": [421, 346, 319, 290, 215, 210, 172, 166, 124, 114, 89, 86, 75, 68, 65, 60, 56, 56, 54, 53, 52, 47, 47, 45, 44, 44, 43, 42, 41, 40, 38, 36, 35, 33, 33, 33, 32, 31, 31, 28, 28, 28, 27, 25, 25, 24, 24, 23, 23, 23, 23, 22, 22, 22, 21, 21, 21, 21, 20, 20, 19, 19, 19, 18, 18, 18, 17, 17, 17, 17, 17, 17, 16, 16, 16, 16, 15, 15, 15, 14, 14, 14, 13, 12, 12, 12, 12, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10]}],\n",
" {\"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}},\n",
" {\"responsive\": true}\n",
" ).then(function(){\n",
" \n",
"var gd = document.getElementById('16093fc4-274d-4637-b887-e7baec225874');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" })\n",
" };\n",
" });\n",
" </script>\n",
" </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"keys, values = EA.m_base_mix.get_adjacent('bread')\n",
"data = go.Histogram(x=keys, y=values, histfunc=\"sum\")\n",
"iplot([data])"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"linkText": "Export to plot.ly",
"plotlyServerURL": "https://plot.ly",
"showLink": false
},
"data": [
{
"histfunc": "sum",
"type": "histogram",
"x": [
"{\"base\": \"salt\", \"actions\": []}",
"{\"base\": \"water\", \"actions\": []}",
"{\"base\": \"onion\", \"actions\": [\"chop\"]}",
"{\"base\": \"soy sauce\", \"actions\": []}",
"{\"base\": \"egg\", \"actions\": [\"beat\"]}",
"{\"base\": \"salt\", \"actions\": [\"cook\"]}",
"{\"base\": \"egg\", \"actions\": []}",
"{\"base\": \"parsley\", \"actions\": [\"chop\"]}",
"{\"base\": \"sugar\", \"actions\": []}",
"{\"base\": \"cheese\", \"actions\": []}",
"{\"base\": \"onion\", \"actions\": [\"chop\", \"saute\"]}",
"{\"base\": \"pepper\", \"actions\": []}",
"{\"base\": \"water\", \"actions\": [\"cook\"]}",
"{\"base\": \"milk\", \"actions\": []}",
"{\"base\": \"onion\", \"actions\": [\"cook\", \"chop\"]}",
"{\"base\": \"black pepper\", \"actions\": []}",
"{\"base\": \"chicken broth\", \"actions\": []}",
"{\"base\": \"cheese\", \"actions\": [\"grate\"]}",
"{\"base\": \"flour\", \"actions\": []}",
"{\"base\": \"garlic\", \"actions\": []}",
"{\"base\": \"butter\", \"actions\": []}",
"{\"base\": \"butter\", \"actions\": [\"melt\"]}",
"{\"base\": \"parsley\", \"actions\": []}",
"{\"base\": \"olive oil\", \"actions\": [\"cook\", \"heat\"]}",
"{\"base\": \"mushroom soup\", \"actions\": []}",
"{\"base\": \"olive oil\", \"actions\": [\"heat\"]}",
"{\"base\": \"mushroom\", \"actions\": [\"slice\"]}",
"{\"base\": \"green onion\", \"actions\": [\"chop\"]}",
"{\"base\": \"onion\", \"actions\": [\"cook\"]}",
"{\"base\": \"curry\", \"actions\": []}",
"{\"base\": \"carrot\", \"actions\": []}",
"{\"base\": \"chicken broth\", \"actions\": [\"cook\"]}",
"{\"base\": \"sauce\", \"actions\": []}",
"{\"base\": \"butter\", \"actions\": [\"cook\"]}",
"{\"base\": \"thyme\", \"actions\": []}",
"{\"base\": \"lemon juice\", \"actions\": []}",
"{\"base\": \"raisin\", \"actions\": []}",
"{\"base\": \"clove garlic\", \"actions\": []}",
"{\"base\": \"green onion\", \"actions\": [\"slice\"]}",
"{\"base\": \"almond\", \"actions\": []}",
"{\"base\": \"pea\", \"actions\": []}",
"{\"base\": \"chicken stock\", \"actions\": []}",
"{\"base\": \"tomato\", \"actions\": [\"dice\"]}",
"{\"base\": \"onion\", \"actions\": []}",
"{\"base\": \"ground beef\", \"actions\": []}",
"{\"base\": \"pork\", \"actions\": []}",
"{\"base\": \"garlic clove\", \"actions\": [\"mince\"]}",
"{\"base\": \"pea\", \"actions\": [\"thaw\"]}",
"{\"base\": \"olive oil\", \"actions\": []}",
"{\"base\": \"tomato\", \"actions\": []}",
"{\"base\": \"vegetable oil\", \"actions\": [\"heat\"]}",
"{\"base\": \"scallion\", \"actions\": [\"chop\"]}",
"{\"base\": \"ground beef\", \"actions\": [\"brown\"]}",
"{\"base\": \"cream\", \"actions\": [\"sour\"]}",
"{\"base\": \"scallion\", \"actions\": [\"slice\"]}",
"{\"base\": \"shrimp\", \"actions\": [\"cook\"]}",
"{\"base\": \"celery\", \"actions\": [\"dice\"]}",
"{\"base\": \"ground black pepper\", \"actions\": []}",
"{\"base\": \"onion\", \"actions\": [\"cook\", \"dice\"]}",
"{\"base\": \"egg\", \"actions\": [\"cook\", \"beat\"]}",
"{\"base\": \"sugar\", \"actions\": [\"cook\"]}",
"{\"base\": \"chicken\", \"actions\": [\"cook\"]}",
"{\"base\": \"orange juice\", \"actions\": []}",
"{\"base\": \"vegetable oil\", \"actions\": []}",
"{\"base\": \"celery\", \"actions\": [\"chop\"]}",
"{\"base\": \"paprika\", \"actions\": [\"cook\"]}",
"{\"base\": \"onion\", \"actions\": [\"chop\", \"fry\"]}",
"{\"base\": \"chicken soup\", \"actions\": []}",
"{\"base\": \"pea\", \"actions\": [\"cook\"]}",
"{\"base\": \"red onion\", \"actions\": [\"chop\"]}",
"{\"base\": \"leaf\", \"actions\": [\"cook\"]}",
"{\"base\": \"season\", \"actions\": []}",
"{\"base\": \"chicken\", \"actions\": []}",
"{\"base\": \"cayenne\", \"actions\": []}",
"{\"base\": \"red pepper\", \"actions\": []}",
"{\"base\": \"egg\", \"actions\": [\"cook\"]}",
"{\"base\": \"tomato\", \"actions\": [\"chop\"]}",
"{\"base\": \"butter\", \"actions\": [\"saute\"]}",
"{\"base\": \"onion\", \"actions\": [\"chop\", \"brown\"]}",
"{\"base\": \"onion\", \"actions\": [\"dice\"]}",
"{\"base\": \"vinegar\", \"actions\": []}",
"{\"base\": \"leaf\", \"actions\": []}",
"{\"base\": \"cilantro\", \"actions\": [\"chop\"]}",
"{\"base\": \"onion\", \"actions\": [\"mince\"]}",
"{\"base\": \"soy sauce\", \"actions\": [\"cook\"]}",
"{\"base\": \"chive\", \"actions\": [\"chop\"]}",
"{\"base\": \"garlic clove\", \"actions\": [\"cook\", \"mince\"]}"
],
"y": [
81,
33,
33,
30,
27,
25,
21,
21,
20,
19,
18,
18,
18,
16,
16,
15,
15,
13,
12,
12,
11,
11,
11,
10,
10,
10,
10,
9,
9,
9,
9,
9,
9,
8,
8,
8,
8,
8,
8,
8,
7,
7,
7,
7,
7,
7,
7,
7,
7,
7,
7,
7,
7,
7,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
6,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
}
],
"layout": {
"autosize": true,
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"xaxis": {
"autorange": true,
"range": [
-0.5,
86.5
],
"type": "category"
},
"yaxis": {
"autorange": true,
"range": [
0,
85.26315789473684
],
"type": "linear"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABCkAAAHCCAYAAADCTZOBAAAgAElEQVR4XuzdB7RcVbkH8O8WIAKBECAgReztofSugNjoGIKAUiQgTUIUEAhIRxJpoYoCKh1pVlAUpIkKPgsqTUQiKCCEAAmhhszMW3uAvAiZyeXuGTlz5nfWci0Xmb1n79+3z54z/zszp6dWq9XCQYAAAQIECBAgQIAAAQIECBB4gwV6hBRvcAU8PQECBAgQIECAAAECBAgQIFAXEFJYCAQIECBAgAABAgQIECBAgEAhBIQUhSiDQRAgQIAAAQIECBAgQIAAAQJCCmuAAAECBAgQIECAAAECBAgQKISAkKIQZTAIAgQIECBAgAABAgQIECBAQEhhDRAgQIAAAQIECBAgQIAAAQKFEBBSFKIMBkGAAAECBAgQIECAAAECBAgIKawBAgQIECBAgAABAgQIECBAoBACQopClMEgCBAgQIAAAQIECBAgQIAAASGFNUCAAAECBAgQIECAAAECBAgUQkBIUYgyGAQBAgQIECBAgAABAgQIECAgpLAGCBAgQIAAAQIECBAgQIAAgUIICCkKUQaDIECAAAECBAgQIECAAAECBIQU1gABAgQIECBAgAABAgQIECBQCAEhRSHKYBAECBAgQIAAAQIECBAgQICAkMIaIECAAAECBAgQIECAAAECBAohIKQoRBkMggABAgQIECBAgAABAgQIEBBSWAMECBAgQIAAAQIECBAgQIBAIQSEFIUog0EQIECAAAECBAgQIECAAAECQgprgAABAgQIECBAgAABAgQIECiEgJCiEGUwCAIECBAgQIAAAQIECBAgQEBIYQ0QIECAAAECBAgQIECAAAEChRAQUhSiDAZBgAABAgQIECBAgAABAgQICCmsAQIECBAgQIAAAQIECBAgQKAQAkKKQpTBIAgQIECAAAECBAgQIECAAAEhhTVAgAABAgQIECBAgAABAgQIFEJASFGIMhgEAQIECBAgQIAAAQIECBAgIKSwBggQIECAAAECBAgQIECAAIFCCAgpClEGgyBAgAABAgQIECBAgAABAgSEFNYAAQIECBAgQIAAAQIECBAgUAgBIUUhymAQBAgQIECAAAECBAgQIECAgJDCGiBAgAABAgQIECBAgAABAgQKISCkKEQZDIIAAQIECBAgQIAAAQIECBAQUlgDBAgQIECAAAECBAgQIECAQCEEhBSFKINBECBAgAABAgQIECBAgAABAkIKa4AAAQIECBAgQIAAAQIECBAohICQohBlMAgCBAgQIECAAAECBAgQIEBASGENECBAgAABAgQIECBAgAABAoUQEFIUogwGQYAAAQIECBAgQIAAAQIECAgprAECBAgQIECAAAECBAgQIECgEAJCikKUwSAIECBAgAABAgQIECBAgAABIYU1QIAAAQIECBAgQIAAAQIECBRCQEhRiDIYBAECBAgQIECAAAECBAgQICCksAYIECBAgAABAgQIECBAgACBQggIKQpRBoMgQIAAAQIECBAgQIAAAQIEhBTWAAECBAgQIECAAAECBAgQIFAIASFFIcpgEAQIECBAgAABAgQIECBAgICQwhogQIAAAQIECBAgQIAAAQIECiEgpChEGQyCAAECBAgQIECAAAECBAgQEFJYAwQIECBAgAABAgQIECBAgEAhBIQUhSiDQRAgQIAAAQIECBAgQIAAAQJCCmuAAAECBAgQIECAAAECBAgQKISAkKIQZTAIAgQIECBAgAABAgQIECBAQEhhDRAgQIAAAQIECBAgQIAAAQKFEBBSFKIMBkGAAAECBAgQIECAAAECBAgIKawBAgQIECBAgAABAgQIECBAoBACQopClMEgCBAgQIAAAQIECBAgQIAAASGFNUCAAAECBAgQIECAAAECBAgUQkBIUYgyGAQBAgQIECBAgAABAgQIECAgpLAGCBAgQIAAAQIECBAgQIAAgUIICCkKUQaDIECAAAECBAgQIECAAAECBIQU1gABAgQIECBAgAABAgQIECBQCAEhRSHKYBAECBAgQIAAAQIECBAgQICAkMIaIECAAAECBAgQIECAAAECBAohIKQoRBkMggABAgQIECBAgAABAgQIEBBSWAMECBAgQIAAAQIECBAgQIBAIQSEFIUog0EQIECAAAECBAgQIECAAAECQgprgAABAgQIECBAgAABAgQIECiEgJCiEGUwCAIECBAgQIAAAQIECBAgQEBIYQ0QIECAAAECBAgQIECAAAEChRAQUhSiDAZBgAABAgQIECBAgAABAgQICCmsAQIECBAgQIAAAQIECBAgQKAQAkKKQpTBIAgQIECAAAECBAgQIECAAAEhhTVAgAABAgQIECBAgAABAgQIFEJASFGIMhgEAQIECBAgQIAAAQIECBAgIKSwBggQIECAAAECBAgQIECAAIFCCAgpClEGgyBAgAABAgQIECBAgAABAgSEFNYAAQIECBAgQIAAAQIECBAgUAgBIUUhymAQBAgQIECAAAECBAgQIECAgJDCGiBAgAABAgQIECBAgAABAgQKISCkKEQZDIIAAQIECBAgQIAAAQIECBAQUlgDBAgQIECAAAECBAgQIECAQCEEhBSFKINBECBAgAABAgQIECBAgAABAkIKa4AAAQIECBAgQIAAAQIECBAohICQohBlMAgCBAgQIECAAAECBAgQIEBASGENECBAgAABAgQIECBAgAABAoUQEFIUogwGQYAAAQIECBAgQIAAAQIECAgprAECBAgQIECAAAECBAgQIECgEAJCikKUwSAIECBAgAABAgQIECBAgAABIYU1QIAAAQIECBAgQIAAAQIECBRCQEhRiDIYBAECBAgQIECAAAECBAgQICCksAYIECBAgAABAgQIECBAgACBQggIKQpRBoMgQIAAAQIECBAgQIAAAQIEhBTWAAECBAgQIECAAAECBAgQIFAIASFFIcpgEAQIECBAgAABAgQIECBAgICQwhogQIAAAQIECBAgQIAAAQIECiEgpChEGQyCAAECBAgQIECAAAECBAgQEFJYAwQIECBAgAABAgQIECBAgEAhBIQUhSiDQRAgQIAAAQIECBAgQIAAAQJCisw18PDjz2X2oDkBAgQIECBAgAABAgQIlEVgqUXfVJapvCHzEFJksgspMgE1J0CAAAECBAgQIECAQIkEhBR5xRRS5PmFkCITUHMCBAgQIECAAAECBAiUSEBIkVdMIUWen5Ai009zAgQIECBAgAABAgQIlElASJFXTSFFnp+QItNPcwIECBAgQIAAAQIECJRJQEiRV00hRZ6fkCLTT3MCBAgQIECAAAECBAiUSUBIkVdNIUWen5Ai009zAgQIECBAgAABAgQIlElASJFXTSFFnp+QItNPcwIECBAgQIAAAQIECJRJQEiRV00hRZ6fkCLTT3MCBAgQIECAAAECBAiUSUBIkVdNIUWen5Ai009zAgQIECBAgAABAgQIlElASJFXTSFFnp+QItNPcwIECBAgQIAAAQIECJRJQEiRV00hRZ6fkCLTT3MCBAgQIECAAAECBAiUSUBIkVdNIcXLfvf/65E44oRz49EpT0Zfb098frtN41Mbfqj+r09Omx4HjT87br97UiwybGgcfcDOsdLy76r/28OPP5dXAa0JECBAgAABAgQIECBAoDQCQoq8UgopXvbbdf8T4lOf/FBs8rE1Y8oT02LU5w+L733rqFhs+MIx7pizYuklF4u9Ro+MO+6ZFPsdcUZcef6EGDLfvPWQ4oabeptWYfjwWqzwgVpepbQmQIAAAQIECBAgQIAAgcILCCnySiSkeNlvmz2OjKP33zne/Y5l6/9l850OjtOP+WIs8+YRsfbme8WNV5wcQ4bMW/+3sYecGqM2WTfWW2vFekhx9IT+ePHFxoUYNbIipMhbp1oTIECAAAECBAgQIECgIwSEFHllElK87PeLm/8QZ17w49hnt63j+l/9MXp7e+LgsdvXv/6xw5hj4ppLTpglPfGsy2PYQgvGzttuJKTIW39aEyBAgAABAgQIECBAoFQCQoq8cgopXvab/sxz8aVDT6uHEs+/MKP+KYr3vvMt8cCDj8aYr5wSV543fpb0Gef+MKq1WowZPTJmVqoxdlwlZsxoXIjR2/XGGqv05FVKawIECBAgQIAAAQIECBAovEB/X/OfAyj8BN7gAQopXi7ADnuPj2232KD+mxR3/PUfsd9RZ8Q3j90vFnjTkNh2jyPj+itOmlWqY7/+3fpvVezymY1j8tQX4vCv9jb9usfWo2qx4gf9JsUbvNY9PQECBAgQIECAAAECBNouMGLYfG1/jjI/gZAiIh57fGp89gtHx7WXnjir1ieffUUMX2Sh2GHUx2OdLcbEzy8+PoYuOH/93/ccNzG22nT9+OiHVvZ1jzKfHeZGgAABAgQIECBAgACB1yng6x6vE+xVDxdSRESlUomPbLVPnHncfvG+dy0Xzz73fOz65RNizM4jY61V/icOP/6cWHT4QjFm9Jb1u3uMOfiUuPqi42KB+YcIKfLWn9YECBAgQIAAAQIECBAolYCQIq+cQoqX/X77x7tj4lmXxTPPPh9Rq8WWm6xX/2HMdEx/+tk4aMLZcdvt99Y/TXHYPjvG2qstX/83d/fIW4BaEyBAgAABAgQIECBAoEwCQoq8agop8vyEFJl+mhMgQIAAAQIECBAgQKBMAkKKvGoKKfL8hBSZfpoTIECAAAECBAgQIECgTAJCirxqCiny/IQUmX6aEyBAgAABAgQIECBAoEwCQoq8agop8vyEFJl+mhMgQIAAAQIECBAgQKBMAkKKvGoKKfL8hBSZfpoTIECAAAECBAgQIECgTAJCirxqCiny/IQUmX6aEyBAgAABAgQIECBAoEwCQoq8agop8vyEFJl+mhMgQIAAAQIECBAgQKBMAkKKvGoKKfL8hBSZfpoTIECAAAECBAgQIECgTAJCirxqCiny/IQUmX6aEyBAgAABAgQIECBAoEwCQoq8agop8vyEFJl+mhMgQIAAAQIECBAgQKBMAkKKvGoKKfL8hBSZfpoTIECAAAECBAgQIECgTAJCirxqCiny/IQUmX6aEyBAgAABAgQIECBAoEwCQoq8agop8vyEFJl+mhMgQIAAAQIECBAgQKBMAkKKvGoKKfL8hBSZfpoTIECAAAECBAgQIECgTAJCirxqCiny/IQUmX6aEyBAgAABAgQIECBAoEwCQoq8agop8vyEFJl+mhMgQIAAAQIECBAgQKBMAkKKvGoKKfL8hBSZfpoTIECAAAECBAgQIECgTAJCirxqCiny/IQUmX6aEyBAgAABAgQIECBAoEwCQoq8agop8vyEFJl+mhMgQIAAAQIECBAgQKBMAkKKvGoKKfL8hBSZfpoTIECAAAECBAgQIECgTAJCirxqCiny/IQUmX6aEyBAgAABAgQIECBAoEwCQoq8agop8vyEFJl+mhMgQIAAAQIECBAgQKBMAkKKvGoKKfL8hBSZfpoTIECAAAECBAgQIECgTAJCirxqCiny/IQUmX6aEyBAgAABAgQIECBAoEwCQoq8agop8vyEFJl+mhMgQIAAAQIECBAgQKBMAkKKvGoKKfL8hBSZfpoTIECAAAECBAgQIECgTAJCirxqCiny/IQUmX6aEyBAgAABAgQIECBAoEwCQoq8agop8vyEFJl+mhMgQIAAAQIECBAgQKBMAkKKvGoKKfL8hBSZfpoTIECAAAECBAgQIECgTAJCirxqCiny/IQUmX6aEyBAgAABAgQIECBAoEwCQoq8agop8vyEFJl+mhMgQIAAAQIECBAgQKBMAkKKvGoKKfL8hBSZfpoTIECAAAECBAgQIECgTAJCirxqCiny/IQUmX6aEyBAgAABAgQIECBAoEwCQoq8agop8vyEFJl+mhMgQIAAAQIECBAgQKBMAkKKvGoKKfL8hBSZfpoTIECAAAECBAgQIECgTAJCirxqCiny/IQUmX6aEyBAgAABAgQIECBAoEwCQoq8agop8vyEFJl+mhMgQIAAAQIECBAgQKBMAkKKvGoKKfL8hBSZfpoTIECAAAECBAgQIECgTAJCirxqCiny/IQUmX6aEyBAgAABAgQIECBAoEwCQoq8agop8vyEFJl+mhMgQIAAAQIECBAgQKBMAkKKvGoKKfL8hBSZfpoTIECAAAECBAgQIECgTAJCirxqCiny/IQUmX6aEyBAgAABAgQIECBAoEwCQoq8agop8vyEFJl+mhMgQIAAAQIECBAgQKBMAkKKvGoKKfL8hBSZfpoTIECAAAECBAgQIECgTAJCirxqCiny/IQUmX6aEyBAgAABAgQIECBAoEwCQoq8agop8vyEFJl+mhMgQIAAAQIECBAgQKBMAkKKvGoKKfL8hBSZfpoTIECAAAECBAgQIECgTAJCirxqCiny/IQUmX6aEyBAgAABAgQIECBAoEwCQoq8agop8vyEFJl+mhMgQIAAAQIECBAgQKBMAkKKvGoKKfL8hBSZfpoTIECAAAECBAgQIECgTAJCirxqCiny/IQUmX6aEyBAgAABAgQIECBAoEwCQoq8agop8vyEFJl+mhMgQIAAAQIECBAgQKBMAkKKvGoKKfL8hBSZfpoTIECAAAECBAgQIECgTAJCirxqCiny/IQUmX6aEyBAgAABAgQIECBAoEwCQoq8agopZvO75Q93xqnf+n5MfvzJWHrJxeL8Uw+u/+uT06bHQePPjtvvnhSLDBsaRx+wc6y0/Lvq//bw48/F0RP648UXGxdi1MhKrPCBWl6ltCZAgAABAgQIECBAgACBwgsIKfJKJKR42e8vd98Xhx77nTj+sD3j3W9f5j9Uxx1zVj202Gv0yLjjnkmx3xFnxJXnT4gh880rpMhbf1oTIECAAAECBAgQIECgVAJCirxyCile9vvioafFVpuuFx9e44P/IVqt1mLtzfeKG684OYYMmbf+b2MPOTVGbbJurLfWikKKvPWnNQECBAgQIECAAAECBEolIKTIK6eQ4mW/dTYfE2M/Pyq+d9VNUalWY5vNPxJbb/6ReHTKk7HDmGPimktOmCU98azLY9hCC8bO224kpMhbf1oTIECAAAECBAgQIECgVAJCirxyCiki4oUZL8aqG+4Wu3xmk9jzc1vEs889HzuOnRDHjNslFh66YIz5yilx5XnjZ0mfce4Po1qrxZjRI2P6czPjwENrMaPJb1Jsv01PrLJSXqG0JkCAAAECBAgQIECAAIHiCwx9U3/xB1ngEQopIuLFF2fGahvvEf/702/GvPO8tKC+ef6Po7+/Lzb/xDqx7R5HxvVXnDSrjMd+/bux2PCFY5fPbCykKPDiNjQCBAgQIECAAAECBAj8twWEFHniQoqX/Tb49L5x6TcPi8UXHVb/L6d++3v1r3TssNUnYp0txsTPLz4+hi44f/3f9hw3MbbadP346IdW9nWPvPWnNQECBAgQIECAAAECBEol4OseeeUUUrzsd9q3vx//nvx4HH3gLvHk1Omx/Zhj4tSvjq3f6ePw48+JRYcvFGNGb1m/u8eYg0+Jqy86LhaYf4iQIm/9aU2AAAECBAgQIECAAIFSCQgp8soppHjZ7/kXZsSRJ54bv/n9nfGmIfPFHjtuHp/a8EP1f53+9LNx0ISz47bb761/muKwfXaMtVdbvv5vDz/+XBw9oT9ebPKbFKNGVmKFD9TyKqU1AQIECBAgQIAAAQIECBReQEiRVyIhRZ6fkCLTT3MCBAgQIECAAAECBAiUSUBIkVdNIUWen5Ai009zAgQIECBAgAABAgQIlElASJFXTSFFnp+QItNPcwIECBAgQIAAAQIECJRJQEiRV00hRZ6fkCLTT3MCBAgQIECAAAECBAiUSUBIkVdNIUWen5Ai009zAgQIECBAgAABAgQIlElASJFXTSFFnp+QItNPcwIECBAgQIAAAQIECJRJQEiRV00hRZ6fkCLTT3MCBAgQIECAAAECBAiUSUBIkVdNIUWen5Ai009zAgQIECBAgAABAgQIlElASJFXTSFFnp+QItNPcwIECBAgQIAAAQIECJRJQEiRV00hRZ6fkCLTT3MCBAgQIECAAAECBAiUSUBIkVdNIUWen5Ai009zAgQIECBAgAABAgQIlElASJFXTSFFnp+QItNPcwIECBAgQIAAAQIECJRJQEiRV00hRZ6fkCLTT3MCBAgQIECAAAECBAiUSUBIkVdNIUWen5Ai009zAgQIECBAgAABAgQIlElASJFXTSFFnp+QItNPcwIECBAgQIAAAQIECJRJQEiRV00hRZ6fkCLTT3MCBAgQIECAAAECBAiUSUBIkVdNIUWen5Ai009zAgQIECBAgAABAgQIlElASJFXTSFFnp+QItNPcwIECBAgQIAAAQIECJRJQEiRV00hRZ6fkCLTT3MCBAgQIECAAAECBAiUSUBIkVdNIUWen5Ai009zAgQIECBAgAABAgQIlElASJFXTSFFnp+QItNPcwIECBAgQIAAAQIECJRJQEiRV00hRZ6fkCLTT3MCBAgQIECAAAECBAiUSUBIkVdNIUWen5Ai009zAgQIECBAgAABAgQIlElASJFXTSFFnp+QItNPcwIECBAgQIAAAQIECJRJQEiRV00hRZ6fkCLTT3MCBAgQIECAAAECBAiUSUBIkVdNIUWen5Ai009zAgQIECBAgAABAgQIlElASJFXTSFFnp+QItNPcwIECBAgQIAAAQIECJRJQEiRV00hRZ6fkCLTT3MCBAgQIECAAAECBAiUSUBIkVdNIUWen5Ai009zAgQIECBAgAABAgQIlElASJFXTSFFnp+QItNPcwIECBAgQIAAAQIECJRJQEiRV00hRZ6fkCLTT3MCBAgQIECAAAECBAiUSUBIkVdNIUWen5Ai009zAgQIECBAgAABAgQIlElASJFXTSFFnp+QItNPcwIECBAgQIAAAQIECJRJQEiRV00hRZ6fkCLTT3MCBAgQIECAAAECBAiUSUBIkVdNIUWen5Ai009zAgQIECBAgAABAgQIlElASJFXTSFFnp+QItNPcwIECBAgQIAAAQIECJRJQEiRV00hRZ6fkCLTT3MCBAgQIECAAAECBAiUSUBIkVdNIUWen5Ai009zAgQIECBAgAABAgQIlElASJFXTSFFnp+QItNPcwIECBAgQIAAAQIECJRJQEiRV00hRZ6fkCLTT3MCBAgQIECAAAECBAiUSUBIkVdNIUWen5Ai009zAgQIECBAgAABAgQIlElASJFXTSFFnp+QItNPcwIECBAgQIAAAQIECJRJQEiRV00hRZ6fkCLTT3MCBAgQIECAAAECBAiUSUBIkVdNIUWen5Ai009zAgQIECBAgAABAgQIlElASJFXTSFFnp+QItNPcwIECBAgQIAAAQIECJRJQEiRV00hRZ6fkCLTT3MCBAgQIECAAAECBAiUSUBIkVdNIUWen5Ai009zAgQIECBAgAABAgQIlElASJFXTSFFnp+QItNPcwIECBAgQIAAAQIECJRJQEiRV00hRZ6fkCLTT3MCBAgQIECAAAECBAiUSUBIkVdNIUWen5Ai009zAgQIECBAgAABAgQIlElASJFXTSFFnp+QItNPcwIECBAgQIAAAQIECJRJQEiRV00hRZ6fkCLTT3MCBAgQIECAAAECBAiUSUBIkVdNIUWen5Ai009zAgQIECBAgAABAgQIlElASJFXTSFFnp+QItNPcwIECBAgQIAAAQIECJRJQEiRV00hRZ6fkCLTT3MCBAgQIECAAAECBAiUSUBIkVdNIcWr/KrVWnzuixPinW9bOg7f93P1f31y2vQ4aPzZcfvdk2KRYUPj6AN2jpWWf1f93x5+/Lk4ekJ/vPhi40KMGlmJFT5Qy6uU1gQIECBAgAABAgQIECBQeAEhRV6JhBSv8jvvsp/Fzb+9PZZdesSskGLcMWfF0ksuFnuNHhl33DMp9jvijLjy/AkxZL55hRR5609rAgQIECBAgAABAgQIlEpASJFXTiHFbH73/+uRGDf+rNhp6w3jt7fdXQ8p0icr1t58r7jxipNjyJB5648ee8ipMWqTdWO9tVYUUuStP60JECBAgAABAgQIECBQKgEhRV45hRQv+6UwYud9jo0Dx3wm/vXw5LjlD3fVQ4pHpzwZO4w5Jq655IRZ0hPPujyGLbRg7LztRjF56gtx+Fd7m37dY+tRtVjxg77ukbdUtSZAgAABAgQIECBAgEDxBUYMm6/4gyzwCIUULxfnnEuvjmefeyH22ulTcc1Nv5sVUjzw4KMx5iunxJXnjZ9VxjPO/WFUa7UYM3pkzKxUY+y4SsyY0bjKo7frjTVW6SnwMjA0AgQIECBAgAABAgQIEGiFQH9fbyu66do+hBQR8Y9//jsOOfbbcd4pB0V/f99/hBSTp0yNbfc4Mq6/4qRZi+TYr383Fhu+cOzymY193aNrTx0TJ0CAAAECBAgQIECAwGsFfN0jb1UIKSLizAuujG9d/JPo633p0w4vVipRqVTjbcsuGd//9tGxzhZj4ucXHx9DF5y//u97jpsYW226fnz0QysLKfLWn9YECBAgQIAAAQIECBAolYCQIq+cQoo5+M3+dY/0z4cff04sOnyhGDN6y/rdPcYcfEpcfdFxscD8Q4QUeetPawIECBAgQIAAAQIECJRKQEiRV04hxQBCiulPPxsHTTg7brv93vqnKQ7bZ8dYe7Xl6y0ffvy5OHpCf9Mfzhw1shIrfMAPZ+YtVa0JECBAgAABAgQIECBQfAEhRV6NhBR5fkKKTD/NCRAgQIAAAQIECBAgUCYBIUVeNYUUeX5Cikw/zQkQIECAAAECBAgQIFAmASFFXjWFFHl+QopMP80JECBAgAABAgQIECBQJgEhRV41hRR5fkKKTD/NCRAgQIAAAQIECBAgUCYBIUVeNYUUeX5Cikw/zQkQIECAAAECBAgQIFAmASFFXjWFFHl+QopMP80JECBAgAABAqR4pvsAACAASURBVAQIECBQJgEhRV41hRR5fkKKTD/NCRAgQIAAAQIECBAgUCYBIUVeNYUUeX5Cikw/zQkQIECAAAECBAgQIFAmASFFXjWFFHl+QopMP80JECBAgAABAgQIECBQJgEhRV41hRR5fkKKTD/NCRAgQIAAAQIECBAgUCYBIUVeNYUUeX5Cikw/zQkQIECAAAECBAgQIFAmASFFXjWFFHl+QopMP80JECBAgAABAgQIECBQJgEhRV41hRR5fkKKTD/NCRAgQIAAAQIECBAgUCYBIUVeNYUUeX5Cikw/zQkQIECAAAECBAgQIFAmASFFXjWFFHl+QopMP80JECBAgAABAgQIECBQJgEhRV41hRR5fkKKTD/NCRAgQIAAAQIECBAgUCYBIUVeNYUUeX5Cikw/zQkQIECAAAECBAgQIFAmASFFXjWFFHl+ryukuOGm3rk+20fWq8ZjU3rijjt7mj72f95fixGL1+banwcQIECAAAECBAgQIECAwH9PQEiRZy2kyPN7XSHF1df0xi23Ng4qlntLLXbZqVIPKU47o6/pyMbsWRFSZNZOcwIECBAgQIAAAQIECLRaQEiRJyqkyPMTUmT6aU6AAAECBAgQIECAAIEyCQgp8qoppMjzE1Jk+mlOgAABAgQIECBAgACBMgkIKfKqKaTI8xNSZPppToAAAQIECBAgQIAAgTIJCCnyqimkyPMTUmT6aU6AAAECBAgQIECAAIEyCQgp8qoppMjzE1Jk+mlOgAABAgQIECBAgACBMgkIKfKqKaTI8xNSZPppToAAAQIECBAgQIAAgTIJCCnyqimkyPMTUmT6aU6AAAECBAgQIECAAIEyCQgp8qoppMjzE1Jk+mlOgAABAgQIECBAgACBMgkIKfKqKaTI83vDQ4rvnNcX9z/Q03AWa65ejY03rGbOUnMCBAgQIECAAAECBAgQGIiAkGIgSo0fI6TI8xNSZPppToAAAQIECBAgQIAAgTIJCCnyqimkyPMTUmT6aU6AAAECBAgQIECAAIEyCQgp8qoppMjzE1Jk+mlOgAABAgQIECBAgACBMgkIKfKqKaTI8xNSZPppToAAAQIECBAgQIAAgTIJCCnyqimkyPMTUmT6aU6AAAECBAgQIECAAIEyCQgp8qoppMjzE1Jk+mlOgAABAgQIECBAgACBMgkIKfKqKaTI8xNSZPppToAAAQIECBAgQIAAgTIJCCnyqimkyPMTUmT6aU6AAAECBAgQIECAAIEyCQgp8qoppMjz65iQ4i939MTjj/c0ne1H1qtmamhOgAABAgQIECBAgACB7hYQUuTVX0iR59dRIcUV3+9rONv+/ojDDp6ZqaE5AQIECBAgQIAAAQIEultASJFXfyFFnp+QItNPcwIECBAgQIAAAQIECJRJQEiRV00hRZ6fkCLTT3MCBAgQIECAAAECBAiUSUBIkVdNIUWen5Ai009zAgQIECBAgAABAgQIlElASJFXTSFFnp+QItNPcwIECBAgQIAAAQIECJRJQEiRV00hRZ5fKUOKyZOb3wUkkY0YUcuU05wAAQIECBAgQIAAAQLlExBS5NVUSJHnV8qQ4piv9ccLMxrDbLlFJVZcQUiRuXQ0J0CAAAECBAgQIECghAJCiryiCiny/IQUmX6aEyBAgAABAgQIECBAoEwCQoq8agop8vyEFJl+mhMgQIAAAQIECBAgQKBMAkKKvGoKKfL8hBSZfpoTIECAAAECBAgQIECgTAJCirxqCiny/IQUmX6aEyBAgAABAgQIECBAoEwCQoq8agop8vyEFJl+mhMgQIAAAQIECBAgQKBMAkKKvGoKKfL8hBSZfpoTIECAAAECBAgQIECgTAJCirxqCiny/IQUmX6aEyBAgAABAgQIECBAoEwCQoq8agop8vyEFJl+mhMgQIAAAQIECBAgQKBMAkKKvGoKKfL8hBSZfpoTIECAAAECBAgQIECgTAJCirxqCiny/IQUmX6aEyBAgAABAgQIECBAoEwCQoq8agopXvb76fW/jbMuuDKenDY9hi+yUBw8drtYbYX31v81/beDxp8dt989KRYZNjSOPmDnWGn5d9X/7eHHn4ujJ/THiy82LsSokZVY4QO1uPqa3rjl1t6GD1zuLbXYZadKPDalJ047o69pZcfsWYkRi9fiO+f1xf0P9DR87JqrV2PjDavxlzt64orvN+6zvz/isINn1vs55mv98cKMxk+/5RaVWHGFWt7K05oAAQIECBAgQIAAAQIlFBBS5BVVSPGy3zcv+HFs/ol1YqklFo3f/fmvsd8RZ8RN3z8lenp6YtwxZ8XSSy4We40eGXfcM6n+b1eePyGGzDdvV4cUN9zUOHB5ZVl+ZL1qPPFET/z59sZBSnrs+99biyWWEHzknc5aEyBAgAABAgQIECDwRgsIKfIqIKRo4LfmJnvGNZecEAsuMH+svfleceMVJ8eQIfPWHz32kFNj1CbrxnprrdjVIcXPru2N39zSOKhYZpla7LZzpR5SnHx680+G7LV7RUiRdy5rTYAAAQIECBAgQIBAAQSEFHlFEFLMwW/SAw/HXgefEldfdGw8OuXJ2GHMMfXA4pVj4lmXx7CFFoydt91ISCGkyDsDtSZAgAABAgQIECBAoFQCQoq8cgopXuVXqVTi818+IbYf9fH46IdWjgcefDTGfOWUuPK88bMeeca5P4xqrRZjRo+MmZVqjB1XiRlNfsNh9Ha9scYqPXH5j6px3U2Nv9Lwzrf3xJfH9MYjj0YccWylaWUPO6A3llqyJyZ+vRp/u69xnx/5cE9sM7I3fvfHWnz7wmrDPufpjzjtuJc+7fClgyrx/AuNn36nz/TGmqv1xBU/rsYvbmz83G9bricO/GJvPDYl4tDxzedz6Jd7Y+mleuKPf577Vz5WXqH5V0fyTgmtCRAgQIAAAQIECBAgMHiB/r65fy1+8L2Xv6WQYrYaV6u1GDf+zHjL0kvUA4h0TJ4yNbbd48i4/oqTZj3y2K9/NxYbvnDs8pmNY/LUF+Lwr/Y2/eHMrUfVYsUP1uInP+uJX9/S+A32W5eL2G3najz2WMRJpzdf2F/cqxpLjIg4+5ze+Mf9jRfq2mvUYtONa/XfhLj0isbPnX4486hDXwoxjhzfGy80CSm2GlmLlVesxU9/3hO/+k3jPpddJmLPXavx+BMRJ57SfD5jv1CNJZeI+PZ5PXHfpMZ9rrV6LTbbZO5BRvlPXTMkQIAAAQIECBAgQKCIAiOGzVfEYXXMmIQUL5eqVqvFESecG/O/ab44cMxnZxUw/fd1thgTP7/4+Bi64Pz1/77nuImx1abr1z9p0c1392jHb1Kce0FfTPpH45BijdWqsclGjT8R0jFnnoESIECAAAECBAgQIFBKAV/3yCurkOJlvwmnXRQpkDh47PavET38+HNi0eELxZjRW9bv7jGm/nsVx8UC8w8RUrT4NykGGlJMfmzuX/lIt2h1ECBAgAABAgQIECBA4L8pIKTI0xZSRMT9/3okNtlhXPT1/udXEr6461b1r3RMf/rZOGjC2XHb7ffWP01x2D47xtqrLV+X90mK1t7dY6AhxR139sRl32t8x5D0NbDDD5mZd3ZoTYAAAQIECBAgQIAAgdcpIKR4nWCveriQIs9PSPEGfZJCSJG5cDUnQIAAAQIECBAgQKAtAkKKPFYhRZ6fkEJIkbmCNCdAgAABAgQIECBAoEwCQoq8agop8vyEFB0QUow/tr/pLVW32Kwaq6xUjWuv642bf9346ytLL12L3XepxJNTe+KkUxt/1SQtqT13q8Sbl/SbGJmnl+YECBAgQIAAAQIEOk5ASJFXMiFFnp+QQkgxxxUkpMg8sTQnQIAAAQIECBAg0KECQoq8wgkp8vyEFEIKIUXmOaQ5AQIECBAgQIAAgTIJCCnyqimkyPMTUggphBSZ55DmBAgQIECAAAECBMokIKTIq6aQIs9PSCGkEFJknkOaEyBAgAABAgQIECiTgJAir5pCijw/IYWQQkiReQ5pToAAAQIECBAgQKBMAkKKvGoKKfL8hBRCiqYhxaWXN78LyPwL1GKzjatx5909cccdje8skp5km09XMler5gQIECBAgAABAgQItFtASJEnLKTI8xNSCCmahhTnXdgX903qabjKVlu1OiukaBZo9PZEHHHozMzVqjkBAgQIECBAgAABAu0WEFLkCQsp8vyEFEIKIUXmOaQ5AQIECBAgQIAAgTIJCCnyqimkyPMTUggp/ushxQ03Nf9ayNChEauuXI25PS4N/CPrVTPPAM0JECBAgAABAgQIEJhdQEiRtx6EFHl+QgohxX89pJhwfH8891zjhbv5ptV6SPGLG3rjlzc3DjSWenMt9tjV71xkbgGaEyBAgAABAgQIEPgPASFF3oIQUuT5CSmEFEKKzHNIcwIECBAgQIAAAQJlEhBS5FVTSJHnJ6QQUggpMs8hzQkQIECAAAECBAiUSUBIkVdNIUWen5BCSCGkyDyHNCdAgAABAgQIECBQJgEhRV41hRR5fkIKIYWQIvMc0pwAAQIECBAgQIBAmQSEFHnVFFLk+QkphBQdH1JMnRYx44WeuZ4JI0bU5voYDyBAgAABAgQIECDQ7QJCirwVIKTI8xNSCClKEVJMPKW/6ZmQ7gKS7gbiIECAAAECBAgQIECguYCQIm+FCCny/IQUQgohReY5pDkBAgQIECBAgACBMgkIKfKqKaTI8xNSCCmEFJnnkOYECBAgQIAAAQIEyiQgpMirppAiz09IIaToqpDigov64t77Gv9+xaorV2PzTatx11974pLL+pqeXUccOjN65/5TGJlnqOYECBAgQIAAAQIE/rsCQoo8byFFnp+QQkghpJhNQEiRuaFoToAAAQIECBAg0PECQoq8Egop8vyEFEIKIYWQInMX0ZwAAQIECBAgQKBMAkKKvGoKKfL8hBRCCiFFZkhx+jeafy1kjdVqsdqq1bjuxt64++7G3w/p64vYc7dKPPVUxPkXNe9z5ObVWHppdyvJ3P40J0CAAAECBAgQmIOAkCJvWQgp8vyEFEIKIUVmSHHcif3x9DONT8TNNq7OCilu+mVvwwe+ecnarJDihJOb31J1910qQorMvU9zAgQIECBAgACBOQsIKfJWhpAiz09IIaQQUggpMncRzQkQIECAAAECBMokIKTIq6aQIs9PSCGkEFJ0cEhx6eXNvxYyZEgtttisGvf8rSf+9OfGn+JIBFuNqkRfb8Tc+nzrW2uxxmrVuOGm3pg8ufntTbb5dCVzh9KcAAECBAgQIEDgvy0gpMgTF1Lk+QkphBRCig4OKS68uC/+9vfGQcEqK1VnhRQXXdI80Dj8kJn1kOL4k/pj+vTGG8smG1VnhRQpqGh0LLFELfbaXUiRuUVrToAAAQIECBD4rwsIKfLIhRR5fkIKIYWQQkhRFxBSZG6mmhMgQIAAAQIESiIgpMgrpJAiz09IIaQQUggp2hpSpE9l/P6Pzb9q8q531GKZZWr1r5DM7fjIetX6p0ceeqj5V00+vE41+vtjrn2+6U0Ra65ejfSjptW53DAlPXf6kdTf/b75ON/+tlos9xZ3X5lbLf07AQIECBAgUEwBIUVeXYQUeX5CCiGFkEJI0faQIn2FpNmx286VekiRvpKSfj+j0bHiCrXYcotKPaRIX3Vpdhx28Mx6SJHulJJu69ro2HjD6qyQIt0mttExYkQtxuxRqYcU6Y4uzY5ddqoIKTJfmzQnQIAAAQIE3jgBIUWevZAiz09IIaQQUggphBQvf5JCSJH5gqI5AQIECBAgUAoBIUVeGYUUeX5CCiGFkEJIIaRoU0hx593Nv5KS4P/nfbW4976emDGj+Wb+7nfWYp55Igba50Af99xzEZPubz7OBeaPeOtytQE/932TeuL5F5rP553vqMV882a+gGlOgAABAgQItEVASJHHKqTI8xNSCCmEFEIKIUWbQopLLuuLu/7aOABY4QO1GDWyUg8pLrio+ddXDj1oZj2kmHhKf0yd1njj3+gT1VhrzWr88ube+MUNjb++svhitdj7C5VIIcWE45t/fWXnz1XqIUW6PW2z8OODy9diqy0rkUKK8y5sPp+vjJsppMh8/dacAAECBAi0S0BIkScrpMjzE1IIKYQUQgohhZCi6SuJkCLzhVZzAgQIECDQYQJCiryCCSny/IQUQgohhZBCSCGkeMNCismPzf0rMSMWr8VAH5e+ZvLUU63tcyDPvdBCtRgyXwx4nAPpM837hRkR06b99+czdMFapDvfDHScA33ciy9GPDm1tfPJvAzSnAABAgTmICCkyFsWQoo8PyGFkEJIIaQQUggp3rCQ4qRT+5q+ad3w49VYe61q3Pzr3rj2usZfXxk+vBZfGlOp/xbG+GObf31lpx0qkW4Te9n3+uKOOxu/YV7+f2qx9ahKTPpHT5x7QfOvrxx84Mx6SHHy6X3xxBON+/z4R6uRbo/7m1t642fXNp7PIsNqsc/YSj2kOOZrzefzue0r8Y631+KK7/fFX+5o/Nzp90+2+XQl7n+gJ75zXvP5HLT/zHpIcdoZffHYlMZ9fuwj1Vj3w9W45dbeuPqaxvMZtnDEvl+cGSmkOHpC8/nssF0l0m2Jv/eDvvjz7Y2f+/3vrcW2W1cyr4I0J0CAAIE5CQgp8taFkCLPT0ghpBBSCCmEFEIKIcUcBIQUQorMSyzNCRAg0LECQoq80gkp8vyEFEIKIYWQQkghpBBSCCn+Q8AnKTIvrjQnQIBAhwsIKfIKKKTI8xNSCCmEFEIKIYWQQkghpOjYkOKBf/bEt89t/vWVA/abGQsuEHH6N/ti8uTGXyH56PrVWG/datz6v73x0581/vrKQgtFfPlLM2PmzIijxjf/+sr2n61EuoXw93/UF3/6c+Pnfs+7a7HdtpV48MGeOOs7zeez/z4zY+jQiK+f2RePPtq4z4+sV430v9/+rjd+cnXj+aS+Up+VasSRX20+nzTGNNYfXdkbf7itcZ9pzmnuDz3UE2d+u/l8kmUydRAgUBwBIUVeLYQUeX5CCiGFkEJIIaQQUggphBRCiogQUggpMi+rNSdQGgEhRV4phRR5fkIKIYWQQkghpBBSCCmEFEIKIYVPUmReU2tOoEwCQoq8agop8vyEFEIKIYWQQkghpBBSCCmEFEKKNzyk+MZZffUxNDre995a/dMuv/t9b/z2981vZTtmj0pUaxFnnNn8qyYbrF+NdKeYH1/VG/98sHGfCw+NSHeeefjfPfH9HzX+mksa+/afqUS6o803z+6LmU1uQPPe99Qi3SHn93/sjVv/d+7zSX2nryw1O9LXe9KdfK78aW+kr0I1OoYuGJHuDPTvR3riez9sPp/ttq1GuuNQ+tpOukNPo+M976pFuoNR+hrQLb9tzXzW/3A10o8Yp68r/eOBxn2mr3OlOzelrz9d/oPm8/ns1tVId4RKX6uaMaPxfN75jlqkO0ylr2n9qsn7hdRDWm8Dqc+6H6rGB5ev1b9ONun+xvOZ/00RO3+uUr8N9GXfaz6fbbaqxuKL1epfe3vu+cbzSXeB2ugT1fpdk9Ids5odaT5Cirw32UKKPD8hhZBCSCGkEFIIKYQUQgohhZCiECFFetPc6Ei/F/JKSJHehDc60hvW9DskKaQ44ujmv7GRbmP7SkiRwoJGR7ot7ishRQofmh3pdruvhBQp1Gh0pNv3vhJSpJCk0ZFuB5x+zDYdaT5pXo2OdJvhV0KKFOY0OtIb1ldCihQONTvS7ZBfCSnSb4w0OtLtlV8JKdJvljQ60u2a022b05F+A6VZMJVuA/1KSJF+W6XRkW4r/UpIkX6rpdmRblf9SkiRfgOm0ZFuf/1KSJF+U6bRMd+8EV8Z99J80m/UpN+qaXRstWVlVkiRfvum0fHW5WqzQorTv9F8Pnt/oTIrpGgWTK21ZnVWSJFu8dzomGeeiEMPmimkaLqK5v6PQoq5GzV9xMOPP1e/Z3mzZHTUyEqs8IFa/R7o6V7ojY7l3lKLXXaq1O+pnu6t3uwYs2clRixeq9+rPd2zvdGx5urV2HjDav3e7+ke8I2O/v6Iww5+aVdI95RP95ZvdGy5RSVWXKFWv0d9uld9o2OZZWqx286V+j3vTz69+Xz22r0SSyxRi3Mv6ItJ/2g8nzVWq8YmG1XjjjtTMtq4z77eiMMPeWk+44/tj+dfaDyfLTarxiorVePa63qbJqNLL12L3XepxJNTe+KkU5vPZ8/dKvHmJWtx3oV9cd+kxvNZbdVqbLZxNe68uycuvbxxn709EUcc+tJ8JhzfH88913g+m29ajVVXrsYvbuiNX97cuD5LvbkWe+xaianTIiae0vwiJD0uPf6Ci/ri3vsazyc9b3r+u/7aE5dc1twozSfN67gT++PpZxrPJ/kkp+tu7I2bftl4Psk7uT/1VMQJJzefT6pjqueFF/fF3/7eeD5pXaT1cc/feuKiS5rPJ623tO6OP6k/pk9vPJ+0ftM6vuGm3vr/Gh3pfEjnReor9dnsSOdZOt/SGNNYGx3pvE3nb5pzmnuzI+0HaV9Ilsm00ZH2l7TPpNqkGjU6Royo1f9Skmqdat7sSPtg2g/TGkprqdGR9tW0v6Y1mdZmsyNdMKQLh7TW05pvdKS/kqQLkXTupHOo0ZH+6pIubNK5mM7JZkf6a066YErneDrXGx3pr0PpAiztGWnvaHakC7p0YZf2orQnNTrSBWK6UEx/9Ul7XKMjXXCmC8+0V6Y9s9mRLmTTBW3ag9Ne3OhwC9LOuAWpH84szw9npjfLQorX7khCipc+SSGkmPOrlZCi6Uv+G/aPQopMeiGFkGJOS0hIIaRotLUIKYQUQorXCqS/Cqa/DqZAOwXbjY70V8b018YUkKegvNGR/mqZ/nqZAvcUvDc70l9D019FU5CfAv1GR/rravora/rDQPoDQbOjk25BKqQQUrx6LfskxUtf9/BJijnvcj5J0RM+SZH5BnoAzYUUA0Bq9hAhhZBCSPH/Aj5J4ZMUjfZLn6TwSYpmr6VCit76py0bHemj7+kj8OlTm+nTm82O9JH69NH6dBGdvjvd6Egf0U8f1RdSCCmEFP8v4OsePfVb8zY7hBRCisy3zwNqLqQYEFPjBwkphBRCCiFFEvB1D1/3aPRK4esePfWv8gkpXiuQvk+fvlefvgoqpJjzCtn+s5V49ztrkb7Tnn6Ar9HxnnfXYrttK5G+I59+0K/Zsf8+M2Po0Ki/GUs/FNjoSD+imP6XPiafPi7f6Eh9pT7TbwOk3whodqQxprGm3xxIP5DY6EhzTnNPv2GQfnCx2fHlL82MhRaK8HWPOSv5uoevezQ7f3zdI/PNcJuaCykyYYUUQgohhZBCSOE3KZq9lAgphBSN1oeQ4qUfymt2CCmEFI3Whx/O9MOZjdaGH87MfINbgOZCiswiCCmEFEIKIYWQQkghpHitgB/O9MOZjc6L9Ff/9Nf/9Cv+Qoo5K/kkxUu3IHV3j9euD3f3eOkWpO7ukfkmtuDNhRSZBRJSCCmEFEIKIYWQQkghpJhdwA9n9tbfRAgpXivg6x499fCh2eEWpL31rwM1OoQUQorMt68d0VxIkVkmIYWQQkghpBBSCCmEFEIKIUXER9evxnrrVut/4RRSzHlXEFIIKRq9XqQ7F6U7GKXfKhFSzFkp3aY73a7bJyky38B2QHMhRWaRhBRCCiGFkEJIIaQQUggphBRCCj+c2fiaMN1xJt15Jn19wycp5vyKIaR46etf6WtgjQ4hReYb1w5qLqQYQLGenDY9Dhp/dtx+96RYZNjQOPqAnWOl5d9VbymkEFIIKYQUQgohhZBCSCGkEFIIKYQUc3ot2GdsJRYZVqvfpSXdrcUnKf5TYL55I74y7qVkQkgxgDemXfIQIcUACj3umLNi6SUXi71Gj4w77pkU+x1xRlx5/oQYMt+8QopbhBRCCiGFkEJIIaQQUggphBRCCiGFkOL/BdZeqxobfrxav3VwuoVwo0NIMYA3o134ECHFXIperdZi7c33ihuvODmGDJm3/uixh5waozZZN9Zba0UhhZBijitoz90q8eYla3HehX1x36TGqflqq1Zjs42rcefdPXHp5Y038N6eiCMOfSllnnB8fzz3XOOFu/mm1Vh15Wr84obe+OXNjS8YlnpzLfbYtRJTp0VMPKX5LeDS49LjL7ioL+69r/F80vOm57/rrz1xyWXNfxgrzSfN67gT++PpZxrPJ/kkp+tu7I2bftl4Psk7uT/1VMQJJzefz+67VGLppWtx4cV98be/N57PKitVY4vNqnHP33riokuaz+fwQ2ZGX2/E8Sf1x/TpjeezyUbVWGO1atxwU2/9f42OJZaoxV67V+p9pT6bHbvtXIlllqnVx5jG2uhYcYVabLlFpT7nNPdmx2EHz4z+/pcsk2mjY+MNq7Hm6kIKIYWQQkghpBBSCCmEFEKKeeaJOPSgmbHUom/qwmihdVMWUszF8tEpT8YOY46Jay45YdYjJ551eQxbaMHYeduNhBRCCiHFbAJCCiFFoy11xIhajNmjUg+kUjDV7Nhlp0os95ZaPehKgVejY4UP1GLUyEo9OEsBWrMjXTCkC4cUyKVgrtGx0Seqsdaa1XrAl4K+Rsfii9Vi7y9U6oFhCg6FFEIKIYWQQkghpBBSCCmEFK0JKoQUc3F84MFHY8xXTokrzxs/65FnnPvDqNZqMWb0yPp/+8L+L8aMGY07+vwOfbHmqr1x6Q8qce2N1YYPfNc7euLAsf3x70drcej4Jr8ak76zdVB/LLVkTxx/2sy45++1hn1+dN3e+MyovvjtH6px9vmVho9LJ9Q3Tpin/u9jDngxnn+h8Xx23q4v1l69Ny77YSWuuaHxfN7+1p44eJ/+mDylFgcf3Xw+RxzYH8ss1RMnfn1m3P23xvPZ4MO98dmt+uJ3t1XjzHMbz6evL+LMiS/NZ+8DX4znnm88n89t2xcf9V9IfwAAIABJREFUXqs3vndlJa7+ReP5vG25nvjKvv0x5fFajDuq+XwO278/3rJMT0w8Y2bcdU/j+ay/Tm9sv3Vf/OFP1fjGOY3n09sbcdZJL83niwe9GM8823g+O27TF+uu3Rs/+EklfnJN4/kst2xPHPrl/nj8iVoceGTz+aTHpcef/M2ZccfdjeeTnjc9/x//Uo0zvt14Pmn0aT5pXvse8mI81eSTB8knOf3wp5W46ueN55O8k/uTU2ux/+HN55PqmOp5ypkz4/a7Gs8nrYu0Pv58RzVOO7v5fNJ6S+vuy4fNjKnTGveZ1m9axz/+WSV+fHXj+aTzIZ0Xqa/UZ7MjnWfpfDvt7Jnx5zsaP3c6b9P5m+ac5t7sSPtB2heSZTJtdKT9Je0zqTapRo2Opd/cE0eO66/XOtW82ZH2wbQfpjWU1lKjI+2raX9NazKtzWbHGcfPE/POG/W1ntZ8o2ObkX3x8fV76+dOOocaHW9eoieOPri/fi6mc7LZsf/e/fGed/bUz/F0rjc61lilN3bdsa++Z6S9o9lx+nHzRLoNXdqL0p7U6Nj6U33xiY/01ve2tMc1OkYs1hPjD+2v75Vpz2x27LdXf7zv3T31PTjtxY2O1Vbqjd136qvv6Wlvb3acduw88aYhUX+tSK8ZjY5Rm/XFRh/rrb/2pNegRsdii/bE1w7rr7+Wpde0Zse+X+iP97+np/4amV4rGx2rrNgbe47uq7/mptfeZscpE+aJBeaP+mt5ek1vdIzcpC82+URv/dogXSM0OhYd3hPHHt5fv9ZI1xzNji/t0R/Lv68nvnVBJW79feP5rPzB3vjCLunTcbU49tTm85n41XlioaERh39tZjz078bz+dTGfbHpJ3vjul9W47vfazyfRYb1xPFH9seLL0bs+eXm8/ni7v3xgff3xHcuqsRv/rfxfFZYvif23rU/Jt1fi/EnNZ/PCUf1x7CFe+KIY2fGgw83ns/mG/XG5hv2xfU3V+PiKxrPJ/WV+qxUInbft/l89t61L1ZYvjfOu6QSN9/SeD5pzmnu/3igFsdMbD6fZJlMjzp+ZvzzwcbzSbVJNbrx19W48LLG80m1TjWvViN226f5fNIaSmvp/Esr8cvfNJ5PWpNpbT7wr1ocfULz+aS1ntZ8elx6fKMjnTvpHErPm56/0ZHOxXROpiPNJ82r0ZHO8XSuJ5/k1OhIe0baO5J3cm92pL0o7UmpjqmejY60t6U9Lq2LtD4aHWmvTHtmOtJ6S+uu0ZH24LQXp/Wb1nGjI+3paW9P50M6L5od6bWi/ppx0sz6+dboSK896TUonbfp/G10pNey9JqWjrQfpH2h0ZFeI9NrZdpf0j7T6Eivuem19+FHanHYhObzSa/l6TU97YNpP2x0pGuDdI2Q9tW0vzY60rVGuuZw5AkIKebiN3nK1Nh2jyPj+itOmvXIY7/+3Vhs+MKxy2c2ztPXmgABAgQIECBAgAABAgQIEJglIKSYy2Ko1WqxzhZj4ucXHx9DF5y//ug9x02MrTZdPz76oZUtJQIECBAgQIAAAQIECBAgQKBFAkKKAUAefvw5sejwhWLM6C3rd/cYc/ApcfVFx8UC8w8ZQGsPIUCAAAECBAgQIECAAAECBAYiIKQYgNL0p5+NgyacHbfdfm/90xSH7bNjrL3a8gNo6SEECBAgQIAAAQIECBAgQIDAQAWEFAOV8jgCBAgQIECAAAECBAgQIECgrQJCirby6pwAAQIECBAgQIAAAQIECBAYqICQYqBSHkeAAAECBAgQIECAAAECBAi0VUBI0SLew084J4788ugW9fZSN93aZ7fOu1Nqrj7FPs/VR31a8UJkHbVuHbFsnWU7XifVR33smYMXcP609vwZfCXK11JIMciaPvb41Jj8+NSIWi3+cPu9ceEV18TobTaKD77/7RE9PbH48GExYrFhr6v3bu2zW+edFkcnzL0Txtgplu0Yp/oUex9Wn2LXxzmpPq7finXtas8s9jmpPq2tz+t6o9hlDxZSDKLgl/74hjj9nB/EMksunvKIWHrJxeJLu306Tj7r8njokSkpt4iHHnksdtt+s9h+1McH9Azd2me3zjstik6YeyeMsVMs2zFO9Sn2Pqw+xa6Pc1J9XL8V69rVnlnsc1J9WlufAb1B7OIHCSkGUfxNdzwozj/loBi+yEINW6fblm65y6Fx7aUnDugZurXPbp13WhSdMPdOGGOnWLZjnOpT7H1YfYpdH+ek+szpAs312xt37WrPLPY5qT6trc+A3iB28YOEFIMo/qNTnowlFltkri0ffeyJWGLx4XN9XHpAt/bZrfPulJqrT7HPc/VRn0YvMF5/3pjXXuekc9I5+VqBge5Hzh/nTzedPwN6g9jFDxJStLj4//jXI/H9n9wU06Y/E9OeeiZOOXrv7Gfo1j67dd5pwXTC3DthjJ1i2Y5xqk+x92H1KXZ9nJPq4/ot7/K11Xtcq/trxznezX2qT2v3zLyzrxythRQtruOzzz1ff4OZAoppTz0dG22wRvYzdGuf3TrvtGA6Ye6dMMZOsWzHONWn2Puw+hS7Ps5J9XH9lnf52uo9rtX9teMc7+Y+1ae1e2be2VeO1kKKFtcx/ertb353R0x96umY+tQz8cXPj8p+hm7ts1vnnRZMJ8y9E8bYKZbtGKf6FHsfVp9i18c5qT6u3/IuX1u9x7W6v3ac493cp/q0ds/MO/vK0VpI0eI6TnliWtz6h7te/rrH0/GFnT6V/Qzd2me3zjstmE6YeyeMsVMs2zFO9Sn2Pqw+xa6Pc1J9XL/lXb62eo9rdX/tOMe7uU/1ae2emXf2laO1kKIcdTQLAgQIECBAgAABAgQIECDQ8QJCiowS7n7AiVGrzb2Ds47fb+4PevkR3dpnt847lb0T5t4JY+wUy3aMU33mvsW+kfuw+hS7Ps5J9Wkk8EbuG+1Yl53Spz2z2Oek+rS2PnPvrTsfIaTIqPuPr/lNfO8nN8VWm64Xiw5bKJ6c9nRcftWNscZK74tVV3xPxMsBxmorvnfAz9KtfXbrvNPC6IS5d8IYO8WyHeNUn2Lvw+pT7Po4J9XH9Vuxrl3tmcU+J9WntfUZ8JvELnugkCKj4J/e7fA4/9SD401D5pvVy/MvzIitdz8ifnzu+EH13K19duu80yLphLl3whg7xbId41SfYu/D6lPs+jgn1SetAddvxbl2tWcW+5xUn9bWZ1BvGLugkZAio8gf3XrfuPaSE6O3t2dWL9VqLT6+7X5x3WUTB9Vzt/bZrfNOi6QT5t4JY+wUy3aMU32KvQ+rT7Hr45xUn7QGXL8V59rVnlnsc1J9WlufQb1h7IJGQoqMIh80/qzo6emJ7Ud9IhZfdOF4Yur0uPB710SlUo3xB+06qJ67tc9unXdaJJ0w904YY6dYtmOc6lPsfVh9il0f56T6uH4r1rWrPbPY56T6tLY+g3rD2AWNhBQZRX7++Rlx9kVXxfW/uS0ef2JaLDp84dhg7ZVi1+02jSFD5h1Uz93aZ7fOu/4R0w5YR50wxk6xbMc41afY+7D6FLs+zkn1cf1WrGtXe2axz0n1aW19BvWGsQsaCSm6oMimSIAAAQIECBAgQIAAAQIEOkFASJFRpb9NejDOvfTqWHSRhWKv0SNjyHyD+/TE7EPo1j67dd6p9p0w904YY6dYtmOc6lPsfVh9il0f56T6uH7LuBhuw3WMPbPY56T6tLY+eWdfeVsLKTJq+6nRh8Rmn1g7Hvz3Y7Hw0AXiS7tuFX+64+/x0+tvjYPHbj+onru1z26dd1oknTD3Thhjp1i2Y5zqU+x9WH2KXR/npPq4fivWtas9s9jnpPq0tj6DesPYBY2EFBlF3nSHcXHVBV+LSqUSexw4Mc4+Yf/6/99kh4PiZxcfN6ieu7XPbp13WiSdMPdOGGOnWLZjnOpT7H1YfYpdH+ek+rh+K9a1qz2z2Oek+rS2PoN6w9gFjYQUGUXebf8T45hxu8Tiiw6L9P/POn6/ekjxyc8eEL+49MRB9dytfXbrvNMi6YS5d8IYO8WyHeNUn2Lvw+pT7Po4J9XH9Vuxrl3tmcU+J9WntfUZ1BvGLmgkpMgo8ncuuTquuOrG2GCdleMXN/8hNtpgjfjDX+6J4cMWipOPGjOonru1z26dd1oknTD3Thhjp1i2Y5zqU+x9WH2KXR/npPq4fivWtas9s9jnpPq0tj6DesPYBY2EFBlFPufSq/+jdW9PTyw5YtHYYJ2VYp55+gfVc7f22a3zToukE+beCWPsFMt2jFN9/n+7LeI+rD7Fro9zUn2KuG+0Y112Sp/2zGKfk+rT2voM6g1jFzQSUnRBkU2RAAECBAgQIECAAAECBAh0goCQIqNKB3/tW7HjVp+I977zLfH88zPiyInnxt/vfygO2OszsdoK7x1Uz93aZ7fOOy2STph7J4yxUyzbMU71KfY+rD7Fro9zUn1cvxXr2tWeWexzUn1aW59BvWHsgkZCiowib/DpfeP6yyfWe/jGeT+KKU9Mi2222CC+8rWz4/KzjhxUz93aZ7fOOy2STph7J4yxUyzbMU71KfY+rD7Fro9zUn1cvxXr2tWeWexzUn1aW59BvWHsgkZCiowib7z9gfHTC4+NGS/OjPT/Lz/riFhk4aGx0XYHxtUXHTuonru1z26dd1oknTD3Thhjp1i2Y5zqU+x9WH2KXR/npPq4fivWtas9s9jnpPq0tj6DesPYBY2EFBlF3nX/E2K9NVeIe//xYPT39cWh++wYT01/Jrbd86h6eDGYo1v77NZ5pzXSCXPvhDF2imU7xqk+xd6H1afY9XFOqo/rt2Jdu9ozi31Oqk9r6zOY94vd0EZIkVHlxx6fGmdfdFX9Th5f+NynYoH5h8T0p5+NP9359/jwGh8cVM/d2me3zjstkk6YeyeMsVMs2zFO9Sn2Pqw+xa6Pc1J9XL8V69rVnlnsc1J9WlufQb1h7IJGQorMIleq1bh30oMxecrUGLHYsHj325eN3t6erF67tc9unXdaLJ0w904YY6dYtmOc6lPsfVh9il0f56T6uH4r1rWrPbPY56T6tLY+WW8cS9pYSJFR2H89PDnGHnpazDtPf9x3/8Ox7NIjolatxSlH7x3LLbPEoHru1j67dd5pkXTC3DthjJ1i2Y5xqk+x92H1KXZ9nJPq4/qtWNeu9sxin5Pq09r6DOoNYxc0ElJkFHm3/U+MkRt9KDbaYI3YdIdxcdUFX4ubbv1zfOe7P43zTjloUD13a5/dOu+0SDph7p0wxk6xbMc41afY+7D6FLs+zkn1cf1WrGtXe2axz0n1aW19BvWGsQsaCSkyirz+qC/Fjd87ud7DKyFF+v8bfvaA+NnFxw2q527ts1vnnRZJJ8y9E8bYKZbtGKf6FHsfVp9i18c5qT4ppHD9VpxrV3tmsc9J9WltfQb1hrELGgkpMoq87sixcdP3T4menp56SPGjc4+JH/38N/GTX9wS3554wKB67tY+u3XeaZF0wtw7YYydYtmOcapPsfdh9Sl2fZyT6uP6rVjXrvbMYp+T6tPa+gzqDWMXNBJSZBT56JPOj+23+kS8bdkl48Of2jumP/NcrL7i++Ko/UfHkiOGD6rnbu2zW+edFkknzL0Txtgplu0Yp/oUex9Wn2LXxzmpPq7finXtas8s9jmpPq2tz6DeMHZBIyFFi4o85YlpsfDQBeq3I23V0a19duu807rphLl3whg7xbId41SfYu/D6lPs+jgn1acV13DO89atI5ats7S/FduyFXtPmfoQUrS4mlOfejr+ctekmDb96Zj21DOx/aiPZz9Dt/bZrfNOC6YT5t4JY+wUy3aMU32KvQ+rT7Hr45xUH9dveZevrd7jWt1fO87xbu5TfVq7Z+adfeVoLaRocR0femRKXHvT72Pa9Gdi2lNPx2H7fi77Gbq1z26dd1ownTD3Thhjp1i2Y5zqU+x9WH2KXR/npPq4fsu7fG31Htfq/tpxjndzn+rT2j0z7+wrR2shRYvrOHNmJSY/PjWmTnu6/tfwtVf9n+xn6NY+u3XeacF0wtw7YYydYtmOcapPsfdh9Sl2fZyT6uP6Le/ytdV7XKv7a8c53s19qk9r98y8s68crYUULa7jvf94MC684tr61z2mPvVMnHvyuOxn6NY+u3XeacF0wtw7YYydYtmOcapPsfdh9Sl2fZyT6uP6Le/ytdV7XKv7a8c53s19qk9r98y8s68crYUU5aijWRAgQIAAAQIECBAgQIAAgY4XEFJklPDPd90Xiy86LJZaYtFZvTz86OPx6GNPxErLv2tQPXdrn90677RIOmHunTDGTrFsxzjVp9j7sPoUuz7OSfVJa8D1W3GuXe2ZxT4n1ae19RnUG8YuaCSkyCjyxtsfGOuttWIcuNdnZvVy7Ne/Gzf8+rb42cXHDarnbu2zW+edFkknzL0Txtgplu0Yp/oUex9Wn2LXxzmpPmkNuH4rzrWrPbPY56T6tLY+g3rD2AWNhBQZRa7VatHT0/OaHqrVWvT2vva/D+SpurXPbp13WhOdMPdOGGOnWLZjnOpT7H1YfYpdH+ek+rxyfeb6rRjXrvbMYp+T6tPa+gzk/WE3PkZI0Y1VN2cCBAgQIECAAAECBAgQIFBAASFFAYtiSAQIECBAgAABAgQIECBAoBsFhBTdWHVzJkCAAAECBAgQIECAAAECBRQQUrShKM8/PyOmTX86pj31TLz7Hcu25Bm6tc9unXdaNJ0w904YY6dYtmOc6lPsfVh9il0f56T6tOICznneunXEsnWW9rdiW7Zi7+n0PoQULa7gnX+7P75+zg9nhRRXnT8h+xm6tc9unXdaMJ0w904YY6dYtmOc6lPsfVh9il0f56T6uH7Lu3xt9R7X6v7acY53c5/q09o9M+/sK0drIUUb6/jiizNjnnn6W/oM3dpnt847LZ5OmHsnjLFTLNsxTvUp9j6sPsWuj3NSfVpxIec8b906Ytk6S/tbsS1bsfd0ah9CihZX7q6/PRAnnXVZPPDgo/HI5CfiL9d/J/sZurXPbp13WjCdMPdOGGOnWLZjnOpT7H1YfYpdH+ek+rh+y7t8bfUe1+r+2nGOd3Of6tPaPTPv7CtHayFFG+uYc7/tRsPq1j6LPu+ZMyvR398XRR/nK+uqVeN8/oUZMWS+ebtu3rOfn62ybGefnTDGNP9WjvOFGS/GfPPO09I+W33+tKu/brZs9dxbXaMnnnwqhi+yUEesy6Jb2jNbu2e2eq2rT2vr0wmvafa31ta8jW9RO6JrIUVGmb77w+ti9RXfF+9461L1Xr7/05vj7/c/FJ/b+pOxxGKLDLrnhx6ZEtfe9Pt47Imp9X4+tu6qsdQSiw66v9Tw348+Htfe/Id4bMqTsfhii8Qn11s1llh8eGH67CTLhJZCidv/Oin+97a/xu/+9Nf6///tT74xaM921Dx9mueGX98WU56YFiMWGxYf/fAqsfSSiw16jHNquP/R34zjD91jUH3++a77BtRuhfe/o+njWtVPoydp1v/cxvbf7LMT1lC7zvPpzzwXU6dNj1qtNov88BPOjVOP3juGLjj/gNbZ7A9qRc2v/eXv46iJ58XSb148zjpuv6hUqzFsoQXjul/9Me67/+F459uWjg3WWSl6enoGPL52r/U0kFZYtmPu7ejz1fDtOIdeMb3u5j/ET667Ne665/749Y9PH3DN2z3vdp2T7Xj9aWV92jXvVo7xlUVSVMt27kft6rvVlq14rZjTZtCKfbgT9rdXj7HV9WnVed7ufXjALwhd9kAhRUbBP7bNfvHTC4+Neefpjx9f85u44qob45Prrx7X/+qP8e2JBwyq55tu+VMceeJ58bF1V6kHFI89MS3SyXHEfjvFh9f44KD6vOUPd8ahx30nNvrI6vHDn/0qNv7omvUQ5Igvj4511yxGn51ieeYFV9ZDiXsm/Sve9balY5UPvidW+eC7I71ZfdOQ+QZVn3bU/JqbfhfHnHJhfHL91err6NEpT760jr48OtZbc4XXPc41N9lzjm2efe6FWGjoArHcskvEvrttXbcY6HHIsd+OH1x9cyy71IhYdJGF4slp0+tfk1pthfdGpPdtL7/fPPeUcU273OmLX3vp319u87s//zWWWWrxWHz4sJj+9LMx6Z8Px7prrhBfH/+lgQ7tPx43q//6kGoxddrTcd8DL/V5xoRi9NkJayihtuM8n3jW5XH5lTfGiEWH/Ufd/vXw5HqAvPsOm8fHPrzK66r9q2v+r4cmx/MzZsT6a68U48d9fkB9fXq3w+PM474c993/UKQwb/iwobH4osOiWq3GGiu/P/5y1331oPgrX9x+QP2lB7V7rbfKsh1zb0efs8O3+hxKnzK76ZY/x0+vuzVuu+Pe+NDqH6jvx2uvuvzr+q2qds+7Hedkq19/Up1aXZ92zLvVY0zzLrJlO/ej2ffgZhvk3K4PZm/bDstWvFa8en6t2oc7YX9rd31adZ63ex8e8EVAlz1QSJFR8I22OzCuvujYeg8jdz4kJh6xV7ztLW+OTXYYFz+54OU3Tq+z/80+d3Cc9tWx8dZll5zVMl1sjz30tPjBt49+nb299PBRnz8svvaV3eJdb1smNt1hXFx1wdfi4Ucfj70OOil+8J2vFqLPTrFcd+TYWGLxReLTm65ff5O65Ii8T6Mk/HbUPNX5tGO+WF+Prxzpr7f7HXlG/PCc11/zZ597fo7rZMexE+Kck8fFX+99II466fy48rzxA15PB084u37Rvt5aK85qc/Nv/xI/+cWt9fU6mCP1mQK+DdZZeVbzu+99IM6//Ocx4eDB9Tmncdxz37/i0h9dH4ft+7nBDHOObXL67IQ1lCbdjvN8g632iR+fNz4WXOBN/+G69W5HxGVnHdGS+qSvoZxx3g/rn3rYa6dPDajPbfY4Mi795uH1T3esttEe8fufnRnpv1389UOir6+v3sd2Y74aF51+yID6e/WD2rHWW2XZjrm3o8/ZTVt9Dq2+8R71YGLLjdeNNVZ63+sKJmYfV7vn3Y5zstWvP+14nWzHvFu9htK8O8EyjbMd+9GgNsYmjdph+eqnG8xrxav7aNU+3An72+xjbEd9WnWet3sfbvVaL0t/QoqMSqaL4K8euEv9dpE/u+F/48zj9qvfiWGj7Q+MX1x64qB6TqnfnNp+fJv94tpB9pneWP/yB6fWx/NKSJEunNPJ+7OLjxvUOFvdZ6dYJrc777k/brr1z/W/ks2cObP+CZf11lohVv7AwD9FMDt6O2r+4ZFj4+aXaz77czX674NaBBEx8czLYt/dt66/EdvwswfEz797/IC7mv3FY/ZGH91637jusokD7mf2Bzbqc+d9j43vTDxwUH02alSkPjtlDbXjPD/8hHPiyC+Pfk2Zjv/GJbH/ntu2rOaVSiU+9KmxccuVXx9Qn1vvfmRcdubh9d8eWHvzveLWq86IPcdNjOMO2aP+FZT0/eKNPntAXH/FSQPq79UPasdab5VlO+bejj7buQ+ffs4P6tcF6RM0H1931fjEIL9i2e55t+OcbMfrT6v3uHbMu9VjTOuzEyzTONuxH7X6a8rtsJzT5v16Xyte3Uer9uFO2N8Gcn2ac93aqvO83fvwoC4CuqCRkCKjyH/4y9/iqyefH/P098fxh+0Zyy2zRP1j9T+8+lex+w6bDarn0fscG9uP+nh89EP//5fg9B3mi7//i0F/hSS96UtfS0k/IpdeSI7af3T9Y/Zp3Efu/9qL+4EMvNV9dorl7DYpkEq1Ofuiq+Kvf/9n3HnjuQOhe81j2lHzbfc8Kk45eu//+G2UJ6ZOr79JSn/dfb3HP/7576ZNUkhx7z8eqn8yYqDHpjseFCcduVf9Ez6vHOnTHl86/PTX9YmM2Z8v9Tn+oM/HB9/3/79jkb4jvM/hX6+/YRzMkdrPftSqtbj77w/Ead/5fvz43IF/cmT2PlrdZyesoTT/dpzng6npYNtccdVNsdWm6w2o+RcPPS0+vdn6sdjwheOAr36zvlbSV++OPun8+lec7n/wkXj4kSlx+/XnDKi/Vz+oHWs9PUc6l++694GY8vjUGLHYIvHudywbfb29r2uM7Zh7O/qcfVLtOIdS/+mPGOkrHymwWHLx4fU9csdPf3LAnu2edzvOyVa//iSsVtenHfNu9RjTvDvBMo2z1ftRO76m3A7LRify63mtmFMfrdiHO2F/m32M7ahPq87zdu/DA35B6LIHCikKVvB//OuRGHvIqTFPf1/9AnHylCfrF42nfnVs/cJ2MEf6Qc/VV3pvLPPmxesveCmcSH/5TxdK6fc0BnO0o8/BjKNZm3ZYptvKpq8k/PLWv8Qd90yq/xbFh9dYof7bHun75oM52jHORuNIa+n1/FDfK/1ssdNXBjS1H517zIAelx7069/dHuPGnx0ffN/b63bpV6HTj1ClkGGd1T4w4H5mf2DqM33/f/n3vD3evMTw+u9HpO+DHzPu84P+TZf06aPZj6eefjYef/Kp+ien0se5B3O0us9OWEODcRpIm5U+/trfiEhrPH2lIn3S6ZXjtmu/NZDu6o/526QH49xLr67/Vspeo0fW72Dzeo/0Nb1xx5wV/578RBy092frf01Px7SnnokU+i279IjYbq+vDvrTbO1Y6/f/65HY+5BTo7+vt/7689jjU6NSqdZff1IIP9CjHXNvR5+zz6fd51Dae9MFc/rxzMNfx9fE2j3vgda0FY8b7OtPeu5216cV8/tvjrFolq3ej9rxNeVWXxe90l+rP/HRqn24E/a3gZx3OWt9IP0P5DFl2ocHMt+iPEZIkVGJn17/2/rH3dOF7ImHfaH+Y33po71PPf1M/VfcB3ukX4H/233/isnpL1mLDov3vOMt0ds78F+Af+V501/301/x0v9adbSjzzS2GS/OjKuvuzX++dDkeLFS+Y/h7rvbpwc9/FZZvjKA/1l/p3jPO5aNnbfdODbaYPVZ3y0f9ADVPCLlAAAYSUlEQVRfbtjqcX7r4p8MaEif/+wmA3pcux6Uftjyt7fdXX/Tn86j1Vd8b/2HOHOO/+hz2EL1gC63z1ePJ/0451XX3DLoTyLNaX65fbZ6DbVjf2tHn7Nbpv033c0m/QZJ+j2WUZusO6il9KnRh8Rmn1g7Hvz3Y7Hw0AXiS7tuFX+64+/xf+1dB1RWxxIeLIkpTxQFNWpQY2wJxoa9R0TEHoSILQYV7ApiL4BdrDGKLRFLbKgxiCKCiBUsRJ81sSdqniXYNb4Ufedbz+Xd/+fn5969u+Qnsud4Dsf/3tnZ2buzs7Mz3+xITKExg7UDXWbVOaKx8nM6ikFb9LfeY/BU6uHlznBdlAYwwJVRccLTpYyOHXNT8O03Tda2UZqi15Dow0tm35ORcWPNfBd3gOL3paZXgmrdvA55NK/D5dBWeIxLOkox8cl0O+0eORUpTG3c6umKtLM0VpHzk1NsDsjB1mWpzJVIfSQ6pRg8yrCLZER8yNLDItePtaomsJHhaKlU/t2stkCT363Nj+fHdWnPoePk27GFLpp4GHYHdBGLDnQszIoHoJAAz4Wd0rmM/Uf3wF6BF3KdFAYmGTgRAMuE9/zoiXM0aYQffX/qPAv/j5geaICy8VeRD7sv+d/s8D8hsAfde/CYalWtyMDflPJ3fbu1ZfmyWpsMmkrfCMeHt9SlUlnKk9c0tLiXj4dWFqU/h/SOI8fP0ZETP9Djx0+pRtUKVNOlAtX6qCKVc35ZitYW2sLIrelsoJoADm6JB48TFL26JKNWEEAQEx1+KEtOljYPGX11HzSVVi8YI5S0DJq8DMrQbzJoWhqfUcwdBbsHucUBI+fQslnBhL89u4/minzoG5w5RtHS8CDeKUp/79mz36lAAf3RHuYdA7DNEkaGEUwkGWMH3kh03EFW1nV+2CByrVaJbv96n27duUsulcsZlqcIAjIOLzJkueCrLcxR/Jl3K3JyLES379ynFRtjqWm9atSnaxsuUcBJCKcH3p80dyWNHOjLHIfAb+KlycWIlZdyis2RE2RpLmYR+kh0SjF4lGEXyYj4kKGHRa8fa9VXhvb1oiWro3Wfg9TzY85vW7d6LGUO5xY9DeexpOQT1Mvbg+m3O2kvLzEa16lKfpyXdDlh/9EjI1t+NtdJYWB2cNumVEroEzyLloUPZ9TcfYMpbq12AEE1C5ZCl/F7EQd7XWCcHf3G06ZloXTrzj0GaOjdrintOXicPmndmBrUdmFh9SnHztCi6cM0S0AGTaVzpKGsj5igmRctD4qSZWZ93X/4mJUjPXIc/86RnlQHGXOelUwQrobytstnB2f1aIbfZYQf/nzjFqGkK6Jn/vzTNHpmXcR43TziBRmbBwAO1U3BpAC2wBbOijuiacr41mXoNxk0LX0ovz37L3MoJEbxAbDiMDhllB9LQ8LfcCTASeHuO0KXHlZ4g55QGhwoKLW7cdseGtanM9V3/ZDrW0fFnTlLoigmIZkeP/mNVTdp06IeBfp3pjffKMBFE1Wq5oUNMkntAK9DJyzgrgQlY+ww4revmU5Iv5u3bBPD34E+GTF5Cfc+ktkaMhek1rQhGYcXGbKEAwpVvtTVcR4+ekKd/UO47RjYHOsXT2ARpYrDDyVZvXpPYNXFeJpoHZddNsdrr+UnRwd77nHnBFliPkXro+xKKTZiF2HcMiI+ZOhh0euHZw3/He/A2QU8qLfe/P+eCPsA+hlYfTxNxv7Dw8er8E6uk8LALAOBt0OrhlT9w/fTDVmAE6KeLm91ApPD0IsXdO/+I/p25wEWEtzDq6VmbhUkWrxQx7MfHd4eQb2Dwk0OqHpvbWXQVAakdvJoHqSOB3Ew4JWluhtsxAi9LFLYnuFQiG6i+MyML97KGTLCD1F+sXXzuuRSuWwGYL4PKpblEq2MzaOuZz8TXoB1ULKEIwX5e1OdGpW5+JRBU30IFvGty9BvMmhOnr/aZA6AoXD81AWqW7MKjRroyzU/X6+PpU0xSayUbcL+VBb6nnryR3IoVJDmhQ3komn+Eg7/gSELafPyMC56oXNWMkwhpKJ07jOR1i4aT0vXxFDavQfc5XZRtSh0ViS1bOrKHDTApIjfd4yBLfPixFganNGxw8BU5KY4kdCPkQsCrkmw8pKMw4sMWVpCzsc+1LjTEIsVorTIydLYnzx9Rt7+Idzl2UXZRtlpc+A7/+KrzdTWrT41a1Bdi+gyPJMTZAmmZegjLoFxvMRrF6ErGREfsvWwCDvTWroHsNp4mox0nJafDmdV59SpHRi/e5dg2rV+Fg+bzMFh6/sP18Bs8KVcJ4WBSRkzfTnDUXi/XGmCN7accwmWSoH0BN7qHpmxg6oMelJIvPpMpI1LQgih/k06DaGD0V9SUOgi6untziofXLx6g4G2wXmhtcmgqfS9/rtExhM2c9y+2KkgON4tqR2wTctY9MpSTRPOFIDKIX3Cp11zhvQPkL0zP16hjh6NtHSv+RkjfN578MikHxzcDh49zcLceA5FMsIPew6ZRivnj9YsDy0P5m4eplIy8g3J0G8yaG6I3mMy6Lx581CZUsVZChZvW7Eh1uTVPHZ2VNypCDVvUN0QhoQ5PzCU9JTtVb/fvHMg7VoXTvny5U2/rcbvmZUC1CoLVJ7ZvT+VpU84FS1ELZu4UnEnB62va37OyNjXfbublXD1ad+Mhoz/khZNG8qi2SbNW02x3/DdjmXFuF7wNhmHl8x4NCLLGQvX0Wc+rUwqQWH/WLwqmkYP6pqVWCz+3rbnGJYKh70ckRodPBrRrqSjrNoNqpeJbLw6LrtsDkQ5te81lvviKifIEvMpWh/JwC8SbRdh3LIiPrJLD/OuH3W6xwt6QbigBSA0QPkXTh3KtcStpXuoCepJU4bNAT0U0L0twy9ClFjEqmh6/OQpS9HnaX/H/sPD5z/hnVwnhYFZxMFU3ezs8lAxx8IMAFBkA7CVT0AIRS0N1Ux2yvw1LLwJt2GxiYdpzZdj6fovd2jk1CV08coNKuFUhH66fpO0hq6iYxk0lQEhDBxGoKXGm0ZhiRaPLNV0FK/s46fPaHjoIlbhAUqv68Ap3GUzZfCJ2xd1y5c3LzmXLk7B/T6lKhWcNX9HyoMywg+R648wbZTGFdVkbh4I9//zr+cmrBrlXQZNhUGj37oM/SaKJnJTWzWrnelnA7keOHqamtT9SNSnJYyOiHxtMKO+AVdC6i//9AsFhUXQt5xpSMIGaYEQ9DvCbHlTUdQkO/mNp2u/3EnfMwAsDUfK8IBPuSPcrKV7RMwIJEQB6UnjlHV4gRxEyhL0ROP4YJ2XKFaUYV7BCfJmgdepcb2PWDUskc2IjssumwPjHT11KXd0U06QpQx9JAO/SLRdJPJb/jtoGVk/lvg9ee4SRe86ROOGdP87hmOxTzgJkQYMmwFpxaic6NmiHgUFeHPvRTL2H5sRmI0xkuuksLEJMQ9dRv772fM/0QcVy9C4odoXPvI/cROCnN3eXT2pfJmSGUYaHBZB4RNMQ9mtiUMGTZniFyVLNY9d+k2iyPmj2MFaHWYM5wVv6JgMPkXLVUb4Ib5PgHm2bFLrZTUcVfSMl2cTriHI2Dww9inzVlPa/Ydkp2aSiI7tXMLFp2iaOeEb4hJUJi9ltt4Q1bR15wHasTuFVfdYMXckV7fWAAoH+3UiRFrMnthfM23R+drouNvAKTRtTB9WmrqZ11ByLlmc4TLMGO9Prh9V0syb+kEZwIwYe3jEBtqekPzSSMyfj6GrDw/wMckT5mI4G18CCLWWkt2yKmBhqDJkKQPHR8a05AQdJzsdVJRcZchStD7KLvwiozKFTtu8Yx8lHTpOaXcfUhGHgixNsFPrRtzV32ToYRlzbkl2fYaHM6BpniYqegZO11IlHDOwACf5GwVeZ/+PUuD2BY1VkuMZY+47+iSQ66TQJy+Tp60pEvWDetDbLYUuO5csxtDL9TSkTsxftpnKlC5Gw/p6p5cwvXvvIf104xaBpoPOiA/RNFmu85yVLL9/6cwghtSOwyoqaCgVSBBezVsmSJQs1XKHEo3fe4w6eDSkRZFbaUhvLxZmnPL9WW7ANhl8yigPJTr80HzTVMvZljzxcHxMH+tPFcqV0rMErT4rmqaMb0iGoSQKLHXI+AUvQS27taX8+fPS9oQUVkYRaU1t3OqTZ4u6JuHreidODVBo/m7l953p/OVrVMOlgmayMvK1YXAhQgqHfuhSVO2pWrkc9+0QBmMOzAhw4B27D1PNqhWouw5MJLVgcItsX/Bt6tejPTMKUaYQgLkIvZ4yqrdmGWb3gzB0EYUIhxeAJbU0mRWw0L8MWcrA8bFV20i2zSEjHdRWZWm+HkTrIxn4RTLsIkQYX732H1Yas6iDPd1Ou09rNscze4E3XUqGHpZhI5h/A9DpfoEzuQHFRUXPtO420iIoJiIs9x8+xS4yIGOkwec225ZArpPCwPxYM2TVZPU6GAywlP4q8v2BP3Hh8g06ceYCyy8G+NvaLQlUvmwplurRr2d7BvyptYmmCYDRJTOH06WrNyh40mIWGoqDB3A06tSoQifPXqJijg40dkg3rSxKf67/qLkmfdjlsWOpM5A1bjRtpckoD4WxyUxPUGSH23Beh4AMMCdsul/NGSF0amXQFMqghQOriIoUosBScav99bodFBWTxPBh4DAASCbqs9tiE52vjTFinURuiGXphQN6daQCrxsvQWpJdkgt6D96ri5MJDUdRHkkRs3NAFyGqgW8eByWUjOMVlEAz/iWEBYMxwT+dmtSi9ybujIcJy1NZgUs9C9DljJwfGzVNpJtc8hIB7VVWZqvB9H6SAZ+kQy7CNgzO7+ZaYJVhP3Js9tIit+QeelpLfpE/YxRPay3v6yeb//ZWJNHnr94wUCbkVLMi88mKnoG69yvi2d6Suj5S9dYAYK4PUeoYvnSDPsO0S68Zbtl7T9ZyfxV/D3XSSFh1mHgIJyVp1lDt/X8uC7tOXSceWyzaj4BobRh8UQWXuvq4U+7o+aSb/9JDAEezgB4vXsNm6Hr9l80TYUelK+rRwALncf/rV04Lj1MDoeab74cl9VwLf4uSpZaOgeIGy8+QXbyqWUslp4RnZ6APrCRHzxyigEuAXhJaZHrY2nkQF/mqNISXq3m1xzM6dqN2/Ts99+paf3qNJXz1hYOtGF9O9M7xYrwii/De6JpZtc3ZLQqg2iwVOTUwojfvjuZDhw+RVWrvMcOlU3rV0sP6+SZNBjIqKZUqfy7BAyJ0DmRDNh3xIAuXKkUMvAjYNC1bVmf4QnY/+stVuXjxOmLtCMxhcYMFufYRYQbSkdqjSYwlzdutVAOW41FgUoPAGIWAXKplHQ1WkUBjsO0ew8ZdoJbo5rkUrmc7k9HZgUsMCNDljJxfMCzKAwWETpOts0hIx1U/RHakizNF4dofSQKv0j3Itb5Asa9+aswkwpluMzxCQhjek9UM6qHRawf9VgAkqluAKzGpSKvHQxaoqJnUMgAtO6kPWA2JPD54Jho0bgmFbb/l6gpYXRE7T9CmfoHEct1UhiYzCvXbtLG6D2stKX6kAVj+RPPxtSxdWMqW7q4rh6sodu2davHbnkQ4pxVU9cAR7nDlO0RDENh8YzA9NQPeEL1gFKKpqkYdDho1G83gFJiFhGQhmeOC2Chyzj4e/iOoMRNptELWY1d+V2ULM37e/TkN7r/4JEJ0OfEWZH0xaRBjG+9TRaf2Ch/uHSN3Qg6FSlEFd4rnaHUp1ZeRacnoF+UxH3+4jmVc37HhA14u92b1Wagh43qGCvzim9r0cqt7BZXDyK0mqGx05fTzqQjVNOlIhWyf8vkRnjGWH+tIjR5TjRNWd+QpcEZqSQgAyxV4fGPP/6k/UdOsvSElNSzVLt6JZoTMoBrfhD5kBg1h70bsfK7l9V82jensdOX6QIwVjoXna8NugpYJtY55Io8YPzt2X007Vw7k2vccM6o24vnz+nHS9dYhMq0MX25aC77Job2Hz5JPb1bMT2EcOjIDTtZScbPP/XgomnpJaNVFODgfPTkKXNwoaIJT1SOzApYGLMMWcrA8ZGBwSJCx8m2OWSkg9qqLM3XoAx9ZGmdJ+xLZYdN3ibSLgIPOAN8f+oCebdryqpHAJdi3dbdrLpUA9cP09kERpLWJkMPi1g/mfEvynkmOnoGjpSYhGSKSzrKUnGAf+bWuBaL2BbdjO4/ovn5p9DLdVIYmEmUhmrdvA69V8b0kDV7yUYK8vem95xLZvjNQHe6XsWN5fQxfZlX0zsglBI2zKbVm3ZR8rEzLL/4zPmrbOGeSYrUTFc0TeSVoyQZlMeIyYspOnIqJaeeoUlzV7HUiavXb9IvN3+lU4krNPMo+8E5S6MoalsSM7bVDZ5bfAf+3dtRi0b8G6go/hHeNnj8AnqjwGvkVLQw3f71HqtM8cXkwbodZ+BJRnoC8g8BNmqOOeLdN4Q2Lg0RJQp2cGvYYTAlb1vIRXPX3qOZvofDDE+TQZOHj+x+RwZYqqUxwLAHtg1uT3iaktOKaB/8HbU0hN3A8Jb3FJ2vjTHB6TxllN9LbI7g2QTsI3zr7r4jmL7naThkqRvwIxL2HWNlteurDG49tHHTBMdR7J7D6WVN27SoZ7U6ix766meNVFEAnVt37lJs4st0j8dPf2POCkTmAIdES5NZAQv9Z6cstYw3s2dkYLAY4Ud5V7bNISMd1FZlaT4fovXRqk27LE75hu8SqVsnN1atrG6NKumXblq+D9F2Efq0ViVGzZOeC0EZeliLfPQ8I8N5JjN65vQPVxh4c9zeY1T6HUe2/3Tp8LGeIWf5rNH9J8sOXsEHcp0UBiY9M3AWo4csKKiY+GT6Ne0+OTkWZqkjHs1q6wKQPHTsDE0I/5ry58vHHCmD/DqxkeL/T/9wmSHfw6BK2jxPswRE08TBftSUpfSf23dp9CBf5uFEA+ouPKClSzpR1wGTuW8FQUuELNUCAshY9Mqp9PZbb5jIzRbmXM0Qbm6Bk6HIFL8hCgfgSTwVD0SnJ4CfTdv3kqUqHtFxB6mdewPN36WWBzfF7CWvNnwVQ3BQwzpS8hcRnYEN2vwb0MKH8owMmqK/dRl5lzLAUq2Fsfb29dQzLenPAgAPkTwXrlxn4JTjh/VgpYYRTbZjzQwumgjXvXD5evpBvUK50roMbPNOv14fS5tiklhubcL+VIY5lHryR3IoVJDmhQ3k4tHSS3B8+AWGs6pGr1JDahOcFdt3p1DMqmmahp7TKmBpGhTHQzIwWETs59lhc3CIy+ortipL2foIVWcstW27DhFSn89d/JmKOzrQ9LHaI7xE20Wi59oaPRF6WKSNkFOcZ+YyVaeIhgV/np1TmNsXhwRynRQcQlNeQakx5Cybt6vXblIZnWkeCg2EcyYln6Be3h7k5FiI5VStioqjxnWqkp9OgxvhR0DbzQzQ8cSZi1Ttg/K6JCCDpjUGEMIN9HqeJlKWSv/Icwsd3isDO9hQARjE02TwiXrg+779IgM7TToNob1b5utmU3R6gsKA6NQZhFnWrlY5PYJpy479DEsADptiRQvrHjdewMEUoe5I3UJJX2C5IBWpj68ndenI54kXTVPGN6QWli3nXarDWMEnKlLsS/43uwEPCvDhmvM7afdZaD10T/+eHVhOKxxL0Jk8KUg4HCGyCfmxqFwEByzKS8+fNIicSxXj4hFlUNUtj50dFXcqQqiIxKszM2NEyeXnYRTRKLG7U+jnG7fpj7/+MiER2LczD0my5ECzROh4vGn6SladiXYkiaaXU2QpA4NFto5Tvg0jNocMh2lOkWV26SPlQgi6Xi/4rmi7KCt9Ivp3I3pY9PqR4TyTUVFM9ByAnqz9RwavOZ1mrpNC8AwCp2LL9r304NETFhEAI1RPA1Iw0h5gFCsNocJA4Oa9wbPUPwz5k2cv04NHjxmf3T5x08OmxWeN0BRVH1nNmCxZijY8ZfDp7htMm5eFmdz2Y569+kzgQpyWkZ4gI3WmhU8QWyc4DEbvOsRumt2b1qbEA99zV+gATSV8HtFJH1QsS+3dGzDgP603rOYLRjRNGd+QpUVuNO8StxgoFRq/L/UlVkrRQizSC1EAvKWGM+Nz3IzlNC9Mn/7VqgRhIOvhF8ZXR4+GbJxK7jbAaFGhZOX80Vq7lf4c1qS6AZPi3IWfqbD92xQ+oR9X/8MmLmRpCi6VylKevHlMaCCNxFaaaEeSaHqQU06RpQwMFtE6TobNYe4wBV7ZnkMnqI1bPeJ1yOUEWWbnGsa6wsUb9pKQ2StIz224aLtI1rhl6GHR60eG88y89CpA1bfFH6KGri7cF0Ky5iiXbvZI4H9TtO2hCbOPTgAAAABJRU5ErkJggg==",
"text/html": [
"<div>\n",
" \n",
" \n",
" <div id=\"008311ea-131c-4a65-b51e-7950a0941222\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>\n",
" <script type=\"text/javascript\">\n",
" require([\"plotly\"], function(Plotly) {\n",
" window.PLOTLYENV=window.PLOTLYENV || {};\n",
" \n",
" if (document.getElementById(\"008311ea-131c-4a65-b51e-7950a0941222\")) {\n",
" Plotly.newPlot(\n",
" '008311ea-131c-4a65-b51e-7950a0941222',\n",
" [{\"histfunc\": \"sum\", \"type\": \"histogram\", \"x\": [\"{\\\"base\\\": \\\"salt\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"water\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"onion\\\", \\\"actions\\\": [\\\"chop\\\"]}\", \"{\\\"base\\\": \\\"soy sauce\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"egg\\\", \\\"actions\\\": [\\\"beat\\\"]}\", \"{\\\"base\\\": \\\"salt\\\", \\\"actions\\\": [\\\"cook\\\"]}\", \"{\\\"base\\\": \\\"egg\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"parsley\\\", \\\"actions\\\": [\\\"chop\\\"]}\", \"{\\\"base\\\": \\\"sugar\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"cheese\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"onion\\\", \\\"actions\\\": [\\\"chop\\\", \\\"saute\\\"]}\", \"{\\\"base\\\": \\\"pepper\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"water\\\", \\\"actions\\\": [\\\"cook\\\"]}\", \"{\\\"base\\\": \\\"milk\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"onion\\\", \\\"actions\\\": [\\\"cook\\\", \\\"chop\\\"]}\", \"{\\\"base\\\": \\\"black pepper\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"chicken broth\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"cheese\\\", \\\"actions\\\": [\\\"grate\\\"]}\", \"{\\\"base\\\": \\\"flour\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"garlic\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"butter\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"butter\\\", \\\"actions\\\": [\\\"melt\\\"]}\", \"{\\\"base\\\": \\\"parsley\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"olive oil\\\", \\\"actions\\\": [\\\"cook\\\", \\\"heat\\\"]}\", \"{\\\"base\\\": \\\"mushroom soup\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"olive oil\\\", \\\"actions\\\": [\\\"heat\\\"]}\", \"{\\\"base\\\": \\\"mushroom\\\", \\\"actions\\\": [\\\"slice\\\"]}\", \"{\\\"base\\\": \\\"green onion\\\", \\\"actions\\\": [\\\"chop\\\"]}\", \"{\\\"base\\\": \\\"onion\\\", \\\"actions\\\": [\\\"cook\\\"]}\", \"{\\\"base\\\": \\\"curry\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"carrot\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"chicken broth\\\", \\\"actions\\\": [\\\"cook\\\"]}\", \"{\\\"base\\\": \\\"sauce\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"butter\\\", \\\"actions\\\": [\\\"cook\\\"]}\", \"{\\\"base\\\": \\\"thyme\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"lemon juice\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"raisin\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"clove garlic\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"green onion\\\", \\\"actions\\\": [\\\"slice\\\"]}\", \"{\\\"base\\\": \\\"almond\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"pea\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"chicken stock\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"tomato\\\", \\\"actions\\\": [\\\"dice\\\"]}\", \"{\\\"base\\\": \\\"onion\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"ground beef\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"pork\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"garlic clove\\\", \\\"actions\\\": [\\\"mince\\\"]}\", \"{\\\"base\\\": \\\"pea\\\", \\\"actions\\\": [\\\"thaw\\\"]}\", \"{\\\"base\\\": \\\"olive oil\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"tomato\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"vegetable oil\\\", \\\"actions\\\": [\\\"heat\\\"]}\", \"{\\\"base\\\": \\\"scallion\\\", \\\"actions\\\": [\\\"chop\\\"]}\", \"{\\\"base\\\": \\\"ground beef\\\", \\\"actions\\\": [\\\"brown\\\"]}\", \"{\\\"base\\\": \\\"cream\\\", \\\"actions\\\": [\\\"sour\\\"]}\", \"{\\\"base\\\": \\\"scallion\\\", \\\"actions\\\": [\\\"slice\\\"]}\", \"{\\\"base\\\": \\\"shrimp\\\", \\\"actions\\\": [\\\"cook\\\"]}\", \"{\\\"base\\\": \\\"celery\\\", \\\"actions\\\": [\\\"dice\\\"]}\", \"{\\\"base\\\": \\\"ground black pepper\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"onion\\\", \\\"actions\\\": [\\\"cook\\\", \\\"dice\\\"]}\", \"{\\\"base\\\": \\\"egg\\\", \\\"actions\\\": [\\\"cook\\\", \\\"beat\\\"]}\", \"{\\\"base\\\": \\\"sugar\\\", \\\"actions\\\": [\\\"cook\\\"]}\", \"{\\\"base\\\": \\\"chicken\\\", \\\"actions\\\": [\\\"cook\\\"]}\", \"{\\\"base\\\": \\\"orange juice\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"vegetable oil\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"celery\\\", \\\"actions\\\": [\\\"chop\\\"]}\", \"{\\\"base\\\": \\\"paprika\\\", \\\"actions\\\": [\\\"cook\\\"]}\", \"{\\\"base\\\": \\\"onion\\\", \\\"actions\\\": [\\\"chop\\\", \\\"fry\\\"]}\", \"{\\\"base\\\": \\\"chicken soup\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"pea\\\", \\\"actions\\\": [\\\"cook\\\"]}\", \"{\\\"base\\\": \\\"red onion\\\", \\\"actions\\\": [\\\"chop\\\"]}\", \"{\\\"base\\\": \\\"leaf\\\", \\\"actions\\\": [\\\"cook\\\"]}\", \"{\\\"base\\\": \\\"season\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"chicken\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"cayenne\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"red pepper\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"egg\\\", \\\"actions\\\": [\\\"cook\\\"]}\", \"{\\\"base\\\": \\\"tomato\\\", \\\"actions\\\": [\\\"chop\\\"]}\", \"{\\\"base\\\": \\\"butter\\\", \\\"actions\\\": [\\\"saute\\\"]}\", \"{\\\"base\\\": \\\"onion\\\", \\\"actions\\\": [\\\"chop\\\", \\\"brown\\\"]}\", \"{\\\"base\\\": \\\"onion\\\", \\\"actions\\\": [\\\"dice\\\"]}\", \"{\\\"base\\\": \\\"vinegar\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"leaf\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"cilantro\\\", \\\"actions\\\": [\\\"chop\\\"]}\", \"{\\\"base\\\": \\\"onion\\\", \\\"actions\\\": [\\\"mince\\\"]}\", \"{\\\"base\\\": \\\"soy sauce\\\", \\\"actions\\\": [\\\"cook\\\"]}\", \"{\\\"base\\\": \\\"chive\\\", \\\"actions\\\": [\\\"chop\\\"]}\", \"{\\\"base\\\": \\\"garlic clove\\\", \\\"actions\\\": [\\\"cook\\\", \\\"mince\\\"]}\"], \"y\": [81, 33, 33, 30, 27, 25, 21, 21, 20, 19, 18, 18, 18, 16, 16, 15, 15, 13, 12, 12, 11, 11, 11, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]}],\n",
" {\"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}},\n",
" {\"responsive\": true}\n",
" ).then(function(){\n",
" \n",
"var gd = document.getElementById('008311ea-131c-4a65-b51e-7950a0941222');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" })\n",
" };\n",
" });\n",
" </script>\n",
" </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"ing = EA.Ingredient(\"rice\")\n",
"ing.apply_action(\"cook\")\n",
"\n",
"keys, values = EA.m_mix.get_adjacent(ing.to_json())\n",
"data = go.Histogram(x=keys, y=values, histfunc=\"sum\")\n",
"iplot([data])"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"920"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"EA.np.sum(values)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1531"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"EA.m_base_mix.get_sum('noodle')"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"def normalized_score(key, matrix):\n",
" sum_key = matrix.get_sum(key)\n",
" keys, values = matrix.get_adjacent(key)\n",
" normalized_values = EA.np.array([(values[i] / matrix.get_sum(keys[i])) * (values[i] / sum_key) for i in range(len(keys))])\n",
" sort = EA.np.argsort(-normalized_values)\n",
" return keys[sort], normalized_values[sort]\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"def forward_normalized_score(key, matrix):\n",
" sum_key = matrix.get_fw_sum(key)\n",
" keys, values = matrix.get_forward_adjacent(key)\n",
" normalized_values = EA.np.array([(values[i] / matrix.get_bw_sum(keys[i])) * (values[i] / sum_key) for i in range(len(keys))])\n",
" sort = EA.np.argsort(-normalized_values)\n",
" return keys[sort], normalized_values[sort]"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"def backward_normalized_score(key, matrix):\n",
" sum_key = matrix.get_bw_sum(key)\n",
" keys, values = matrix.get_backward_adjacent(key)\n",
" normalized_values = EA.np.array([(values[i] / matrix.get_fw_sum(keys[i])) * (values[i] / sum_key) for i in range(len(keys))])\n",
" sort = EA.np.argsort(-normalized_values)\n",
" return keys[sort], normalized_values[sort]"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"linkText": "Export to plot.ly",
"plotlyServerURL": "https://plot.ly",
"showLink": false
},
"data": [
{
"histfunc": "sum",
"type": "histogram",
"x": [
"sugar",
"cream",
"butter",
"milk",
"egg",
"salt"
],
"y": [
8.182689305440411e-05,
5.7593182880276924e-05,
3.462434354470022e-05,
2.742606390272889e-05,
2.658606302605515e-05,
1.538411186882952e-05
]
}
],
"layout": {
"autosize": true,
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"xaxis": {
"autorange": true,
"range": [
-0.5,
5.5
],
"type": "category"
},
"yaxis": {
"autorange": true,
"range": [
0,
8.613357163621485e-05
],
"type": "linear"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAv0AAAHCCAYAAAB8AnbxAAAgAElEQVR4Xu3dd5xeVZ348W8KvYt9QTEqu6iwiqsoZRFwWRQF5IesZWlRVqqUSI2UpUhIAggiJRDaUqRbKEFXVGRFVMRdcLGhKIqoVCEhJCH5ve5diRiTzHfmPHOY3HnPX8Z8z3Pmvs8l88kzzzwZMW/evHnhgwABAgQIECBAgACBzgqMEP2dPVsXRoAAAQIECBAgQKAVEP1uBAIECBAgQIAAAQIdFxD9HT9gl0eAAAECBAgQIEBA9LsHCBAgQIAAAQIECHRcQPR3/IBdHgECBAgQIECAAAHR7x4gQIAAAQIECBAg0HEB0d/xA3Z5BAgQIECAAAECBES/e4AAAQIECBAgQIBAxwVEf8cP2OURIECAAAECBAgQEP3uAQIECBAgQIAAAQIdFxD9HT9gl0eAAAECBAgQIEBA9LsHCBAgQIAAAQIECHRcQPR3/IBdHgECBAgQIECAAAHR7x4gQIAAAQIECBAg0HEB0d/xA3Z5BAgQIECAAAECBES/e4AAAQIECBAgQIBAxwVEf8cP2OURIECAAAECBAgQEP3uAQIECBAgQIAAAQIdFxD9HT9gl0eAAAECBAgQIEBA9LsHCBAgQIAAAQIECHRcQPR3/IBdHgECBAgQIECAAAHR7x4gQIAAAQIECBAg0HEB0d/xA3Z5BAgQIECAAAECBES/e4AAAQIECBAgQIBAxwVEf8cP2OURIECAAAECBAgQEP3uAQIECBAgQIAAAQIdFxD9HT9gl0eAAAECBAgQIEBA9LsHCBAgQIAAAQIECHRcQPR3/IBdHgECBAgQIECAAAHR7x4gQIAAAQIECBAg0HEB0d/xA3Z5BAgQIECAAAECBES/e4AAAQIECBAgQIBAxwVEf8cP2OURIECAAAECBAgQEP3uAQIECBAgQIAAAQIdFxD9HT9gl0eAAAECBAgQIEBA9LsHCBAgQIAAAQIECHRcQPR3/IBdHgECBAgQIECAAAHR7x4gQIAAAQIECBAg0HEB0d/xA3Z5BAgQIECAAAECBES/e4AAAQIECBAgQIBAxwVEf8cP2OURIECAAAECBAgQEP3uAQIECBAgQIAAAQIdFxD9HT9gl0eAAAECBAgQIEBA9LsHCBAgQIAAAQIECHRcQPR3/IBdHgECBAgQIECAAAHR7x4gQIAAAQIECBAg0HEB0d/xA3Z5BAgQIECAAAECBES/e4AAAQIECBAgQIBAxwVEf8cP2OURIECAAAECBAgQEP3uAQIECBAgQIAAAQIdFxD9HT9gl0eAAAECBAgQIEBA9LsHCBAgQIAAAQIECHRcQPR3/IBdHgECBAgQIECAAAHR7x4gQIAAAQIECBAg0HEB0d/xA3Z5BAgQIECAAAECBES/e4AAAQIECBAgQIBAxwVEf8cP2OURIECAAAECBAgQEP3uAQIECBAgQIAAAQIdFxD9HT9gl0eAAAECBAgQIEBA9LsHCBAgQIAAAQIECHRcQPR3/IBdHgECBAgQIECAAAHR7x4gQIAAAQIECBAg0HEB0d/xA3Z5BAgQIECAAAECBES/e4AAAQIECBAgQIBAxwVEf8cP2OURIECAAAECBAgQEP3uAQIECBAgQIAAAQIdFxD9HT9gl0eAAAECBAgQIEBA9LsHCBAgQIAAAQIECHRcQPR3/IBdHgECBAgQIECAAAHR7x4gQIAAAQIECBAg0HEB0d/xA3Z5BAgQIECAAAECBES/e4AAAQIECBAgQIBAxwVEf8cP2OURIECAAAECBAgQEP3uAQIECBAgQIAAAQIdFxD9HT9gl0eAAAECBAgQIEBA9LsHCBAgQIAAAQIECHRcQPR3/IBdHgECBAgQIECAAAHR7x4gQIAAAQIECBAg0HEB0d/xA3Z5BAgQIECAAAECBES/e4AAAQIECBAgQIBAxwVEf8cP2OURIECAAAECBAgQEP3uAQIECBAgQIAAAQIdFxD9HT9gl0eAAAECBAgQIEBA9LsHCBAgQIAAAQIECHRcQPR3/IBdHgECBAgQIECAAAHR7x4gQIAAAQIECBAg0HEB0d/xA3Z5BAgQIECAAAECBES/e4AAAQIECBAgQIBAxwVEf8cP2OURIECAAAECBAgQEP3uAQIECBAgQIAAAQIdFxD9HT9gl0eAAAECBAgQIEBA9LsHCBAgQIAAAQIECHRcQPR3/IBdHgECBAgQIECAAAHR7x4gQIAAAQIECBAg0HEB0d/xA3Z5BAgQIECAAAECBES/e4AAAQIECBAgQIBAxwVEf8cP2OURIECAAAECBAgQEP3uAQIECBAgQIAAAQIdFxD9HT9gl0eAAAECBAgQIEBA9BfeAw88/FThI1hOgAABAgQIECDQl8DLV1+urxG/vxgB0V94e4j+QkDLCRAgQIAAAQIJAdGfQBL9ZUiLWy36B8/WIxMgQIAAAQIEnhUQ/WX3gmf6y/xC9BcCWk6AAAECBAgQSAiI/gSSZ/rLkDzTP3h+HpkAAQIECBAgkBEQ/RmlRc94pr/MzzP9hX6WEyBAgAABAgQyAqI/oyT6y5QWs9rLewaN1gMTIECAAAECBOYLiP6ym8Ez/WV+nukv9LOcAAECBAgQIJAREP0ZJc/0lyl5pn/Q/DwwAQIECBAgQCAjIPozSqK/TEn0D5qfByZAgAABAgQIZAREf0ZJ9Jcpif5B8/PABAgQIECAAIGMgOjPKIn+MiXRP2h+HpgAAQIECBAgkBEQ/Rkl0V+mJPoHzc8DEyBAgAABAgQyAqI/oyT6y5R6EP1f+8bIQfschssDb7bp3OFyqa6TAAECBAgQWEBA9JfdEsPqLTvPueS6uOaGb8a8efNizCteFscd8pF4wWort4Kfn3ZrnDb1mpg9e3Zsscmb44gDdo5RI/sO9ez79E+YPDpmzCg7rOG8eq1XzouxuzwznAlcOwECBAgQGNYCor/s+IdN9P/ghz+LY0+5KC4+fXwst+wy8ZnzronH/zg9Prn/TnHf/Q/G2AMntr/34tVXjUOOPzvWW2dM7LLjVn3qiv4+iXoyIPp7wuhBCBAgQIDAEisg+suObthE/y3f/p+4+vpvxKnH7tuK3fT178bX/uvOmDD+32LqZTfEE0/OiP1336H9vR/fe38cceLUuGLK0XHupdfH07Nmx967btf+3qOPPxHb7jo+brn2tPbXor/sBsyuFv1ZKXMECBAgQKCbAqK/7FyHTfTPnj0ndjvgxHjbm18X664zJs688Atx/CEfjVev9fI4atL5sf66r41tt9q41Wwif8Nt9o47pk0R/WX3V89Wi/6eUXogAgQIECCwRAqI/rJjGzbR3zB99dbvxzEnXxhz586N9/zThvGJPXaMUaNGxcHHnRWbb7R+bLXZW+drvmGz3eKum89rvwuwuGf6H/7j06kTOOaEkTHda/pTVgsbGvOqiI+N9YO8Awa0kAABAgQILOECq6+8zBJ+Bc/vpz9sov9b3707Tj//2jh74rhYZpml48TTL43Zc+bEMQeNjaMmn98++7/D1pu2p/Hk9Kdi0+33iztu+utn+h957InYbrc/v7zn6dm5ED3kqGfiyenP72Evybu/9tUjYv89+/7B6iX5Gn3uBAgQIECAwKIFlllKB5TcH8Mm+o8+6YJ44+tfE9v96SU8s2bPiX9838fj29edERdeMS1+//BjcdCeH2gt7/7RL+LISefFNVOPbV/e89TMp2Pfsdu3v3fvfQ/EbgdM8Jr+krtuAGu9vGcAaJYQIECAAIEOCXh5T9lhDpvov+DyafG/P70vTjhs9/YlPV+55Xtx4RU3te/Y85sHH4pd9jshLjrt8Pbde5qX+6w9Zs3YY+dt2ui//c57YsrEcTFixIg4ZcqVce2N3xT9Zfddv1eL/n6TWUCAAAECBDolIPrLjnPYRH/zg7wnfOaS+Pb3/zdGjhwZL3nhanHkgbvEK9d4SSt4w823x0lnXR4zZ86KTTZYL445eGwsvdToNvqv+8ptscwyS8XKK60Qm2/0pmj+AnHTZZPadd69p+wGzK4W/VkpcwQIECBAoJsCor/sXIdN9A+UqYn+OXOeaZ/1X9iH6B+obP/Wif7+eZkmQIAAAQJdExD9ZScq+vvwa6J/1qzZsdef3qd/wXHRX3YDZleL/qyUOQIECBAg0E0B0V92rqI/Ef3PfctO0V92ww10tegfqJx1BAgQIECgGwKiv+wcRX+Zn9f0F/pll4v+rJQ5AgQIECDQTQHRX3auor/MT/QX+mWXi/6slDkCBAgQINBNAdFfdq6iv8xP9Bf6ZZeL/qyUOQIECBAg0E0B0V92rqK/zE/0F/pll4v+rJQ5AgQIECDQTQHRX3auor/MT/QX+mWXi/6slDkCBAgQINBNAdFfdq6iv8xP9Bf6ZZeL/qyUOQIECBAg0E0B0V92rqK/zE/0F/pll4v+rJQ5AgQIECDQTQHRX3auor/MT/QX+mWXi/6slDkCBAgQINBNAdFfdq6iv8xP9Bf6ZZeL/qyUOQIECBAg0E0B0V92rqK/zE/0F/pll4v+rJQ5AgQIECDQTQHRX3auor/MT/QX+mWXi/6slDkCBAgQINBNAdFfdq6iv8xP9Bf6ZZeL/qyUOQIECBAg0E0B0V92rqK/zE/0F/pll4v+rJQ5AgQIECDQTQHRX3auor/MT/QX+mWXi/6slDkCBAgQINBNAdFfdq6iv8xP9Bf6ZZeL/qyUOQIECBAg0E0B0V92rqK/zE/0F/pll4v+rJQ5AgQIECDQTQHRX3auor/MT/QX+mWXi/6slDkCBAgQINBNAdFfdq6iv8xP9Bf6ZZeL/qyUOQIECBAg0E0B0V92rqK/zE/0F/pll4v+rJQ5AgQIECDQTQHRX3auor/MT/QX+mWXi/6slDkCBAgQINBNAdFfdq6iv8xP9Bf6ZZeL/qyUOQIECBAg0E0B0V92rqK/zE/0F/pll4v+rJQ5AgQIECDQTQHRX3auor/MT/QX+mWXi/6slDkCBAgQINBNAdFfdq6iv8xP9Bf6ZZeL/qyUOQIECBAg0E0B0V92rqK/zE/0F/pll4v+rJQ5AgQIECDQTQHRX3auor/MT/QX+mWXi/6slDkCBAgQINBNAdFfdq6iv8xP9Bf6ZZeL/qyUOQIECBAg0E0B0V92rqK/zE/0F/pll4v+rJQ5AgQIECDQTQHRX3auor/MT/QX+mWXi/6slDkCBAgQINBNAdFfdq6iv8xP9Bf6ZZeL/qyUOQIECBAg0E0B0V92rqK/zE/0F/pll4v+rJQ5AgQIECDQTQHRX3auor/MT/QX+mWXi/6slDkCBAgQINBNAdFfdq6iv8xP9Bf6ZZeL/qyUOQIECBAg0E0B0V92rqK/zE/0F/pll4v+rJQ5AgQIECDQTQHRX3auor/MT/QX+mWXi/6slDkCBAgQINBNAdFfdq6iv8xP9Bf6ZZeL/qyUOQIECBAg0E0B0V92rqK/zE/0F/pll4v+rJQ5AgQIECDQTQHRX3auor/MT/QX+mWXi/6slDkCBAgQINBNAdFfdq6iv8xP9Bf6ZZeL/qyUOQIECBAg0E0B0V92rqK/zE/0F/pll4v+rJQ5AgQIECDQTQHRX3auor/MT/QX+mWXi/6slDkCBAgQINBNAdFfdq6iv8xP9Bf6ZZeL/qyUOQIECBAg0E0B0V92rqK/zE/0F/pll4v+rJQ5AgQIECDQTQHRX3auor/MT/QX+mWXi/6slDkCBAgQINBNAdFfdq6iv8xP9Bf6ZZeL/qyUOQIECBAg0E0B0V92rqK/zE/0F/pll4v+rJQ5AgQIECDQTQHRX3auor/MT/QX+mWXi/6slDkCBAgQINBNAdFfdq6iv8xP9Bf6ZZeL/qyUOQIECBAg0E0B0V92rqK/zE/0F/pll4v+rJQ5AgQIECDQTQHRX3auor/MT/QX+mWXi/6slDkCBAgQINBNAdFfdq6iv8xP9Bf6ZZeL/qyUOQIECBAg0E0B0V92rsMq+p+a+XScfPaVcfN/fT9GjhgRh+774dhi4/Vbwc9PuzVOm3pNzJ49O7bY5M1xxAE7x6iRI/vUfeDhp/qcaQYmTB4dM2akRg0tRED0uy0IECBAgMDwFhD9Zec/rKJ/n/Gnxt+95hWxx07bxOjRo+bL3Xf/gzH2wIlx8enj48WrrxqHHH92rLfOmNhlx6361BX9fRL1ZED094TRgxAgQIAAgSVWQPSXHd2wif6f3Ht/HDn5/PjcmUf+ldjUy26IJ56cEfvvvkP7ez++9/444sSpccWUo+PcS6+Pp2fNjr133a79vUcffyK23XV83HLtae2vRX/ZDZhdLfqzUuYIECBAgEA3BUR/2bkOm+i/5Jr/jHt++st4cvpT8Ytf/TZeucZLYvz+O8VLXrhaHDXp/Fh/3dfGtltt3Go2kb/hNnvHHdOmiP6y+6tnq0V/zyg9EAECBAgQWCIFRH/ZsQ2b6D95ypVx09e+E5857uOx9qvXjMuu/Wp8/bYfxNkTx8XBx50Vm2+0fmy12Vvna75hs93irpvPi+a7AIt7pn/6zDmpEzj8mHkxfXpq1NBCBF4zJmLfj41gQ4AAAQIECAxTgRWWHT1Mr7w3lz1sov+0qVfHiBEjYt+x27dyz8ydGxu+d+/49nVnxNEnXRDrrjMmdth60/b3mu8GbLr9fnHHTX/9TP8jjz0R2+3255f3PD59duokjjwuYrof5E1ZLWzo1a+K2Gv3AS+3kAABAgQIEFjCBVZZYakl/Aqe309/2ET/1dffEnf96Odx9LhdW/HZs+fEP26/X9z2pc/GhVdMi98//FgctOcH2t+7+0e/iCMnnRfXTD22fXlP864/z/5l4d77HojdDpjgNf2V71sv76kMbjsCBAgQIDDEBLy8p+xAhk30//GJ6fHeXQ5vX87TvIPP1Euvjx/+5L44+ei94zcPPhS77HdCXHTa4e279zQv91l7zJqxx87btNF/+533xJSJ49rvFJwy5cq49sZviv6y+67fq0V/v8ksIECAAAECnRIQ/WXHOWyiv2G69Tt3xYTPXBLTn5oZr1t7rTjmoLGx+mort4I33Hx7nHTW5TFz5qzYZIP14piDx8bSS41uo/+6r9wWyyyzVKy80gqx+UZvigsunxY3XTapXefde8puwOxq0Z+VMkeAAAECBLopIPrLznVYRf9AqJronzPnmfZZ/4V9iP6BqPZ/jejvv5kVBAgQIECgSwKiv+w0RX8ffk30z5o1O/b60/v0Lzgu+stuwOxq0Z+VMkeAAAECBLopIPrLzlX0J6L/uW/ZKfrLbriBrhb9A5WzjgABAgQIdENA9Jedo+gv8/Oa/kK/7PJeR/+MGRG3fmtkdntzixDY8p1z2RAgQIAAgSoCor+MWfSX+Yn+Qr/s8sGI/gmT/SMfWf+FzW3wlrmx9btEf4mhtQQIECCQFxD9eauFTYr+Mj/RX+iXXS76s1L15kR/PWs7ESBAgECE6C+7C0R/mZ/oL/TLLhf9Wal6c6K/nrWdCBAgQED0l94Dor9Q0Lv3FAIml4v+JFTFMdFfEdtWBAgQIOCZ/sJ7QPQXAor+QsDkctGfhKo4JvorYtuKAAECBER/4T0g+gsBRX8hYHK56E9CVRwT/RWxbUWAAAECor/wHhD9hYCivxAwuVz0J6Eqjon+iti2IkCAAAHRX3gPiP5CQNFfCJhcLvqTUBXHRH9FbFsRIECAgOgvvAdEfyGg6C8ETC4X/UmoimOivyK2rQgQIEBA9BfeA6K/EFD0FwIml4v+JFTFMdFfEdtWBAgQICD6C+8B0V8IKPoLAZPLRX8SquKY6K+IbSsCBAgQEP2F94DoLwQU/YWAyeWiPwlVcUz0V8S2FQECBAiI/sJ7QPQXAor+QsDkctGfhKo4JvorYtuKAAECBER/4T0g+gsBRX8hYHK56E9CVRwT/RWxbUWAAAECor/wHhD9hYCivxAwuVz0J6Eqjon+iti2IkCAAAHRX3gPiP5CQNFfCJhcLvqTUBXHRH9FbFsRIECAgOgvvAdEfyGg6C8ETC4X/UmoimOivyK2rQgQIEBA9BfeA6K/EFD0FwIml4v+JFTFMdFfEdtWBAgQICD6C+8B0V8IKPoLAZPLRX8SquKY6K+IbSsCBAgQEP2F94DoLwQU/YWAyeWiPwlVcUz0V8S2FQECBAiI/sJ7QPQXAor+QsDkctGfhKo4JvorYtuKAAECBER/4T0g+gsBRX8hYHK56E9CVRwT/RWxbUWAAAECor/wHhD9hYCivxAwuVz0J6Eqjon+iti2IkCAAAHRX3gPiP5CQNFfCJhcLvqTUBXHRH9FbFsRIECAgOgvvAdEfyGg6C8ETC4X/UmoimOivyK2rQgQIEBA9BfeA6K/EFD0FwIml4v+JFTFMdFfEdtWBAgQICD6C+8B0V8IKPoLAZPLRX8SquKY6K+IbSsCBAgQEP2F94DoLwQU/YWAyeWiPwlVcUz0V8S2FQECBAiI/sJ7QPQXAor+QsDkctGfhKo4JvorYtuKAAECBER/4T0g+gsBRX8hYHK56E9CVRwT/RWxbUWAAAECor/wHhD9hYCivxAwuVz0J6Eqjon+iti2IkCAAAHRX3gPiP5CQNFfCJhcLvqTUBXHRH9FbFsRIECAgOgvvAdEfyGg6C8ETC4X/UmoimOivyK2rQgQIEBA9BfeA6K/EFD0FwIml4v+JFTFMdFfEdtWBAgQICD6C+8B0V8IKPoLAZPLRX8SquKY6K+IbSsCBAgQEP2F94DoLwQU/YWAyeWiPwlVcUz0V8S2FQECBAiI/sJ7QPQXAor+QsDkctGfhKo4JvorYtuKAAECBER/4T0g+gsBRX8hYHK56E9CVRwT/RWxbUWAAAECor/wHhD9hYCivxAwuVz0J6Eqjon+iti2IkCAAAHRX3gPiP5CQNFfCJhcLvqTUBXHRH9FbFsRIECAgOgvvAdEfyGg6C8ETC4X/UmoimOivyK2rQgQIEBA9BfeA6K/EFD0FwIml4v+JFTFMdFfEdtWBAgQICD6C+8B0V8IKPoLAZPLRX8SquKY6K+IbSsCBAgQEP2F94DoLwQU/YWAyeWiPwlVcUz0V8S2FQECBAiI/sJ7QPQXAor+QsDkctGfhKo4JvorYtuKAAECBER/4T0g+gsBRX8hYHK56E9CVRwT/RWxbUWAAAECor/wHhD9hYCivxAwuVz0J6Eqjon+iti2IkCAAAHRX3gPiP5CQNFfCJhcLvqTUBXHRH9FbFsRIECAgOgvvAdEfyGg6C8ETC4X/UmoimOivyK2rQgQIEBA9BfeA6K/EFD0FwIml4v+JFTFMdFfEdtWBAgQICD6C++BYRn93/ru3bH7QZPjG9ecGi98wSot4een3RqnTb0mZs+eHVts8uY44oCdY9TIkX3yiv4+iXoyIPp7wtjTBxH9PeX0YAQIECDQh8DLV1+OUYHAsIv+J6c/FR8ZNzGefnp2nHvSQW3033f/gzH2wIlx8enj48WrrxqHHH92rLfOmNhlx636pBX9fRL1ZED094Sxpw8i+nvK6cEIECBAQPQP6j0w7KL/iIlT4+1vfn2ce+n1MWXSJ9ron3rZDfHEkzNi/913aLF/fO/9ccSJU+OKKUe3c0/Pmh1777pd+3uPPv5EbLvr+Ljl2tPaX4v+Qb0/5z+46K/j3J9dRH9/tMwSIECAQKmAZ/rLBIdV9H/z9v+Jq6+/JT59zD5tuE89+eA2+o+adH6sv+5rY9utNm41m8jfcJu9445pU0R/2f3Vs9Wiv2eUPXsg0d8zSg9EgAABAgkB0Z9AWszIsIn+J6Y/Fbvud0KcM/mgeMGqK/1F9B983Fmx+Ubrx1abvXU+1Rs22y3uuvm89rsAi3um/5m581InMO6Tc+LJ6alRQwsRWPs1I2Lc3qN6ZtOcRXMmPgYusNnGI+MD/6/vn3sZ+A5WEiBAgACBPwuMGjkCR4HAsIn+8RPOjU3f/vex5aZvabn+4pn+yefHuuuMiR223rT9veZ1/5tuv1/ccdNfP9P/yGNPxHa7/fnlPb97dGaK//iJo2LGjNSooYUIvGqtefHRXef2zKY5i+ZMfAxc4G1vnRfvfXfvzmTgn4mVBAgQIDAcBF6y2rLD4TIH7RqHTfSvv+XusfRSo+dDTn9qZiy/3LJx5AG7xEOPPBa/f/ixOGjPD7S/f/ePfhFHTjovrpl6bPvynqdmPh37jt2+/b1773sgdjtggtf0D9otufAH9vKeyuCJ7by8J4FkhAABAgR6JuDlPWWUwyb6F2R67jP9v3nwodhlvxPiotMOb9+9p3m5z9pj1ow9dt6mjf7b77wnpkwcFyNGjIhTplwZ1974TdFfdt/1e7Xo7zfZoC8Q/YNObAMCBAgQeI6A6C+7HUT/n96n/4abb4+Tzro8Zs6cFZtssF4cc/DY9jsDTfRf95XbYpllloqVV1ohNt/oTXHB5dPipssmtfLevafsBsyuFv1ZqXpzor+etZ0IECBAIPzjXIU3wbCN/qxbE/1z5jzTPuu/sA/Rn5UsmxP9ZX6DsVr0D4aqxyRAgACBRQl4pr/s3hD9ffg10T9r1uzY60/v07/guOgvuwGzq0V/VqrenOivZ20nAgQIEPBMf+k9IPoT0f/ct+wU/aW33MDWi/6BuQ3mKtE/mLoemwABAgQWFPBMf9k9IfrL/Lymv9Avu1z0Z6XqzYn+etZ2IkCAAAHP9JfeA6K/UNDLewoBk8tFfxKq4pjor4htKwIECBDwg7yF94DoLwQU/YWAyeWiPwlVcUz0V8S2FQECBAiI/sJ7QPQXAor+QsDkctGfhKo4JvorYtuKAAECBER/4T0g+gsBRX8hYHK56E9CVRwT/RWxbUWAAAECor/wHhD9hYCivxAwuVz0J6Eqjon+iti2IkCAAAHRX3gPiP5CQNFfCJhcLvqTUBXHRH9FbFsRIECAgOgvvAdEfyGg6C8ETC4X/UmoimOivyK2rQgQIEBA9BfeA6K/EFD0FwIml4v+JFTFMR9EkS8AACAASURBVNFfEdtWBAgQICD6C+8B0V8IKPoLAZPLRX8SquJYr6P/vl+OiJ/8dETFK+jeVqusEtGciw8CBAh0UcC/yFt2qqK/zM+/yFvol10u+rNS9eYGI/rPu3BUvQvo4E5bv2uu6O/gubokAgT+T0D0l90Jor/MT/QX+mWXi/6sVL050V/POruT6M9KmSNAYEkUEP1lpyb6y/xEf6Ffdrnoz0rVmxP99ayzO4n+rJQ5AgSWRAHRX3Zqor/MT/QX+mWXi/6sVL050V/POruT6M9KmSNAYEkUEP1lpyb6y/xEf6Ffdrnoz0rVmxP99ayzO4n+rJQ5AgSWRAHRX3Zqor/MT/QX+mWXi/6sVL050V/POruT6M9KmSNAYEkUEP1lpyb6y/xEf6Ffdrnoz0rVmxP99ayzO4n+rJQ5AgSWRAHRX3Zqor/MT/QX+mWXi/6sVL050V/POruT6M9KmSNAYEkUEP1lpyb6y/xEf6Ffdrnoz0rVmxP99ayzO4n+rJQ5AgSWRAHRX3Zqor/MT/QX+mWXi/6sVL050V/POruT6M9KmSNAYEkUEP1lpyb6y/xEf6Ffdrnoz0rVmxP99ayzO4n+rJQ5AgSWRAHRX3Zqor/MT/QX+mWXi/6sVL050V/POruT6M9KmSNAYEkUEP1lpyb6y/xEf6Ffdrnoz0rVmxP99ayzO4n+rJQ5AgSWRAHRX3Zqor/MT/QX+mWXi/6sVL050V/POruT6M9KmSNAYEkUEP1lpyb6y/xEf6Ffdrnoz0rVmxP99ayzO4n+rJQ5AgSWRAHRX3Zqor/MT/QX+mWXi/6sVL050V/POruT6M9KmSNAYEkUEP1lpyb6y/xEf6Ffdrnoz0rVmxP99ayzO4n+rJQ5AgSWRAHRX3Zqor/MT/QX+mWXi/6sVL050V/POruT6M9KmSNAYEkUEP1lpyb6y/xEf6Ffdrnoz0rVmxP99ayzO4n+rJQ5AgSWRAHRX3Zqor/MT/QX+mWXi/6sVL050V/POruT6M9KmSNAYEkUEP1lpyb6y/xEf6Ffdrnoz0rVmxP99ayzO4n+rJQ5AgSWRAHRX3Zqor/MT/QX+mWXi/6sVL050V/POruT6M9KmSNAYEkUEP1lpyb6y/xEf6Ffdrnoz0rVmxP99ayzO/U6+m//7si46Ssjs9ubW4jAzh9+Jpo/v3wQIFAuIPrLDEV/mZ/oL/TLLhf9Wal6c6K/nnV2p8GI/utvFP1Z/4XNjd1F9Jf4WUvguQKiv+x+EP1lfqK/0C+7XPRnperNif561tmdRH9Wqt5cr6P/7h+OqPfJd3SnMa+aF8sv39GL6/hlif6yAxb9ZX6iv9Avu1z0Z6XqzYn+etbZnUR/VqreXK+jv/nOS/OyKx8DFzj0E3NE/8D5nteVor+MX/SX+Yn+Qr/sctGflao3J/rrWWd3Ev1ZqXpzor+edXYn0Z+VGnpzor/sTER/mZ/oL/TLLhf9Wal6c6K/nnV2J9Gflao3J/rrWWd3Ev1ZqaE3J/rLzkT0l/mJ/kK/7HLRn5WqNyf661lndxL9Wal6c6K/nnV2J9GflRp6c6K/7ExEf5mf6C/0yy4X/VmpenOiv551difRn5WqNyf661lndxL9WamhNyf6y85E9Jf5if5Cv+xy0Z+Vqjcn+utZZ3cS/VmpenOiv551difRn5UaenOiv+xMRH+Zn+gv9MsuF/1ZqXpzor+edXYn0Z+Vqjcn+utZZ3cS/VmpoTcn+svORPSX+Yn+Qr/sctGflao3J/rrWWd3Ev1ZqXpzor+edXYn0Z+VGnpzor/sTER/mZ/oL/TLLhf9Wal6c6K/nnV2J9Gflao3J/rrWWd3Ev1ZqaE3J/rLzkT0l/mJ/kK/7HLRn5WqNyf661lndxL9Wal6c6K/nnV2J9GflRp6c6K/7ExEf5mf6C/0yy4X/VmpenOiv551difRn5WqNyf661lndxL9WamhNyf6y85E9Jf5if5Cv+xy0Z+Vqjcn+utZZ3cS/VmpenOiv551difRn5UaenOiv+xMRH+Zn+gv9MsuF/1ZqXpzor+edXYn0Z+Vqjcn+utZZ3cS/VmpoTcn+svORPSX+Yn+Qr/sctGflao3J/rrWWd3Ev1ZqXpzor+edXYn0Z+VGnpzor/sTER/mZ/oL/TLLhf9Wal6c6K/nnV2J9Gflao3J/rrWWd3Ev1ZqaE3J/rLzkT0l/mJ/kK/7HLRn5WqNyf661lndxL9Wal6c6K/nnV2J9GflRp6c6K/7EyGTfQ//Ogf46SzLo9bv3NXjB49OjbZYN04Yv+dY/ToUa3g56fdGqdNvSZmz54dW2zy5jjigJ1j1MiRfeo+8PBTfc40AxMmj44ZM1KjhhYiIPqH3m0h+ofemYj+oXcmon/onYnoH3pnkv2MRH9WauFzwyb6f/DDn8Uv738w3vNPb49n5s6LfcefGu/Y8I3xwe22iPvufzDGHjgxLj59fLx49VXjkOPPjvXWGRO77LhVn7qiv0+ingyI/p4w9vRBRH9POXvyYKK/J4w9fRDR31POnjyY6O8J4/PyIKK/jH3YRP+CTBdd9eX4zW//EIft++GYetkN8cSTM2L/3Xdox3587/1xxIlT44opR8e5l14fT8+aHXvvul37e48+/kRsu+v4uOXa09pfi/6yGzC7WvRnperNif561tmdRH9Wqt6c6K9nnd1J9Gelht6c6C87k2Eb/eP+/YzYbMM3tc/8HzXp/Fh/3dfGtltt3Go2kb/hNnvHHdOm9Bn9f3j86dQJHDdhZEz38p6U1cKGxrwqYvfd5g54/YILm7NozsTHwAXevsG82GbreQN/gAVW/vy+EXHOeSN69njD8YGa82jOpVcft90+Ir54vTMp8dx97LwYs1bvzqQ5j+ZcfAxc4JOHzo0Vlh/4eiufP4EXrbLM87d5B3YeltH/re/9ME6benVccvr4GDVqVBx83Fmx+Ubrx1abvXX+kb5hs93irpvPa78LsLhn+mfPyYXoQUc+E09O78Ad8zxdwtqvHhEH7NW7SG/OojkTHwMXeMdGI+Jftu/dmfzk3nlxyhm5/54G/ll3e2VzHs259Orj6/81Ly6/xpmUeDZ/bjV/fvXqozmP5lx8DFxg0jGjYsUVBr7eyudPYKnRvfua8/xdxfO387CL/rt/9Is47IRz4pxJn4iXvvgFrfxRk8+PddcZEztsvWn76yenPxWbbr9f3HHTXz/T/8hjT8R2u3l5T+1b1st7aov3vZ+X9/RtVHvCy3tqi/e9n5f39G1Ue8LLe2qL924/L+8psxxW0f+Te++PTxx7Zpx6zL7xqle8bL7chVdMi98//FgctOcH2v+v+YvBkZPOi2umHtu+vOepmU/HvmO3b3/v3vseiN0OmOA1/WX3Xb9Xi/5+kw36AtE/6MT93kD095ts0BeI/kEn7vcGor/fZENmgegvO4phE/2/+NVv48CjPxsnHbVXjHnly/9C7TcPPhS77HdCXHTa4e279zQv91l7zJqxx87btNF/+533xJSJ42LEiBFxypQr49obvyn6y+67fq8W/f0mG/QFon/Qifu9gejvN9mgLxD9g07c7w1Ef7/JhswC0V92FMMm+g869qy48ebbY+SIP7+2cumll4rvTTu7Fbzh5tvb9/GfOXNWbLLBenHMwWNj6aVGt9F/3Vdui2WWWSpWXmmF2HyjN8UFl0+Lmy6b1K7z7j1lN2B2tejPStWbE/31rLM7if6sVL050V/POruT6M9KDb050V92JsMm+gfK1ET/nDnPtM/6L+xD9A9Utn/rRH//vGpMi/4ayv3bQ/T3z6vGtOivody/PUR//7yG0rToLzsN0d+HXxP9s2bNjr3+9D79C46L/rIbMLta9Gel6s2J/nrW2Z1Ef1aq3pzor2ed3Un0Z6WG3pzoLzsT0Z+I/ue+ZafoL7vhBrpa9A9UbvDWif7Bsx3oI4v+gcoN3jrRP3i2A31k0T9Qued/negvOwPRX+bnNf2Fftnloj8rVW9O9Nezzu4k+rNS9eZEfz3r7E6iPys19OZEf9mZiP4yP9Ff6JddLvqzUvXmRH896+xOoj8rVW9O9Nezzu4k+rNSQ29O9Jediegv8xP9hX7Z5aI/K1VvTvTXs87uJPqzUvXmRH896+xOoj8rNfTmRH/ZmYj+Mj/RX+iXXS76s1L15kR/PevsTqI/K1VvTvTXs87uJPqzUkNvTvSXnYnoL/MT/YV+2eWiPytVb07017PO7iT6s1L15kR/PevsTqI/KzX05kR/2ZmI/jI/0V/ol10u+rNS9eZEfz3r7E6iPytVb07017PO7iT6s1JDb070l52J6C/zE/2Fftnloj8rVW9O9Nezzu4k+rNS9eZEfz3r7E69jv5f/3pEdmtzixBYY415KRvRn2Ja5JDoL/MT/YV+2eWiPytVb07017PO7iT6s1L15kR/PevsTr2O/vMuHBX3/VL4Z/0XnFt++YjmTDIfoj+jtOgZ0V/mJ/oL/bLLRX9Wqt6c6K9nnd1J9Gel6s2J/nrW2Z1Ef1aqzpzor+Pc7CL6C60fePip1CNMmDw6ZsxIjRpaiIDoH3q3hegfemci+ofemYj+oXcmon9onYnor3ceor/QWvQXAiaXi/4kVMUx0V8RO7mV6E9CVRwT/RWxk1uJ/iRUpTHRXwnaM/3l0KK/3DDzCKI/o1R3RvTX9c7sJvozSnVnRH9d78xuoj+jVG9G9Nez9kx/obXoLwRMLhf9SaiKY6K/InZyK9GfhKo4JvorYie3Ev1JqEpjor8StGf6y6FFf7lh5hFEf0ap7ozor+ud2U30Z5Tqzoj+ut6Z3UR/RqnejOivZ+2Z/kJr0V8ImFwu+pNQFcdEf0Xs5FaiPwlVcUz0V8RObiX6k1CVxkR/JWjP9JdDi/5yw8wjiP6MUt0Z0V/XO7Ob6M8o1Z0R/XW9M7uJ/oxSvRnRX8/aM/2F1qK/EDC5XPQnoSqOif6K2MmtRH8SquKY6K+IndxK9CehKo2J/krQnukvhxb95YaZRxD9GaW6M6K/rndmN9GfUao7I/rremd2E/0ZpXozor+etWf6C61FfyFgcrnoT0JVHBP9FbGTW4n+JFTFMdFfETu5lehPQlUaE/2VoD3TXw4t+ssNM48g+jNKdWdEf13vzG6iP6NUd0b01/XO7Cb6M0r1ZkR/PWvP9Bdai/5CwORy0Z+Eqjgm+itiJ7cS/UmoimOivyJ2civRn4SqNCb6K0F7pr8cWvSXG2YeQfRnlOrOiP663pndRH9Gqe6M6K/rndlN9GeU6s2I/nrWnukvtBb9hYDJ5aI/CVVxTPRXxE5uJfqTUBXHRH9F7ORWoj8JVWlM9FeC9kx/ObToLzfMPILozyjVnRH9db0zu4n+jFLdGdFf1zuzm+jPKNWbEf31rD3TX2gt+gsBk8tFfxKq4pjor4id3Er0J6Eqjon+itjJrUR/EqrSmOivBO2Z/nJo0V9umHkE0Z9Rqjsj+ut6Z3YT/RmlujOiv653ZjfRn1GqNyP661l7pr/QWvQXAiaXi/4kVMUx0V8RO7mV6E9CVRwT/RWxk1uJ/iRUpTHRXwnaM/3l0KK/3DDzCKI/o1R3RvTX9c7sJvozSnVnRH9d78xuoj+jVG9G9Nez9kx/obXoLwRMLhf9SaiKY6K/InZyK9GfhKo4JvorYie3Ev1JqEpjor8StGf6y6FFf7lh5hFEf0ap7ozor+ud2U30Z5Tqzoj+ut6Z3UR/RqnejOivZ+2Z/kJr0V8ImFwu+pNQFcdEf0Xs5FaiPwlVcUz0V8RObiX6k1CVxkR/JWjP9JdDi/5yw8wjiP6MUt0Z0V/XO7Ob6M8o1Z0R/XW9M7uJ/oxSvRnRX8/aM/2F1qK/EDC5XPQnoSqOif6K2MmtRH8SquKY6K+IndxK9CehKo2J/krQnukvhxb95YaZRxD9GaW6M6K/rndmN9GfUao7I/rremd2E/0ZpXozor+etWf6C61FfyFgcrnoT0JVHBP9FbGTW4n+JFTFMdFfETu5lehPQlUaE/2VoD3TXw4t+ssNM48g+jNKdWdEf13vzG6iP6NUd0b01/XO7Cb6M0r1ZkR/PWvP9Bdai/5CwORy0Z+Eqjgm+itiJ7cS/UmoimOivyJ2civRn4SqNCb6K0F7pr8cWvSXG2YeQfRnlOrOiP663pndRH9Gqe6M6K/rndlN9GeU6s2I/nrWnukvtBb9hYDJ5aI/CVVxTPRXxE5uJfqTUBXHRH9F7ORWoj8JVWlM9FeC9kx/ObToLzfMPILozyjVnRH9db0zu4n+jFLdGdFf1zuzm+jPKNWbEf31rD3TX2gt+gsBk8tFfxKq4pjor4id3Er0J6Eqjon+itjJrUR/EqrSmOivBO2Z/nJo0V9umHkE0Z9Rqjsj+ut6Z3YT/RmlujOiv653ZjfRn1GqNyP661l7pr/QWvQXAiaXi/4kVMUx0V8RO7mV6E9CVRwT/RWxk1uJ/iRUpTHRXwnaM/3l0KK/3DDzCKI/o1R3RvTX9c7sJvozSnVnRH9d78xuoj+jVG9G9Nez9kx/obXoLwRMLhf9SaiKY6K/InZyK9GfhKo4JvorYie3Ev1JqEpjor8StGf6y6FFf7lh5hFEf0ap7ozor+ud2U30Z5Tqzoj+ut6Z3UR/RqnejOivZ+2Z/kJr0V8ImFwu+pNQFcdEf0Xs5FaiPwlVcUz0V8RObiX6k1CVxkR/JWjP9JdDi/5yw8wjiP6MUt0Z0V/XO7Ob6M8o1Z0R/XW9M7uJ/oxSvRnRX8/aM/2F1qK/EDC5XPQnoSqOif6K2MmtRH8SquKY6K+IndxK9CehKo2J/krQnukvhxb95YaZRxD9GaW6M6K/rndmN9GfUao7I/rremd2E/0ZpXozor+etWf6E9aPPv5EHPapc+Kue34eq626Uhx78Nh40xte264U/QnAHoyI/h4g9vghRH+PQXvwcKK/B4g9fgjR32PQHjyc6O8BYg8fQvT3ELOPhxL9CetDj58Sf/PSF8beu70v7v7xz2Pc0WfEly46IZZdZmnRn/DrxYjo74Vibx9D9PfWsxePJvp7odjbxxD9vfXsxaOJ/l4o9u4xRH/vLPt6JNHfh9DcufNiw232jq9f9elYdtml2+mPf/K0+H9b/2Ns+vY3iv6+7rAe/b7o7xFkDx9G9PcQs0cPJfp7BNnDhxH9PcTs0UOJ/h5B9uhhRH+PIBMPI/r7QPrdQ4/GTvscH1/+3OT5kydPuTJWXXnFGPuBd4n+xE3WixHR3wvF3j6G6O+tZy8eTfT3QrG3jyH6e+vZi0cT/b1Q7N1jiP7eWfb1SKK/D6Ff/vp3sc/4U+NLF35q/uQZF3w+5s6bF/vs9r6+fOf//v6Hz44np6fHDS4g8LevGREH7Tu6Zy7NWTRn4mPgAptvMjI+tMOogT/AAit//LN5Mekzc3r2eMPxgZrzaM6lVx83f3NuXHrVM716uGH5OM2fW82fX736aM6jORcfAxf49KeWihVXGPj6BVc2f241f375GJhAcxbNmfgYfAHR34fx7x96LD6wx7/HzVedMn/yxM9eFi98wSrxkQ++e/BPyA4ECBAgQIAAAQIECgVEfx+A8+bNi4223SduunRSrLTi8u30noeeHDu85x2xxcbrF/JbToAAAQIECBAgQGDwBUR/wvioSefH6i9YOfbZbfv23Xv2OfzUuPGSibHC8ssmVhshQIAAAQIECBAg8PwKiP6E/xNPzojDTjgn7rzrp+2z/UcesHNs+JY3JFYaIUBgqAj89//eG6ecfWVccOqhQ+VT8nn0WODfDjopdv/w1vGWN/5dnHvp9fH0rNmx967b9XgXD0dgyRZ47n8nS/aV+Oz7KyD6+ytmngCBJVKgJPpnzZ4Tt3//f2OTDdZrr33BXy+RIB35pA846rOx8/u3bP/BRNHfkUN1GYMq8Nz/Tn5x/4Mx95m58eq1Xj6oe3rwoSEg+ofGOfgsCBAYZIE2+qdcGRd8uv/P9N/y7f+JW27/7/jkfju1n+WCvx7kT93DL0ag+ZfSx7zy5e3LLUW/W4VA3wLP/e/kpLMuj3XXGRNbbvqWvheaWOIFRP8Sf4R/voDm3xQ4/FPnxIN/eKT9tvb73/OO+NhO743m3xVYbZUVY7d/eVc7/Kvf/C72HX9afOGC49tfX3PDN+PyL94cM2fOip/d95t40eqrxqeP2SfWWvOlcdinpsTPf/XbmDPnmfjgdlvERz+0dbum+UNj13/ZKiaf+bmY/tTM9gedffylwDe+/d/ty0kefuyP7b/ofNkZR8THDj75r9xmPDUzjj3lovjBD+9t/wG4wz/+4XjL3/9d+2DX3vjNOO9zN8bTT8+K1VdbJSYduUes8bIXRROwUy7+UntWzXk+9MjjcfBeH4wvf+O78YtfPRjTZzwVh+374fZlDj7+T+DZ6H/Ji1aL7/33j2P55ZaNQ/f5YGz0lnXb/1422maf+N60s+dzHXL82e0P66+15sviwKNOj8efmB4ve/Hq8c+bvTWuveGW+b9u/jt49xZva/8icMqUK+KpmbNigzetE+P33ymWXmp0+zKTJki/9d0fxnd+cE987qyj4lVrvtSxLEag+fNl4w3Wjdu+d3c8+PtH4u9e84rWuLGc+fSseOUaL4kJh38sRo4c8Rehv6jo//kvH2jfennKxE/EGi9/EfsCgUXd5488+scYf+K58eT0mfHje38Vs2fPiXdu8uaYdOSei/wa88bXv6bgM7G0EVjU1/3H/vjkYr9+Ny+D+8PDj8Xxp14cK664XKyy4gox8Yg92q/7ProrIPo7dLYTz/hcrPGyF8aH3vfO9g/cRx5/Il7ywtUWG/0PP/rH+OCex7R/AVhu2WWi+Vb51lu8Ld75j2+O5l8j/sEPfxrrr7t2NHNb73Ro3HDxifGCVVdqv9A2f6hMPnKPeMXfvKRDir25lN88+FD86z7HxbmTD26/bfrIY08s0q0J/hVWWC4O/Lf3RxMnHx03Ka77jxPaKP3JvffHS1/8glh5pRXi5LOviBkzn26fbW4Ctnn8q889NtYes0Yb+83ZNa9Xb/7C8P27fhLN/fC5M4/szQV14FEasw/tdWycM+kT7c/k3HvfAzH2wBPjuotOiKWXXmqR0d88A3bV9d+IH/3sV/Of6V/w102Yfnif4+Liz4xvz2v8hHPj1a98eXzkQ1u3ofofV305jj/0o7HxW9ftgOTgX0Lz58tKKy4Xk4/cs/03Ud6/+1Gx+morx1knHhijRo1q/xvZZcd/bl9u9dzQX1j0f3DbzWPXAybEcYd8JNZb59WD/8l3eIfF3eefOu3iWOPlL46dd9iyffLooGPOjGvPO6792rGorzEdpqp2aYv6ut/X1+9nf/bl2Sc3PNNf7cie141E//PK39vNr/zS1+P6r347jjpwl3jVK142/8EX90z/nXf/NM688IsxZdK4dr4JlOZtSnf/8Hv+6pNromb8x3eK1639yvYL7Zab/kPs8J5Ne3sRHXm0i668KZrwb55tf+7Hwtze9p694suXTWrDvvnYdb8Jsecu28YG66/zF2u/9b0fxiXXfCU++6n92+hv3lXq8+cf1878+oE/tNH5jWtObX/dfNdmix0PjP/64ukdES2/jMbs8BPOiev/Y8L8B2u+47XtVhu18bjRIp7pz0T/RVd9OX774ENxyD4fah/7uz/4UXzmvGviotMOb/+b+snP74+Jn9yj/CKGySM0/528/72bxj/94z+0V9x8x7F5zf6O22zW/rp5ScLLXrJ6+wTH4qK/+S7ad+78Uey641btExk+ygQWd583fxHb9yPbx9+/7v/+YrXB1nvG7defGf35GlP22Q3P1Yv6ur+gxoJfv0X/8LxfRH/Hzv0L026N8y+fFs1LGMbv96/ts/ALRn/zrwx//JP/9/Ke5luyO/zb0XH1uf8eq6y0Yux9+Cmx0w7/HBv+w+vbkDz74i/Gg394NEbEiLjrRz+Pcyd/Il7/t69qv9B+9EPvjre+6S/DtGOcA76cyWdeHqututJf/QNuC7o9NfPpeMu79oi11vjzd0ual0sd/vF/bYPnquu+EV+55Xsxb17E4088GauvunKcMeGANvqbZ/4vPPWw9nNs/oLxsYMmx3V/Ctrm5Sqbvu/j8e3rzxzwNXRtYWM28YzL4pLTPzn/0o6afH68bu21YrutNv6r6D/4uLPalydkor857y/cdGus8qe/uD0zd16ssvIK7Xdann1JSn/+Be+u2ff3ehb87+TwCee23yV59+YbtA/V/JnW/AOJzbPKi4v+C6+YFjFiRJx05J7+rOrvISxkfnH3+QmfuaT9M2+PnbZp/3x69r+1xX2N6cGn5CEiYmFf9/v6+i36h+etI/o7eu5XX39LXP7Fr8UVZx8Vp029OlZYfrn5AfqDu38WTew8+5r+cy65rn3N5Zovf3FsssG6sdMOW7YqO37s39svqu/5p7f/36//7eg4atwu86P/2T80OkpYdFnnX35j/O4Pj8ahf3rm99kHW9hbpTXP9H/tqlPal1c996P5mYDPnndtTD3lkFhpheXiG7f9IC7/wtfmR/9z335S9Pd9XE2IHHr8lLjxkhPnD+99+Kfjfe/aJDbb8I3x1q33jDumTZn/e7t/YlK8/73vaKO/+e/pnp/9cv7Lexb8dfOdnebnKg782I5/9Yl468i+z2bBiQX/Oxlo9P/+oUfjXZtv0J771eceEyuusFz/Pxkr5gss7j5//I/TY/uPHhGvWvNl7V94D9j9/fN/fmJRX2PQ9lbguV/3s1+/m/82Nt/4TX6Qt7dHMWQfTfQP2aPp/yfWvEZ5zb95cfvDg81rwZvX6jWvqfz8tFvjlm//d5x89N7tgx5z8oVxx//8ZH70b/+RI2LqyQfHaqus9BebvvNfxsUpR+/d/mR/M//RcRPj4tPHi/7E0TTfTdl1/xPi/FMObX8wqvlhq+bnKxYW/c1r+pvXfzl2KQAABzxJREFUlI/72I4xevSouP+B38dLX/SCuO4/b2tfq3/GCQe0P2h66PFnx6xZc0R/wn9hI8++pv+ME/aPTd/+xvjpL34dYw+cGDf8x4T239/4p38ZF2edOK79GYxf//YPse2u4+OEw3dvvxh+9dbvx2XXfjXOPemg9qEX/PVvf/dw7PzxT8WZJx4Yr1nrb9rzan5Irvmha9Hf/wPrVfQ/+z79zXfFmr+Ufeqw3fv/yVgxX2Bx9/l/fvOOuP3797TfYV7wY1FfY9CWCyzq63726/eE0y+NVVdZsf0OjY/uC4j+Dp3xZZ//aky97IZYavTo9pnhwz7+4fZ1sM17ih9y3Nnx298/3MZN844kn/v8ze3rwZsf9tnz0JPjO3feE8ssvVSsuOLy7Usdmpci3PDVb7dvcdh8l+CNb3hN+zgfft8Woj95zzTBftq5V8fjT85o372neanHwqK/ed3xpDMvb/9i1hivtcZL25+xaH62Yr8jT49f3v9g+1KGf91hy7juy98S/Un/Bcea6L/quq/HM8/MjTvv/lmMGjUyDtv3Q+279zQfzXdWmvNqnqVs3imp+cvzpm//+zb6m3PZ69BT4pe/fjA+tvM2sc2WG/3Fr3fYetO47Y4fRvPyhyb2m7/E7bXLdrH9uzcR/QM4r15Hf/PGBjvu8e+x1y7bzv85gQF8WpZELPI+b54Y2u2AE2O5ZZeO0aNGtW+jevS4XdufL1vU1xig5QKL+rqf/frdvE9/83LfuXPnxklH7dW+U5aP7gqI/u6eberKmkhpIqd5O8/mWebm9Zcf2vu4OGfyJ9qX+/ggQIAAAQKLE2i+i9K8HK75rmTzA9bNWzx/7gs3x90/+kX7hIWvMe4fAkNDQPQPjXN43j6L5r2rm2cjN99o/fZzaF4b3rxM4YsXfKp9b3EfBAgQIEBgcQL3/PSXcdTkC+KyM4+IUSNHtt9B/vS5V7X/u3kZna8x7h8CQ0NA9A+Nc3jePouf/PzXcdynL4qZT89u/6GbZZdeOvbYZZt42/qve94+JxsTIECAwJIl8Jmp18TN37qzfXlp81KRN6+3dvuD7c3PN/kas2Sdpc+2uwKiv7tn68oIECBAgAABAgQItAKi341AgAABAgQIECBAoOMCor/jB+zyCBAgQIAAAQIECIh+9wABAgQIECBAgACBjguI/o4fsMsjQIAAAQIECBAgIPrdAwQIECBAgAABAgQ6LiD6O37ALo8AAQIECBAgQICA6HcPECBAgAABAgQIEOi4gOjv+AG7PAIECBAgQIAAAQKi3z1AgAABAgQIECBAoOMCor/jB+zyCBAgQIAAAQIECIh+9wABAgQIECBAgACBjguI/o4fsMsjQIAAAQIECBAgIPrdAwQIECBAgAABAgQ6LiD6O37ALo8AAQIECBAgQICA6HcPECBAgAABAgQIEOi4gOjv+AG7PAIECBAgQIAAAQKi3z1AgAABAgQIECBAoOMCor/jB+zyCBAgQIAAAQIECIh+9wABAgQIECBAgACBjguI/o4fsMsjQIAAAQIECBAgIPrdAwQIECBAgAABAgQ6LiD6O37ALo8AAQIECBAgQICA6HcPECBAgAABAgQIEOi4gOjv+AG7PAIECBAgQIAAAQKi3z1AgAABAgQIECBAoOMCor/jB+zyCBAgQIAAAQIECIh+9wABAgQIECBAgACBjguI/o4fsMsjQIAAAQIECBAgIPrdAwQIECBAgAABAgQ6LiD6O37ALo8AAQIECBAgQICA6HcPECBAgAABAgQIEOi4gOjv+AG7PAIECBAgQIAAAQKi3z1AgAABAgQIECBAoOMCor/jB+zyCBAgQIAAAQIECIh+9wABAgQIECBAgACBjguI/o4fsMsjQIAAAQIECBAgIPrdAwQIECBAgAABAgQ6LiD6O37ALo8AAQIECBAgQICA6HcPECBAgAABAgQIEOi4gOjv+AG7PAIECBAgQIAAAQKi3z1AgAABAgQIECBAoOMCor/jB+zyCBAgQIAAAQIECIh+9wABAgQIECBAgACBjguI/o4fsMsjQIAAAQIECBAgIPrdAwQIECBAgAABAgQ6LiD6O37ALo8AAQIECBAgQICA6HcPECBAgAABAgQIEOi4gOjv+AG7PAIECBAgQIAAAQKi3z1AgAABAgQIECBAoOMCor/jB+zyCBAgQIAAAQIECIh+9wABAgQIECBAgACBjguI/o4fsMsjQIAAAQIECBAgIPrdAwQIECBAgAABAgQ6LiD6O37ALo8AAQIECBAgQICA6HcPECBAgAABAgQIEOi4gOjv+AG7PAIECBAgQIAAAQKi3z1AgAABAgQIECBAoOMCor/jB+zyCBAgQIAAAQIECIh+9wABAgQIECBAgACBjguI/o4fsMsjQIAAAQIECBAgIPrdAwQIECBAgAABAgQ6LiD6O37ALo8AAQIECBAgQICA6HcPECBAgAABAgQIEOi4wP8HxEtG9RJEnPgAAAAASUVORK5CYII=",
"text/html": [
"<div>\n",
" \n",
" \n",
" <div id=\"9d5eeebe-98b6-4a7c-a70a-f6a5b11ac0d8\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>\n",
" <script type=\"text/javascript\">\n",
" require([\"plotly\"], function(Plotly) {\n",
" window.PLOTLYENV=window.PLOTLYENV || {};\n",
" \n",
" if (document.getElementById(\"9d5eeebe-98b6-4a7c-a70a-f6a5b11ac0d8\")) {\n",
" Plotly.newPlot(\n",
" '9d5eeebe-98b6-4a7c-a70a-f6a5b11ac0d8',\n",
" [{\"histfunc\": \"sum\", \"type\": \"histogram\", \"x\": [\"sugar\", \"cream\", \"butter\", \"milk\", \"egg\", \"salt\"], \"y\": [8.182689305440411e-05, 5.7593182880276924e-05, 3.462434354470022e-05, 2.742606390272889e-05, 2.658606302605515e-05, 1.538411186882952e-05]}],\n",
" {\"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}},\n",
" {\"responsive\": true}\n",
" ).then(function(){\n",
" \n",
"var gd = document.getElementById('9d5eeebe-98b6-4a7c-a70a-f6a5b11ac0d8');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" })\n",
" };\n",
" });\n",
" </script>\n",
" </div>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"6\n"
]
}
],
"source": [
"keys, values = normalized_score('whiskey', EA.m_base_mix)\n",
"data = go.Histogram(x=keys, y=values, histfunc=\"sum\")\n",
"iplot([data])\n",
"print(len(keys))"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"linkText": "Export to plot.ly",
"plotlyServerURL": "https://plot.ly",
"showLink": false
},
"data": [
{
"histfunc": "sum",
"type": "histogram",
"x": [
"{\"base\": \"ricotta cheese\", \"actions\": []}",
"{\"base\": \"mozzarella cheese\", \"actions\": []}",
"{\"base\": \"cheese\", \"actions\": []}",
"{\"base\": \"cheese\", \"actions\": [\"grate\"]}"
],
"y": [
0.005435964340073929,
0.0034655371582595304,
0.0003054101221640489,
0.0002708911234396671
]
}
],
"layout": {
"autosize": true,
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"xaxis": {
"autorange": true,
"range": [
-0.5,
3.5
],
"type": "category"
},
"yaxis": {
"autorange": true,
"range": [
0,
0.005722067726393609
],
"type": "linear"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABCkAAAHCCAYAAADCTZOBAAAgAElEQVR4Xu3dCZRcVZ0/8F8gQGQJEFAQ1MGNGRVBQEYFFEQHZReI7CABZEtkhyTsa0IAQ0DZd5B9iaxREEFEQVABQXFFHBgEBAKCbEL6f+7D9L87pjrduSS5XfdT58w5Y+j76t7P91W9qm+9ejWgo6OjI9wIECBAgAABAgQIECBAgAABAnNYYICSYg4n4O4JECBAgAABAgQIECBAgACBRkBJYUcgQIAAAQIECBAgQIAAAQIEihBQUhQRg0kQIECAAAECBAgQIECAAAECSgr7AAECBAgQIECAAAECBAgQIFCEgJKiiBhMggABAgQIECBAgAABAgQIEFBS2AcIECBAgAABAgQIECBAgACBIgSUFEXEYBIECBAgQIAAAQIECBAgQICAksI+QIAAAQIECBAgQIAAAQIECBQhoKQoIgaTIECAAAECBAgQIECAAAECBJQU9gECBAgQIECAAAECBAgQIECgCAElRRExmAQBAgQIECBAgAABAgQIECCgpLAPECBAgAABAgQIECBAgAABAkUIKCmKiMEkCBAgQIAAAQIECBAgQIAAASWFfYAAAQIECBAgQIAAAQIECBAoQkBJUUQMJkGAAAECBAgQIECAAAECBAgoKewDBAgQIECAAAECBAgQIECAQBECSooiYjAJAgQIECBAgAABAgQIECBAQElhHyBAgAABAgQIECBAgAABAgSKEFBSFBGDSRAgQIAAAQIECBAgQIAAAQJKCvsAAQIECBAgQIAAAQIECBAgUISAkqKIGEyCAAECBAgQIECAAAECBAgQUFLYBwgQIECAAAECBAgQIECAAIEiBJQURcRgEgQIECBAgAABAgQIECBAgICSwj5AgAABAgQIECBAgAABAgQIFCGgpCgiBpMgQIAAAQIECBAgQIAAAQIElBT2AQIECBAgQIAAAQIECBAgQKAIASVFETGYBAECBAgQIECAAAECBAgQIKCksA8QIECAAAECBAgQIECAAAECRQgoKYqIwSQIECBAgAABAgQIECBAgAABJYV9gAABAgQIECBAgAABAgQIEChCQElRRAwmQYAAAQIECBAgQIAAAQIECCgp7AMECBAgQIAAAQIECBAgQIBAEQJKiiJiMAkCBAgQIECAAAECBAgQIEBASWEfIECAAAECBAgQIECAAAECBIoQUFIUEYNJECBAgAABAgQIECBAgAABAkoK+wABAgQIECBAgAABAgQIECBQhICSoogYTIIAAQIECBAgQIAAAQIECBBQUtgHCBAgQIAAAQIECBAgQIAAgSIElBRFxGASBAgQIECAAAECBAgQIECAgJLCPkCAAAECBAgQIECAAAECBAgUIaCkKCIGkyBAgAABAgQIECBAgAABAgSUFPYBAgQIECBAgAABAgQIECBAoAgBJUURMZgEAQIECBAgQIAAAQIECBAgoKSwDxAgQIAAAQIECBAgQIAAAQJFCCgpiojBJAgQIECAAAECBAgQIECAAAElhX2AAAECBAgQIECAAAECBAgQKEJASVFEDCZBgAABAgQIECBAgAABAgQIKCnsAwQIECBAgAABAgQIECBAgEARAkqKImIwCQIECBAgQIAAAQIECBAgQEBJYR8gQIAAAQIECBAgQIAAAQIEihBQUhQRg0kQIECAAAECBAgQIECAAAECSgr7AAECBAgQIECAAAECBAgQIFCEgJKiiBhMggABAgQIECBAgAABAgQIEFBS2AcIECBAgAABAgQIECBAgACBIgSUFEXEYBIECBAgQIAAAQIECBAgQICAksI+QIAAAQIECBAgQIAAAQIECBQhoKQoIgaTIECAAAECBAgQIECAAAECBJQU9gECBAgQIECAAAECBAgQIECgCAElRRExmAQBAgQIECBAgAABAgQIECCgpLAPECBAgAABAgQIECBAgAABAkUIKCmKiMEkCBAgQIAAAQIECBAgQIAAASWFfYAAAQIECBAgQIAAAQIECBAoQkBJUUQMJkGAAAECBAgQIECAAAECBAgoKewDBAgQIECAAAECBAgQIECAQBECSooiYjAJAgQIECBAgAABAgQIECBAQElhHyBAgAABAgQIECBAgAABAgSKEFBSFBGDSRAgQIAAAQIECBAgQIAAAQJKCvsAAQIECBAgQIAAAQIECBAgUISAkqKIGEyCAAECBAgQIECAAAECBAgQUFLYBwgQIECAAAECBAgQIECAAIEiBJQURcRgEgQIECBAgAABAgQIECBAgICSwj5AgAABAgQIECBAgAABAgQIFCGgpCgiBpMgQIAAAQIECBAgQIAAAQIElBT2AQIECBAgQIAAAQIECBAgQKAIASVFETGYBAECBAgQIECAAAECBAgQIKCksA8QIECAAAECBAgQIECAAAECRQgoKYqIwSQIECBAgAABAgQIECBAgAABJYV9gAABAgQIECBAgAABAgQIEChCQElRRAwmQYAAAQIECBAgQIAAAQIECCgp7AMECBAgQIAAAQIECBAgQIBAEQJKiiJiMAkCBAgQIECAAAECBAgQIEBASWEfIECAAAECBAgQIECAAAECBIoQUFIUEYNJECBAgAABAgQIECBAgAABAkoK+wABAgQIECBAgAABAgQIECBQhICSoogYTIIAAQIECBAgQIAAAQIECBBQUtgHCBAgQIAAAQIECBAgQIAAgSIElBRFxGASBAgQIECAAAECBAgQIECAgJLCPkCAAAECBAgQIECAAAECBAgUIaCkKCIGkyBAgAABAgQIECBAgAABAgSUFPYBAgQIECBAgAABAgQIECBAoAgBJUURMZgEAQIECBAgQIAAAQIECBAgoKSwDxAgQIAAAQIECBAgQIAAAQJFCCgpiojBJAgQIECAAAECBAgQIECAAAElhX2AAAECBAgQIECAAAECBAgQKEJASVFEDCZBgAABAgQIECBAgAABAgQIKCnsAwQIECBAgAABAgQIECBAgEARAkqKImIwCQIECBAgQIAAAQIECBAgQEBJYR8gQIAAAQIECBAgQIAAAQIEihBQUhQRg0kQIECAAAECBAgQIECAAAECSorMfeCJZ1/J3ILhBAgQIECAAAECBAgQINAuAkst9o52WcocWYeSIpNdSZEJaDgBAgQIECBAgAABAgTaSEBJkRemkiLPL5QUmYCGEyBAgAABAgQIECBAoI0ElBR5YSop8vyUFJl+hhMgQIAAAQIECBAgQKCdBJQUeWkqKfL8lBSZfoYTIECAAAECBAgQIECgnQSUFHlpKiny/JQUmX6GEyBAgAABAgQIECBAoJ0ElBR5aSop8vyUFJl+hhMgQIAAAQIECBAgQKCdBJQUeWkqKfL8lBSZfoYTIECAAAECBAgQIECgnQSUFHlpKiny/JQUmX6GEyBAgAABAgQIECBAoJ0ElBR5aSop8vyUFJl+hhMgQIAAAQIECBAgQKCdBJQUeWkqKfL8lBSZfoYTIECAAAECBAgQIECgnQSUFHlpKiny/JQUmX6GEyBAgAABAgQIECBAoJ0ElBR5aSop8vyUFJl+hhMgQIAAAQIECBAgQKCdBJQUeWkqKfL8ZllJcf8DA2Ly8wMyZ2c4gbIEPr/GlLImZDYECBAgQIAAAQIE3mYBJUUeqJIiz2+WlhTXXDt35uwMJ1COwCdW6IhNNnqznAmZCQECBAgQIECAAIFZIKCkyENVUuT5KSky/QyvR0BJUU/WVkqAAAECBAgQqFlASZGXvpIiz09JkelneD0CSop6srZSAgQIECBAgEDNAkqKvPSVFHl+SopMP8PrEVBS1JO1lRIgQIAAAQIEahZQUuSlr6TI81NSZPoZXo+AkqKerK2UAAECBAgQIFCzgJIiL30lRZ6fkiLTz/B6BJQU9WRtpQQIECBAgACBmgWUFHnpKyny/JQUmX6G1yOgpKgnayslQIAAAQIECNQsoKTIS19JkeenpMj0M7weASVFPVlbKQECBAgQIECgZgElRV76Soo8PyVFpp/h9QgoKerJ2koJECBAgAABAjULKCny0ldS5PkpKTL9DK9HQElRT9ZWSoAAAQIECBCoWUBJkZe+kiLPT0mR6Wd4PQJKinqytlICBAgQIECAQM0CSoq89JUUeX5Kikw/w+sRUFLUk7WVEiBAgAABAgRqFlBS5KWvpMjzU1Jk+hlej4CSop6srZQAAQIECBAgULOAkiIvfSVFnp+SItPP8HoElBT1ZG2lBAgQIECAAIGaBZQUeekrKfL8lBSZfobXI6CkqCdrKyVAgAABAgQI1CygpMhLvy1KiskvvBijx5wVDz78SCy6yEJx1AE7xIrLffjfZKZM6Yhxp1wSN916d8wzcGDsvO0GscVGazV/19M2Tr/oujjjwuti7rnnbv72Pz/43rj4lIOb//+JZ1/JS6DF6PsfGBDXXPvW/bkRaAcBJUU7pGgNBAgQIECAAAECMxJQUsxIqOf/3hYlxahjzoyll1w8hg/bOB763SOx7+GnxvUXjo1B883bbfVX33hHU1CcMnavePmV12K7bxwT4w7ZNT627DLR0zbGnPydWHn5/4wvrbnKv2kqKfJ2QKPrEVBS1JO1lRIgQIAAAQIEahZQUuSl3+9LinR2xKobDo/br5oQgwa9VUrscfDJsel6n4s1PvOJbjq7jhwf2w1dO1ZdZbnm3y+66uZ48m/Pxb67bN7jNvY78rTY8itfiJWXX1ZJkbe/GV2xgJKi4vAtnQABAgQIECBQkYCSIi/sfl9SPPXM5Nh2xDFx82UndEqMP/PKWGTwgrHDFut001ln65FxzvgDYqklFmv+/c57HoyLr7klDt9vWI/b2H3UifHnx56MN954I5Z455DYY8dN4r9X/EizDWdS5O2ARtcjoKSoJ2srJUCAAAECBAjULKCkyEu/35cUf3n8qRhx0Elx/QVjOiVOPf+7MaWjI0YM27ibzueH7hVXn3VkDFl0cPPv9z7w2/j2uRPjyP136HEbr772egyce+6Ye+654ucP/C72OfyUuPLMI2LJdw2JF/7xz7wEWoz++S8jLr1qlmzaRgnMEYFPrhSx5dA5ctfulAABAgQIECBAgMBsE1h4gXlm23214x31+5Li6Weejy12PSJ+eNWJnfmMO+XSWHzIwrHjlut2y2zdbUbG6eP2ifctvUTz77f95L64/LrbmpKit9tI4/Y/6vRY49MrxPr/85n4x6tvzJL94p5fRFx8Rccs2baNEpgTAv+9csTWmw2YE3ftPgkQIECAAAECBAjMNoEFBg2cbffVjnfU70uKjo6OWG2jEfH9S46PhRacv8lot1HjY+j6a8YXVl+pW2bDD5wQm22wZue1Ks69bFI8/czkGDl8y15vI20wnUmx7hc+HV/87Mq+7tGOjwprmiUCvu4xS1htlAABAgQIECBAoDABX/fIC6TflxRp+Ycdf14sNmRwjBi2SfPrHiMOPCkmXXxcLDD/oDjv8kmxwkc/GCt9fNm44Za7YuKkH3f+usc2I46Oow7YsbkgZk/b+NFd98fq//3x5idI01dERh59Zkw856hYePACSoq8/c/oigSUFBWFbakECBAgQIAAgYoFlBR54bdFSfHiSy/H6LFnxX0P/qE5m+LQvbfr/AWP3UdPiLVWXzGGrrdGIzX+jCti4vfujHTS+fabr9N5cc2etrHnId+KXz70h5hn4MDmp04P2H2L+PhHPtBsz4Uz83ZAo+sRUFLUk7WVEiBAgAABAgRqFlBS5KXfFiVFHkHeaCVFnp/R9QgoKerJ2koJECBAgAABAjULKCny0ldS5Pk5kyLTz/B6BJQU9WRtpQQIECBAgACBmgWUFHnpKyny/JQUmX6G1yOgpKgnayslQIAAAQIECNQsoKTIS19JkeenpMj0M7weASVFPVlbKQECBAgQIECgZgElRV76Soo8PyVFpp/h9QgoKerJ2koJECBAgAABAjULKCny0ldS5PkpKTL9DK9HQElRT9ZWSoAAAQIECBCoWUBJkZe+kiLPT0mR6Wd4PQJKinqytlICBAgQIECAQM0CSoq89JUUeX5Kikw/w+sRUFLUk7WVEiBAgAABAgRqFlBS5KWvpMjzU1Jk+hlej4CSop6srZQAAQIECBAgULOAkiIvfSVFnp+SItPP8HoElBT1ZG2lBAgQIECAAIGaBZQUeekrKfL8lBSZfobXI6CkqCdrKyVAgAABAgQI1CygpMhLX0mR56ekyPQzvB4BJUU9WVspAQIECBAgQKBmASVFXvpKijw/JUWmn+H1CCgp6snaSgkQIECAAAECNQsoKfLSV1Lk+SkpMv0Mr0dASVFP1lZKgAABAgQIEKhZQEmRl76SIs9PSZHpZ3g9AkqKerK2UgIECBAgQIBAzQJKirz0lRR5fkqKTD/D6xFQUtSTtZUSIECAAAECBGoWUFLkpa+kyPNTUmT6GV6PgJKinqytlAABAgQIECBQs4CSIi99JUWen5Ii08/wegSUFPVkbaUECBAgQIAAgZoFlBR56Ssp8vyUFJl+htcjoKSoJ2srJUCAAAECBAjULKCkyEtfSZHnp6TI9DO8HgElRT1ZWykBAgQIECBAoGYBJUVe+kqKPD8lRaaf4fUIKCnqydpKCRAgQIAAAQI1Cygp8tJXUuT5KSky/QyvR0BJUU/WVkqAAAECBAgQqFlASZGXvpIiz09JkelneD0CSop6srZSAgQIECBAgEDNAkqKvPSVFHl+SopMP8PrEVBS1JO1lRIgQIAAAQIEahZQUuSlr6TI81NSZPoZXo+AkqKerK2UAAECBAgQIFCzgJIiL30lRZ6fkiLTz/B6BJQU9WRtpQQIECBAgACBmgWUFHnpKyny/JQUmX6G1yOgpKgnayslQIAAAQIECNQsoKTIS19JkeenpMj0M7weASVFPVlbKQECBAgQIECgZgElRV76Soo8PyVFpp/h9QgoKerJ2koJECBAgAABAjULKCny0ldS5PkpKTL9DK9HQElRT9ZWSoAAAQIECBCoWUBJkZe+kiLPT0mR6Wd4PQJKinqytlICBAgQIECAQM0CSoq89JUUeX5Kikw/w+sRUFLUk7WVEiBAgAABAgRqFlBS5KWvpMjzU1Jk+hlej4CSop6srZQAAQIECBAgULOAkiIvfSVFnp+SItPP8HoElBT1ZG2lBAgQIECAAIGaBZQUeekrKfL8lBSZfobXI6CkqCdrKyVAgAABAgQI1CygpMhLX0mR56ekyPQzvB4BJUU9WVspAQIECBAgQKBmASVFXvpKijw/JUWmn+H1CCgp6snaSgkQIECAAAECNQsoKfLSV1Lk+SkpMv0Mr0dASVFP1lZKgAABAgQIEKhZQEmRl35blBSTX3gxRo85Kx58+JFYdJGF4qgDdogVl/vwv8lMmdIR4065JG669e6YZ+DA2HnbDWKLjdZq/q4320jjv7bn2PjQ+5eOw/b5WjPuiWdfyUugxej7HxgQ11w79yzZto0SmBMCSoo5oe4+CRAgQIAAAQIEZreAkiJPvC1KilHHnBlLL7l4DB+2cTz0u0di38NPjesvHBuD5pu3m87VN97RFBSnjN0rXn7ltdjuG8fEuEN2jY8tu0z0ZhsXXPG9+PHPHoz3Lv0uJUXefmd0hQJKigpDt2QCBAgQIECAQIUCSoq80Pt9SZHOblh1w+Fx+1UTYtCgt0qJPQ4+OTZd73Oxxmc+0U1n15HjY7uha8eqqyzX/PtFV90cT/7tudh3l81nuI1HH3syRo05M7bf7Mvxs/seVlLk7XdGVyigpKgwdEsmQIAAAQIECFQooKTIC73flxRPPTM5th1xTNx82QmdEuPPvDIWGbxg7LDFOt101tl6ZJwz/oBYaonFmn+/854H4+JrbonD9xvW4zZSEbLD3uNi5Igt47Enno67fvEbJUXefmd0hQJKigpDt2QCBAgQIECAQIUCSoq80Pt9SfGXx5+KEQedFNdfMKZT4tTzvxtTOjpixLCNu+l8fuhecfVZR8aQRQc3/37vA7+Nb587MY7cf4cet3He5ZOar4cM3/4rcfOP7u1WUjzz99fyEmgx+pf3DYgrrhkwS7ZtowTmhMBKK3bEZpt0zIm7dp8ECBAgQIAAAQIEZpvA4oPnm2331Y531O9LiqefeT622PWI+OFVJ3bmM+6US2PxIQvHjluu2y2zdbcZGaeP2yfet/QSzb/f9pP74vLrbmtKilbbWGu1FePgcefEBSeNjoED5/63kuL1f06ZJfvF3T/viAsvmzXbniUTtlECMxD49CcHxHZbzMWJAAECBAgQIECAQFsLzDuP17w5Aff7kqKjoyNW22hEfP+S42OhBedvLHYbNT6Grr9mfGH1lbrZDD9wQmy2wZqd16o497JJ8fQzk2Pk8C1bbuOPf/6/OPuSG2Puud46q+Gfb74Zb745Jd7/3iVj4rlH+3WPnL3P2KoEfN2jqrgtlgABAgQIECBQrYCve+RF3+9LirT8w44/LxYbMjhGDNuk+XWPEQeeFJMuPi4WmH9QpK9qrPDRD8ZKH182brjlrpg46cedv+6xzYij46gDdoyVl1+2x210JZ726x5+gjRvBzS6HgElRT1ZWykBAgQIECBAoGYBJUVe+m1RUrz40ssxeuxZcd+Df2jOpjh07+06f8Fj99ETYq3VV4yh663RSI0/44qY+L07I50Xsf3m63ReXLOnbSgp8nYyowkkASWF/YAAAQIECBAgQKAGASVFXsptUVLkEeSNdiZFnp/R9QgoKerJ2koJECBAgAABAjULKCny0ldS5Pm5JkWmn+H1CCgp6snaSgkQIECAAAECNQsoKfLSV1Lk+SkpMv0Mr0dASVFP1lZKgAABAgQIEKhZQEmRl76SIs9PSZHpZ3g9AkqKerK2UgIECBAgQIBAzQJKirz0lRR5fkqKTD/D6xFQUtSTtZUSIECAAAECBGoWUFLkpa+kyPNTUmT6GV6PgJKinqytlAABAgQIECBQs4CSIi99JUWen5Ii08/wegSUFPVkbaUECBAgQIAAgZoFlBR56Ssp8vyUFJl+htcjoKSoJ2srJUCAAAECBAjULKCkyEtfSZHnp6TI9DO8HgElRT1ZWykBAgQIECBAoGYBJUVe+kqKPD8lRaaf4fUIKCnqydpKCRAgQIAAAQI1Cygp8tJXUuT5KSky/QyvR0BJUU/WVkqAAAECBAgQqFlASZGXvpIiz09JkelneD0CSop6srZSAgQIECBAgEDNAkqKvPSVFHl+SopMP8PrEVBS1JO1lRIgQIAAAQIEahZQUuSlr6TI81NSZPoZXo+AkqKerK2UAAECBAgQIFCzgJIiL30lRZ6fkiLTz/B6BJQU9WRtpQQIECBAgACBmgWUFHnpKyny/JQUmX6G1yOgpKgnayslQIAAAQIECNQsoKTIS19JkeenpMj0M7weASVFPVlbKQECBAgQIECgZgElRV76Soo8PyVFpp/h9QgoKerJ2koJECBAgAABAjULKCny0ldS5PkpKTL9DK9HQElRT9ZWSoAAAQIECBCoWUBJkZe+kiLPT0mR6Wd4PQJKinqytlICBAgQIECAQM0CSoq89JUUeX5Kikw/w+sRUFLUk7WVEiBAgAABAgRqFlBS5KWvpMjzU1Jk+hlej0B/LCmefyHi57+cq56QrLQKgS9+fkoV67RIAgQIECAwpwSUFHnySoo8PyVFpp/h9Qj015Ji/EkD6wnJStteYJGFI/bZ8422X6cFEiBAgACBOSmgpMjTV1Lk+SkpMv0Mr0dASVFP1lZaroCSotxszIwAAQIE2kdASZGXpZIiz09JkelneD0CSop6srbScgWUFOVmY2YECBAg0D4CSoq8LJUUeX5Kikw/w+sRUFLUk7WVliugpCg3GzMjQIAAgfYRUFLkZamkyPNTUmT6GV6PgJKinqyttFwBJUW52ZgZAQIECLSPgJIiL0slRZ6fkiLTz/B6BJQU9WRtpeUKKCnKzcbMCBAgQKB9BJQUeVkqKfL8lBSZfobXI6CkqCdrKy1XQElRbjZmRoAAAQLtI6CkyMtSSZHnp6TI9DO8HgElRT1ZW2m5AkqKcrMxMwIECBBoHwElRV6WSoo8PyVFpp/h9QgoKerJ2krLFVBSlJuNmREgQIBA+wgoKfKyVFLk+SkpMv0Mr0dASVFP1lZaroCSotxszIwAAQIE2kdASZGXpZIiz09JkelneD0CSop6srbScgWUFOVmY2YECBAg0D4CSoq8LJUUeX5Kikw/w+sRUFLUk7WVliugpCg3GzMjQIAAgfYRUFLkZamkyPNTUmT6GV6PgJKinqyttFwBJUW52ZgZAQIECLSPgJIiL0slRZ6fkiLTz/B6BJQU9WRtpeUKKCnKzcbMCBAgQKB9BJQUeVkqKfL8lBSZfobXI6CkqCdrKy1XQElRbjZmRoAAAQLtI6CkyMtSSZHnp6TI9DO8HgElRT1ZW2m5AkqKcrMxMwIECBBoHwElRV6WSoo8PyVFpp/h9QgoKerJ2krLFVBSlJuNmREgQIBA+wgoKfKybIuSYvILL8boMWfFgw8/EosuslAcdcAOseJyH/43mSlTOmLcKZfETbfeHfMMHBg7b7tBbLHRWs3ftdrGm1OmxBXX3RbfufqW+MfLr8bCCy0Q++22eXz2U8s345549pW8BFqMvv+BAXHNtXPPkm3bKIE5IaCkmBPq7pNAdwElhT2CAAECBAjMegElRZ5xW5QUo445M5ZecvEYPmzjeOh3j8S+h58a1184NgbNN283natvvKMpKE4Zu1e8/Mprsd03jolxh+waH1t2mWi1jXnnmScumfiDWHetT8WQRQfHr3//aOy07/Hx44knx8CBcysp8vY/oysSUFJUFLalFiugpCg2GhMjQIAAgTYSUFLkhdnvS4p0dsSqGw6P26+aEIMGvVVK7HHwybHpep+LNT7ziW46u44cH9sNXTtWXWW55t8vuurmePJvz8W+u2ze622kcZ/9yjfiu+cdE4stOhMaisgAACAASURBVFhJkbf/GV2RgJKiorAttVgBJUWx0ZgYAQIECLSRgJIiL8x+X1I89czk2HbEMXHzZSd0Sow/88pYZPCCscMW63TTWWfrkXHO+ANiqSUWa/79znsejIuvuSUO329Yr7bx+j/faL728dN7H4qzv7l/s40nn3s1L4EWo+97YEBc/d25Zsm2bZTAnBBYcYWO2PQrU+bEXc/0fT7/QsQJE3ztaqYBDSxOIJUU++31ZnHzMiECBAgQINBOAksOGdROy5nta+n3JcVfHn8qRhx0Ulx/wZhOvFPP/25M6eiIEcM27gb6+aF7xdVnHdl8bSPd7n3gt/HtcyfGkfvvMMNtDP36YfH7Rx6P9y71zjjuX18RSdtI9zMrbnfd2xHnXeyF5Kywtc05I/CZVQbEsK371xv+ZydHjD7ijTkD5l4JzAKBxRaNGHvYwFmwZZskQIAAAQIEpgrMNWAAjAyBfl9SPP3M87HFrkfED686sZNh3CmXxuJDFo4dt1y3G82624yM08ftE+9beonm32/7yX1x+XW3NSVFb7aRLqL5q9/8KfY78rQ455sHxDLvXdLXPTJ2PkPrEvB1j7ryttoyBXzdo8xczIoAAQIE2kvA1z3y8uz3JUVHR0esttGI+P4lx8dCC87faOw2anwMXX/N+MLqK3XTGX7ghNhsgzU7r1Vx7mWT4ulnJsfI4Vv2ehtpgwccfXp87lMrxPr/8xklRd7+Z3RFAkqKisK21GIFlBTFRmNiBAgQINBGAkqKvDD7fUmRln/Y8efFYkMGx4hhmzS/7jHiwJNi0sXHxQLzD4rzLp8UK3z0g7HSx5eNG265KyZO+nHnr3tsM+LoOOqAHWPl5ZdtuY3X//nP+Nszz8eyH3xvI/2nR5+Ir+93fHNNig/8x1JKirz9z+iKBJQUFYVtqcUKKCmKjcbECBAgQKCNBJQUeWG2RUnx4ksvx+ixZ8V9D/6hOZvi0L236/wFj91HT4i1Vl8xhq63RiM1/owrYuL37oz0LaHtN1+n8+KarbaRLsw58qgz4s+P/TXmmWdgDFl4odh52w3ii59dudneE8++kpdAi9H3PzAgrrm2f31/f5ZA2GjbCCgp2iZKC+nHAkqKfhyeqRMgQIBAvxFQUuRF1RYlRR5B3mglRZ6f0fUIKCnqydpKyxVQUpSbjZkRIECAQPsIKCnyslRS5Pk5kyLTz/B6BJQU9WRtpeUKKCnKzcbMCBAgQKB9BJQUeVkqKfL8lBSZfobXI6CkqCdrKy1XQElRbjZmRoAAAQLtI6CkyMtSSZHnp6TI9DO8HgElRT1ZW2m5AkqKcrMxMwIECBBoHwElRV6WSoo8PyVFpp/h9QgoKerJ2krLFVBSlJuNmREgQIBA+wgoKfKyVFLk+SkpMv0Mr0dASVFP1lZaroCSotxszIwAAQIE2kdASZGXpZIiz09JkelneD0CSop6srbScgWUFOVmY2YECBAg0D4CSoq8LJUUeX5Kikw/w+sRUFLUk7WVliugpCg3GzMjQIAAgfYRUFLkZamkyPNTUmT6GV6PgJKinqyttFwBJUW52ZgZAQIECLSPgJIiL0slRZ6fkiLTz/B6BJQU9WRtpeUKKCnKzcbMCBAgQKB9BJQUeVkqKfL8lBSZfobXI6CkqCdrKy1XQElRbjZmRoAAAQLtI6CkyMtSSZHnp6TI9DO8HgElRT1ZW2m5AkqKcrMxMwIECBBoHwElRV6WSoo8PyVFpp/h9QgoKerJ2krLFVBSlJuNmREgQIBA+wgoKfKyVFLk+SkpMv0Mr0dASVFP1lZaroCSotxszIwAAQIE2kdASZGXpZIiz09JkelneD0CSop6srbScgWUFOVmY2YECBAg0D4CSoq8LJUUeX5Kikw/w+sRUFLUk7WVliugpCg3GzMjQIAAgfYRUFLkZamkyPNTUmT6GV6PgJKinqyttFwBJUW52ZgZAQIECLSPgJIiL0slRZ6fkiLTz/B6BJQU9WRtpeUKKCnKzcbMCBAgQKB9BJQUeVkqKfL8lBSZfobXI6CkqCdrKy1XQElRbjZmRoAAAQLtI6CkyMtSSZHnp6TI9DO8HgElRT1ZW2m5AkqKcrMxMwIECBBoHwElRV6WSoo8PyVFpp/h9QgoKerJ2krLFVBSlJuNmREgQIBA+wgoKfKyVFLk+SkpMv0Mr0dASVFP1lZaroCSotxszIwAAQIE2kdASZGXpZIiz09JkelneD0CSop6srbScgWUFOVmY2YECBAg0D4CSoq8LJUUeX5Kikw/w+sRUFLUk7WVliugpCg3GzMjQIAAgfYRUFLkZamkyPNTUmT6GV6PgJKinqyttFwBJUW52ZgZAQIECLSPgJIiL0slRZ6fkiLTz/B6BJQU9WRtpeUKKCnKzcbMCBAgQKB9BJQUeVkqKfL8lBSZfobXI6CkqCdrKy1XQElRbjZmRoAAAQLtI6CkyMtSSZHnp6TI9DO8HgElRT1ZW2m5AkqKcrMxMwIECBBoHwElRV6WSoo8PyVFpp/h9QgoKerJ2krLFVBSlJuNmREgQIBA+wgoKfKyVFLk+SkpMv0Mr0dASVFP1lZaroCSotxszIwAAQIE2kdASZGXpZIiz09JkelneD0CSop6srbScgWUFOVmY2YECBAg0D4CSoq8LJUUeX5Kikw/w+sRUFLUk7WVliugpCg3GzMjQIAAgfYRUFLkZamkyPNTUmT6GV6PgJKinqyttFwBJUW52ZgZAQIECLSPgJIiL0slRZ6fkiLTz/B6BJQU9WRtpeUKKCnKzcbMCBAgQKB9BJQUeVkqKfL8lBSZfobXI6CkqCdrKy1XQElRbjZmRoAAAQLtI6CkyMtSSZHnp6TI9DO8HgElRT1ZW2m5AkqKcrMxMwIECBBoHwElRV6WSoo8PyVFpp/h9QgoKerJ2krLFVBSlJuNmREgQIBA+wgoKfKyVFLk+SkpMv0Mr0dASVFP1lZaroCSotxszIwAAQIE2kdASZGXZVuUFJNfeDFGjzkrHnz4kVh0kYXiqAN2iBWX+/C/yUyZ0hHjTrkkbrr17phn4MDYedsNYouN1mr+rqdt3PTDn8WZF13f/M2QRQfHgXtsHaus8F/NuCeefSUvgRaj739gQFxz7dyzZNs2SmBOCCgp5oS6+yTQXUBJYY8gQIAAAQKzXkBJkWfcFiXFqGPOjKWXXDyGD9s4HvrdI7Hv4afG9ReOjUHzzdtN5+ob72gKilPG7hUvv/JabPeNY2LcIbvGx5ZdJnraxukXXRcbrr1aLLXEYnHvA79ttv+ja06KAQMGKCny9j+jKxJQUlQUtqUWK6CkKDYaEyNAgACBNhJQUuSF2e9LinR2xKobDo/br5oQgwa9VUrscfDJsel6n4s1PvOJbjq7jhwf2w1dO1ZdZbnm3y+66uZ48m/Pxb67bN7rbaRxn15vt7j5shNi8EILKCny9j+jKxJQUlQUtqUWK6CkKDYaEyNAgACBNhJQUuSF2e9LiqeemRzbjjimKQ2m3safeWUsMnjB2GGLdbrprLP1yDhn/AHNGRHpduc9D8bF19wSh+83rNfbeOQvT8TwA0+KSRePa7bh6x55O6DR9QgoKerJ2krLFVBSlJuNmREgQIBA+wgoKfKy7PclxV8efypGHHRSXH/BmE6JU8//bkzp6IgRwzbupvP5oXvF1Wcd2VxXIt3SVze+fe7EOHL/HXq1jTfffDN22u+E2GbT/4kvrL5Ss403p3TkJdBi9F33dsT5l7w5S7ZtowTmhMBnVhkQ22/Vv66z8uzkiAOPfGNOcLlPArNEYLFFI8YcOnCWbNtGCRAgQIAAgbcE5p5rAIoMgX5fUjz9zPOxxa5HxA+vOrGTYdwpl8biQxaOHbdctxvNutuMjNPH7RPvW3qJ5t9v+8l9cfl1tzUlxYy2kb5WMmrMGc3YruXHU5NfzeBvPfS+BwbEVRPnmiXbtlECc0JgxRU6YujGU+bEXc/0fT7/QsTxJ/avYmWmF2tgFQKLLBKx/14K8CrCtkgCBAgQmGMCSyw6aI7ddzvccb8vKTo6OmK1jUbE9y85PhZacP4mk91GjY+h66/ZebbD1KCGHzghNttgzc5rVZx72aR4+pnJMXL4lj1uI93H4SecH/O/Y74YOWKrbrn7ukc7PAysYXYI+LrH7FB2HwR6FvB1D3sIAQIECBCY9QK+7pFn3O9LirT8w44/LxYbMjhGDNuk+XWPEc01I46LBeYfFOddPilW+OgHY6WPLxs33HJXTJz0485f99hmxNFx1AE7xsrLL9vjNsZ+6+JIRcWBe2zzb9pKirwd0Oh6BJQU9WRtpeUKKCnKzcbMCBAgQKB9BJQUeVm2RUnx4ksvx+ixZ8V9D/6hOZvi0L236/wFj91HT4i1Vl8xhq63RiM1/owrYuL37oz0LaHtN1+n8+Karbbx6GNPxnrbjoq55+r+1Ys9vz60+TqJkiJvBzS6HgElRT1ZW2m5AkqKcrMxMwIECBBoHwElRV6WbVFS5BHkjVZS5PkZXY+AkqKerK20XAElRbnZmBkBAgQItI+AkiIvSyVFnp8zKTL9DK9HQElRT9ZWWq6AkqLcbMyMAAECBNpHQEmRl6WSIs9PSZHpZ3g9AkqKerK20nIFlBTlZmNmBAgQINA+AkqKvCyVFHl+SopMP8PrEVBS1JO1lZYroKQoNxszI0CAAIH2EVBS5GWppMjzU1Jk+hlej4CSop6srbRcASVFudmYGQECBAi0j4CSIi9LJUWen5Ii08/wegSUFPVkbaXlCigpys3GzAgQIECgfQSUFHlZKiny/JQUmX6G1yOgpKgnaystV0BJUW42ZkaAAAEC7SOgpMjLUkmR56ekyPQzvB4BJUU9WVtpuQJKinKzMTMCBAgQaB8BJUVelkqKPD8lRaaf4fUIKCnqydpKyxVQUpSbjZkRIECAQPsIKCnyslRS5PkpKTL9DK9HQElRT9ZWWq6AkqLcbMyMAAECBNpHQEmRl6WSIs9PSZHpZ3g9AkqKerK20nIFlBTlZmNmBAgQINA+AkqKvCyVFHl+SopMP8PrEVBS1JO1lZYroKQoNxszI0CAAIH2EVBS5GWppMjzU1Jk+hlej4CSop6srbRcASVFudmYGQECBAi0j4CSIi9LJUWen5Ii08/wegSUFPVkbaXlCigpys3GzAgQIECgfQSUFHlZKiny/JQUmX6G1yOgpKgnaystV0BJUW42ZkaAAAEC7SOgpMjLUkmR56ekyPQzvB4BJUU9WVtpuQJKinKzMTMCBAgQaB8BJUVelkqKPD8lRaaf4fUIKCnqydpKyxVQUpSbjZkRIECAQPsIKCnyslRS5PkpKTL9DK9HQElRT9ZWWq6AkqLcbMyMAAECBNpHQEmRl6WSIs9PSZHpZ3g9AkqKerK20nIFlBTlZmNmBAgQINA+AkqKvCyVFHl+SopMP8PrEVBS1JO1lZYroKQoNxszI0CAAIH2EVBS5GWppMjzU1Jk+hlej4CSop6srbRcASVFudmYGQECBAi0j4CSIi9LJUWen5Ii08/wegSUFPVkbaXlCigpys3GzAgQIECgfQSUFHlZKiny/JQUmX6G1yOgpKgnaystV0BJUW42ZkaAAAEC7SOgpMjLUkmR56ekyPQzvB4BJUU9WVtpuQJKinKzMTMCBAgQaB8BJUVelkqKPD8lRaaf4fUIKCnqydpKyxVQUpSbjZkRIECAQPsIKCnyslRS5PkpKTL9DK9HQElRT9ZWWq6AkqLcbMyMAAECBNpHQEmRl6WSIs9PSZHpZ3g9AkqKerK20nIFlBTlZmNmBAgQINA+AkqKvCyVFHl+SopMP8PrEVBS1JO1lZYroKQoNxszI0CAAIH2EVBS5GWppMjzU1Jk+hlej4CSop6srbRcASVFudmYGQECBAi0j4CSIi9LJUWen5Ii08/wegSUFPVkbaXlCigpys3GzAgQIECgfQSUFHlZKiny/JQUmX6G1yOgpKgnaystV0BJUW42ZkaAAAEC7SOgpMjLUkmR56ekyPQzvB4BJUU9WVtpuQJKinKzMTMCBAgQaB8BJUVelkqKPD8lRaaf4fUIKCnqydpKyxVQUpSbjZkRIECAQPsIKCnyslRS5PkpKTL9DK9HQElRT9ZWWq6AkqLcbMyMAAECBNpHQEmRl6WSIs9PSZHpZ3g9AkqKerK20nIFlBTlZmNmBAgQINA+AkqKvCyVFHl+SopMP8PrEVBS1JO1lZYroKQoNxszI0CAAIH2EVBS5GWppMjzU1Jk+hlej4CSop6srbRcASVFudmYGQECBAi0j4CSIi9LJUWen5Ii08/wegSUFPVkbaXlCigpys3GzAgQIECgfQSUFHlZtkVJMfmFF2P0mLPiwYcfiUUXWSiOOmCHWHG5D/+bzJQpHTHulEviplvvjnkGDoydt90gtthorebvZrSNvzz+VAw/cEJstuHnY7uha3du+4lnX8lLoMXo+x8YENdcO/cs2baNEpgTAkqKOaHuPgl0F1BS2CMIECBAgMCsF1BS5Bm3RUkx6pgzY+klF4/hwzaOh373SOx7+Klx/YVjY9B883bTufrGO5qC4pSxe8XLr7wW233jmBh3yK7xsWWXiZ62cc99D8fRJ10UH37/e2KFj31ISZG3zxldqYCSotLgLbsoASVFUXGYDAECBAi0qYCSIi/Yfl9SpLMjVt1weNx+1YQYNOitUmKPg0+OTdf7XKzxmU9009l15PimYFh1leWaf7/oqpvjyb89F/vusnmP2/jjo/8XCy3wjrji+ttj4cELKiny9jmjKxVQUlQavGUXJaCkKCoOkyFAgACBNhVQUuQF2+9LiqeemRzbjjgmbr7shE6J8WdeGYsMXjB22GKdbjrrbD0yzhl/QCy1xGLNv995z4Nx8TW3xOH7DevVNk4+5+pYZOGFlBR5+5zRlQooKSoN3rKLElBSFBWHyRAgQIBAmwooKfKC7fclRbpWxIiDTorrLxjTKXHq+d+NKR0dMWLYxt10Pj90r7j6rCNjyKKDm3+/94HfxrfPnRhH7r9Dr7YxvZLi1dffzEugxeif/bwjLrq8Y5Zs20YJzAmBT31yQGy7+YA5cdczfZ/PTY44dMyUmR5vIIHSBIYsGnHkgXOVNi3zIUCAAAECbSUwaF7XFswJtN+XFE8/83xssesR8cOrTux0GHfKpbH4kIVjxy3X7Waz7jYj4/Rx+8T7ll6i+ffbfnJfXH7dbU1J0ZttTK+keO7F13P8W479xX0Rl1/dv97QzRIIG20bgZVXjNh80/5VvE1+PmLsCR6HbbMTWkgsukjE6P361+NQbAQIECBAoL8JDFmo+7UR+9v85/R8+31J0dHREattNCK+f8nxsdCC8zeeu40aH0PXXzO+sPpK3XybX+fYYM3Oa1Wce9mkePqZyTFy+Ja92oave8zp3dX992cBX/foz+mZe7sI+LpHuyRpHQQIECBQsoCve+Sl0+9LirT8w44/LxYbMjhGDNuk+XWPEQeeFJMuPi4WmH9QnHf5pFjhox+MlT6+bNxwy10xcdKPO3/dY5sRR8dRB+wYKy+/bI/bmEqspMjb2YyuW0BJUXf+Vl+GgJKijBzMggABAgTaW0BJkZdvW5QUL770cowee1bc9+AfmrMpDt17u85f8Nh99IRYa/UVY+h6azRS48+4IiZ+785IJ3Bvv/k6nRfX7GkbSoq8ncxoAklASWE/IDDnBZQUcz4DMyBAgACB9hdQUuRl3BYlRR5B3ugnnn0lbwMtRt//wIC45loXXJkluDY6RwSUFHOE3Z0S6CagpLBDECBAgACBWS+gpMgzVlLk+YWSIhPQ8GoElBTVRG2hBQsoKQoOx9QIECBAoG0ElBR5USop8vyUFJl+htcjoKSoJ2srLVdASVFuNmZGgAABAu0joKTIy1JJkeenpMj0M7weASVFPVlbabkCSopyszEzAgQIEGgfASVFXpZKijw/JUWmn+H1CCgp6snaSssVUFKUm42ZESBAgED7CCgp8rJUUuT5KSky/QyvR0BJUU/WVlqugJKi3GzMjAABAgTaR0BJkZelkiLPT0mR6Wd4PQJKinqyttJyBZQU5WZjZgQIECDQPgJKirwslRR5fkqKTD/D6xFQUtSTtZWWK6CkKDcbMyNAgACB9hFQUuRlqaTI81NSZPoZXo+AkqKerK20XAElRbnZmBkBAgQItI+AkiIvSyVFnp+SItPP8HoElBT1ZG2l5QooKcrNxswIECBAoH0ElBR5WSop8vyUFJl+htcjoKSoJ2srLVdASVFuNmZGgAABAu0joKTIy1JJkeenpMj0M7weASVFPVlbabkCSopyszEzAgQIEGgfASVFXpZKijw/JUWmn+H1CCgp6snaSssVUFKUm42ZESBAgED7CCgp8rJUUuT5KSky/QyvR0BJUU/WVlqugJKi3GzMjAABAgTaR0BJkZelkiLPT0mR6Wd4PQJKinqyttJyBZQU5WZjZgQIECDQPgJKirwslRR5fkqKTD/D6xFQUtSTtZWWK6CkKDcbMyNAgACB9hFQUuRlqaTI81NSZPoZXo+AkqKerK20XAElRbnZmBkBAgQItI+AkiIvSyVFnp+SItPP8HoElBT1ZG2l5QooKcrNxswIECBAoH0ElBR5WSop8vyUFJl+htcjoKSoJ2srLVdASVFuNmZGgAABAu0joKTIy1JJkeenpMj0M7weASVFPVlbabkCSopyszEzAgQIEGgfASVFXpZKijw/JUWmn+H1CCgp6snaSssVUFKUm42ZESBAgED7CCgp8rJUUuT5KSky/QyvR0BJUU/WVlqugJKi3GzMjAABAgTaR0BJkZelkiLPT0mR6Wd4PQJKinqyttJyBZQU5WZjZgQIECDQPgJKirwslRR5fkqKTD/D6xFQUtSTtZWWK6CkKDcbMyNAgACB9hFQUuRlqaTI81NSZPoZXo+AkqKerK20XAElRbnZmBkBAgQItI+AkiIvSyVFnp+SItPP8HoElBT1ZG2l5QooKcrNxswIECBAoH0ElBR5WSop8vyUFJl+htcjoKSoJ2srLVdASVFuNmZGgAABAu0joKTIy1JJkeenpMj0M7weASVFPVlbabkCSopyszEzAgQIEGgfASVFXpZKijw/JUWmn+H1CCgp6snaSssV6K8lxb0/n6tcVDMjMBMCH/pQRyy6SMdMjDSEAIH+IKCkyEtJSZHnp6TI9DO8HgElRT1ZW2m5Av21pDjx5Llj8vMDyoU1MwJ9FNh7jzeVFH008+cE+pOAkiIvLSVFnp+SItPP8HoElBT1ZG2l5QooKcrNxszqEuiPJcXE6+aKvz2jLKxrT23v1a6yUkes+Ikps2SRSoo8ViVFnp+SItPP8HoElBT1ZG2l5QooKcrNxszqEuivJcV99/vqVV17anuvduMNpygpCo1YSZEZzBPPvpK5hekPv/+BAXHNtXPPkm3bKIE5IaCkmBPq7pNAdwElhT2CQBkCSooycjCLugWUFOXmr6TIzEZJkQloeDUCSopqorbQggWUFAWHY2pVCSgpqorbYgsVUFIUGkxEKCkys1FSZAIaXo2AkqKaqC20YAElRcHhmFpVAkqKquK22EIFlBSFBqOkyA9GSZFvaAt1CCgp6sjZKssWUFKUnY/Z1SOgpKgnaystV0BJUW42zqTIzEZJkQloeDUCSopqorbQggWUFAWHY2pVCSgpqorbYgsVUFIUGowzKfKDUVLkG9pCHQJKijpytsqyBZQUZedjdvUIKCnqydpKyxVQUpSbjTMpepHN5BdejNFjzooHH34kFl1koTjqgB1ixeU+3IxUUvQC0J8QiAglhd2AwJwXUFLM+QzMgEASUFLYDwjMeQElxZzPoNUMlBS9yGbUMWfG0ksuHsOHbRwP/e6R2PfwU+P6C8fGoPnmVVL0ws+fEEgCSgr7AYE5L6CkmPMZmAEBJYV9gEAZAkqKMnKY3iyUFDPIZsqUjlh1w+Fx+1UTYtCgeZu/3uPgk2PT9T4Xa3zmE0qKcvdtMytMQElRWCCmU6WAkqLK2C26QAFnUhQYiilVJ6CkKDdyJcUMsnnqmcmx7Yhj4ubLTuj8y/FnXhmLDF4wdthiHSVFufu2mRUmoKQoLBDTqVJASVFl7BZdoICSosBQTKk6ASVFuZErKWaQzV8efypGHHRSXH/BmM6/PPX878aUjo4YMWzjWZbsT++ZEude/OYs274NE5jdAqv+91yxw9Zzz+67zbq/Z5/riJFHvJG1DYMJlCSw2JABMe6wgSVNqVdzGXXkG/HMsx29+lt/RKA/CBx76MBYfLEB/WGqnXM875I34yc/m9Kv5myyBHoSGLbV3LHap+aCVKCAkmIGoTz9zPOxxa5HxA+vOrHzL8edcmksPmTh2HHLdQuM1JQIECBAgAABAgQIECBAgED/FFBSzCC3jo6OWG2jEfH9S46PhRacv/nr3UaNj6HrrxlfWH2l/pm6WRMgQIAAAQIECBAgQIAAgQIFlBS9COWw48+LxYYMjhHDNml+3WPEgSfFpIuPiwXmH9SL0f6EAAECBAgQIECAAAECBAgQ6I2AkqIXSi++9HKMHntW3PfgH5qzKQ7de7tYdZXlejGyb3+y4v/sFPfdcnbfBvnrXgnsvP834+tbrxerfOK/evX3/qg9BB74zZ/ixDOujPNPGtUeCyp4FV0fY2/X401+BQfez6bW34+v/X3+/Wx3Md1/CbTDc7DHjt2ZQP8UUFLMptz++tSzMWrMmfGx/3x/bPSl1WK/I0+Lq88+Mj75pZ3jgVvPiQEDBsTseiJNP6G67hc+HQ//4S8xaL55Y7evbdRSobd/u/dhp8R2X107VlzuwzMl+ufHnowpb06JDy6zVDP+9X++ET/75W/is59afqa2N+2gt+tNU85kemuZ7uPT6+8eN110bHPR1n122Sw+ucJ/9vmupzX8ze//Et8+95o49di9+7yt3gzoy5y3x5dOzAAAIABJREFU3O2o+OvTz8a7Fl80NttgzTjjouvimedeiHPGHxAv/ePVOP60y2L0iK1mWAbO6HH1q4cfmW0lRV/W35d9oTf2JfxNu5YUv/vTY9N9vp6eeV/+tqfMfnLvg7Hyx/+z82evc59fe7qvi666OR597MlYa/UV4+xLborzThzZ8s/vvOfB2POQb8WQRRaKPXcaGmdefH08/8JL8eH3v6d57O64z3Gx+GILx9EH7BjzzDP7Ls7Z9XnggN23mO7zZ38+vqZAZtf8e9pX+vK81Zfnw1b3OTuPYX197PZ0DPvJPQ/FPff/No49aOdYesnFS3h6bjmHGo6hJTx2+vJ46Mvftgp22tfUF1/zg3jl1ddip63We9v3x748dl57/Z+x8pd2jne/a0isueqKMXT9NXp9fJ2ZiU97LG21jemtYaNhBxVxfJuZdbfLGCXFbErysBPOi/e8+53x9a3Xjyeffq55UH7n2wfF2lvs1/nzpiut/fX45c1nzfIZHXLcOU1J8bs/Phbzzjswttr4iy3vs7d/++DDj8QH/mOpmf4KzDdPvzw+/pEPxNprrNLM5Y67fxV3/OyBOHjPbd8WjxJKit5apgV/easD4oYLx8Yeh3wr9t55aPMmoK+3aQ1fffX1+N0jj8UKH/1gXzfVq7/vy5zTC7yD99qmKe2m3rbf89jYY6dNYqWPL9sUaOkF8S2Xf7PH+57R46r5FOjMK+P8CbP+TIq+rL8v+0Kv8Av4o3YtKVo9X0+PvC9/2yqydB2krXY/Ok49dq9YdOGFmj/LfX7tafe47uafxqOP/TW+8NmV46zv3BATjhzR8s9TSXHJNT/oVnTee/9v4/QLr2tKiilTOmLvw74dn19txfjKl1efbXtl1+eBVs+f/fn4mtZUwhutvjxv9eX5sNWOMjuPYX197M7oGHbhld+P3/7psRgzaqfZ9jiYmTuq4RhawmOnL4+Hvvxtq8ynfU39xFPPxptvvhnvXepdM7Ob9DimL4+dVFKstuGI+Pn3zmi22ZexfZ349I6lrbbRah4lHN/6uu52+nslxWxKc/dRJ8ZWm3wxVv/vjzdtZiopThmzV3x9v+PjrBP2b2bx6fV2i69vs0Fccf1tzVkFW2y0Vuz4r9bzVw//KcacfHFMfuHFmHuuueLAPbZptpWedI488cJID6T0qcN/feh98e1j9my2lw7wJ555Rbzy6uvxqRU/EgfttW3MO8/AOOG0y5uS4vePPBbzDBwY633x05Hmt9bqKzWtZtfb9P42vRnZfvMvxwmnXRb/eOXV5qKiXd+gvPSPV2LMty6Ou3/+63hzypQYOWKrWHetT0Vqdo8cf0E8/sTTseAC74j9dts8Vlvl43HTrXfHMSd9JxZc8B2x8IILxO7bf6XZ9gsv/iPe/a7FmvtK8x1z8neaNb3x5pux/Ec+EMcdvGsMHNj9Jy3Tk9LZl9wYV934o3j5lddivS98OkaN2KqZ3+qf+nhcc+Md8feXXo5lP/CeOO7gXWLwQgs0yz3r4hvi2u//JKZMmdKUNtts+j/Nv7/8yqtx1IkXxv2//lPzqeaBe2wdq6zwX2+be6vdb4d9xsW540fGgceeHXvtNDTetfgi0WofSNv40d0PNGcMPPv835tPbo7cb1jsc/gp3QyXfvc7u51VkMZMOPPKSHm9b+kl4vD9tu88gH1x831ju6Frx09//ut4dvIL8YmPfTgO2nObZrr3PvDbOO6US5szHgYMiBj9ja2bM16mnfPgheaPdbcZFaeP26fx7nqb0Qu89LfLf2HH+NWt5/T4CJ3R42pqSbHEOxeNnz/wu5j/HYNi1Igtm/0u3VqZPvXM5DhwzFnx5N+ei3RQ/er6a8Yu227Q477Sl/W3elylffSunz/UHLjTYznt92l/fvW11+M/3rNEHHvgLjHXXANi6n4+cdKP44033oxPrfSRJoe0vvTJ+PU3/7SZ6wsv/SOGLDw4zpswMrb7xv//GeU/Pvp/cfLRezTPIWkb5142KV577fVYbNGF4/hDd20K1XS/6bo7P73313HP/Q/HZacfFu9/75ItHyutSoqe9tuu4U59fnjkL0/EfPPO0zwvPv/3l2LCWVc1Z1jd/tP7m+e+ETtsHBv8z6o9Pj57ev5rtf+2eqy3er6e3o7Z6m9bPXdN7/lq7rnniu9cfUt88D+Wap6fUsHW1ban7NP+fuZ3rm+eN//y+JPxzOS/x/Zf/VJs9OXVWz5npeeBR//3r/HFz32yGXvEfsPinEtvij888njzSXDX24xKivS3p5z/3Rg499ydj5fZcYjt+jyQ7m96z5/95fja6hj23+vuGiOHb9U8/tKxfu01Ptkc26be+sMxrNVzzew+hl068da4eOIP4p//fKN5LXLq2L2ax9q0r8vS8+7MHsPSa7IzLro+zv7mW6/vSr3NqmNoT69NW+2r03vc9uW1aavXnj09dlo976e8/vL4U3Ho8efGU3+b3LyuOmbUTrHku4bE2/H6IL2ma3WbnkNfHjvbbrp283p56mvq4w7ZNX7w4180r2WGb/+VHl8/9HQMSfPt7WPnvof+EKPHnBWTLh7XnCk+9TZtSTG9Y2Z6DkzvCR7+41/ir08+G3977vlYesl3xvUXjIkLrvz+v70uefGlf0z3/VE6I3faY2lfj/NdS4o5dXwr9bljdsxLSTE7lCOaEmDrTb/Y+ebo179/ND627DKRTsH/6LL/0cwifdLztc2+HHvutGm8+I9X4mt7jGlelKQ3IOmnUF997bXmzeSPf/arpmi49vxjmhfu6c31iUcMb7bx+F//1rzBSG9yth5xdHznWwc1T6oHHXt286I3lR7pzcASiy/SvMlMb3jSz6mef/n3YvmPfqD5FLvrbXp/m14wpzcPJxy6azOfdOv6Ijo18+lNxsjhW8abUzri9df/Ge94x3yx0fYHxf67bR5rfOYTzenFO+w9Li459ZBmfiOPOaP5tZSpZ1KkkuG3f/zfbmdS3P/QH+PjH3nrk/ev7Xls8/WSqX8/dc43/uDuuOS7P4jTj92nefGR5pk+jUzzS/NIn06+Y9B8cfC4c5o35Ltut2F877Z74rJrfxhnHLdv84Zvq92PiiMP2KE54yAVFAss8I7YZ+evRnrztNO+x8cNF42Ne+777dvi3mr3m7p//P5PjzVv0Oaee+6W+8D/PflMbDPi6Dj7hAOav33u+Reb07GnNez63dK0n2y3x9i44KRRjcMtd/w8Tj3/u3H12Uc1+0T65GHEDps0P7ObiqZksv9uWzRfO/nqzofFmNFfb87u+PuL/2gOQOlaLdPOea655oqjJ1zUHBSHLDq421LfzpKip8dVWnOa+1nH79d8deRPjz7RvIFJZ6mkObd6XB136mXxnncv3hRW6YXscy+8GEssvmiP+0pf1t/qcbXQgu+IEw7dLaZ0dMRXv35YLLbo4KbkSfmnfe9rm32pKYRuuOWuuOqGH8Vp4/ZuvrJ17LcviTffnBIH79X9zKNdR46PDb+0WlMSTr0lkyO+eX5cccbhTcmX9rH0GEwv0sefcUW8/OprzeMulRSp8EgvzFKZkW49PVZalRStjLvuEGkf+8qwg2PEsI3jS2uu0jxuBy+4QDz420di6+FHx7eO3qP5dD49b2yx25Fxx8STm8K11ePz7y++3PL5r9X+22pbqfiZ3vP1jB67XZ/bWz13tXq+Wmvo3nH1OUd2nknR1ban7FO2yeuSUw+O5T/ywXhu8t9j/a+NjtuvPil+eu9D033OStb/ePnVeNdii8Sjjz/ZPK5TGfHEk8/EZht+vtsye1NSpOeRueaeK3bddsPZdHRtfXzt+vzZX46vrfaJNP/0fLTvrps1peXmux4Rh+2zfay8/LL95hjW6rlmdh7D/vND74uvDDsobvrOuOZ1SrrvqV/JmPZxnt4szewxLJWhp1/w1hlGJd9m9Np0Zo+hrV6b9nQMmd7rnr68Np3ea8/0OrCnx06r5/1B880Xm+x4SPN4S8fca276cXz/9nua14lvx+uDdEyf0TGk6/NXXx87076mTsfzqSXFzB5D0vjePnbS4+o7V93cfEjZ9TZtSZH+27SPux/c8Yu47uafNB+kpL/fcPsD45JTDmleD03vdUlPrzGmPZb29Tg/bUkxJ45vJT9/zOq5KSlmtXBEUzikNxynjdun+SSy1S29Mbz5shPinYu91bBeeNXN8X9//VvzCWnXW3ojveqGw+Oem06PP/z58ea6BenTr0+v9NHOP0tj//rkM51PEOmB9q1zr4kLTz4we8XpBXP6FKfrWRddX0R/ar3d4pbLTug8SyHdYXrBfvC4s+Oac47qvP/U9L5nqXc1n9j3pqToOvGTzr46Fhm8QFPqdL0li3Sa8Rc/u3K3f0/z+8qXV2s+mU63m374s7jjrgeaTwq/cdDJsfG6q8daq731k7Lpk8B0RsU3dtik+W7zzZce37mW9JWEdA2PIYsuNNvdW+0D6bTSdECYdj/pqaS44IrvxV+ffq7bJ3Eb73BwjD1w5+YT/LQv3nrliU3ZkW7pDJj01YxN1/tc7H/U6bHI4AVj9+036nwT1dedqjclxbrbjIzjD92tKfOmd+vN4yq9wDpw7Flx40XHdm4i5b3Rl1f7t32k6+PqyutvjxtvvTsO2+dr8f73vbvb2Fb7Sl8Npv37tI9+dYM14n8+98nmP40ec2ZzjZepbxTT6ZvvXmKx5o3K8AMnxCbrfq7zZ5Bf+Ps/4ktb7hd333ha52bTm50bf3BXt1Pz0xq/usvhccR+2zdvYqe9pTNnLr7mluYsr/RiIJ1tlc5Ymnrr6bHSm697dDXuet/p6z3prKGJXZ4f0n+fXn7rbzuqeS5N5Vqrx2f6WlOr579W+2+rbaWS+O28dX3uavV81VNJ0VP2ySudkn/d+f//rJn1txsdpx27d/PGdnrHir6srTclRdrvbv7RvTH+8N2bcm1W33rzPJDm0F+Or632iWnnf8T4C2K5fz0n98djWNfnmtl5DPvKOqtHOrbstOV6zWuFmb12yoyOYelaD9vvfWxcecbh3V4LzerHQ1+235vHzsweQ1u9Nu1pX+3L3Kf3t9N77Tm9x37Xx06r5/2FBy/QfLiXrh2XbunMkJW/vEv8fNIZzdmHs/v1Qdf19uax01NJMbPHkKWWXDz7sTO9kmLaLNMZSOmMwqnXz0ivLdLrzU987EPTfV3Sdfy0rzGmPZb29Tg/bUkxu49vuY+J/j5eSTGLE0xvHtMBcedtNmg+Ue7pll6E3DvpjM6vMKQHw20/va/5ZPWe+x6Oty5883qziV8++PvO73Sl06pOu+C6+Nuzkzu/QtGcafH9O2Phf32dIZ3RkJ50Lzvt0OwVpyeMnbZaN/57xf//4n3qG5Tl/uv9sfpG34hffP/MbveTWvV0tkL6VHjq7ZxLbozJL7zUzHlGJUW6nsLpF10Xv/7dn2PAgLnif//vqdh8o8/HsM3X6XY/m+1yRByy17bN9S263qadc3oRffOPft7YpjGTn/9786lKuqUn0XTq8x47bhKrrLNrLPOet84WSbf09Zb0VZv0RnJ2u7faB1LWiy6yUHPWQ9dbTyVF+iQgtdJdx+xywDebrySt8ekVmhf06fooU0/TO/qki5pPWDff8PPN15XOu2xSXDPpx7HmZz4R++zy1eZrBn25zegFXtpWOhCn77fvu8tm//aJbm8fV+kF1nGnXhoXf/vgzumlT1s+uuwyzVp6elxd+70747zLvxfpqyLpqy7prKFW+0o6ayj3Nu0+mt60pzMYpp4FMf7MK5uznlKpl84GOHTvr3Xbz9OnRT+57tvNmULp0/H0SesFE0Y3Z0lMvZ12wbXNV4C6niaezshIZ9J0dES88OJLsdgig5tiY+rXTNLZDVNvPa2/VUnRk/HU7aavHKTTSLs+P6T/lvJLZ3dccNLozjmkM7LSdRPSulo9Ph/49Z9aPv9Nb/9N+3lPj/WcbHt67mr1fNVTSdFT9r9/5PGWXqlsm95zVl/W1puSIp0Vk96I/Ob3j8btV0/oy+b7/Le9fR5IG+4vx9dW+0RPz8n95RjW6rlmdh/D0vfzT7/w2uYYs91Xv9Q8p/b11ptjWHoO/fZ5E+Pqs47svCh4X+9nVv19bx87OcfQ6T3fzKpjaHpen95rz6mP/em9ntlw7VVbPu/PO+88se/hp8aS71y0M4J07Jx47tHNcXh2vz7o62Onp5Ii5xiS+9jpTUmRvppyxXW3x2nH7tWc5ZfOnrz01EOb9zDTe13S02uMrsfStI/09Tg/bUkxO49vs+qx35+2q6SYDWmlTzk32+XwOP24fWd4JsX3Lj2+Oa083dKn3ekJYfevfSXW2eaAuPiUQ5rx6TtVn9t4z86SYuoS0ilT6fTuGy4Y27xAT7+WkH4Z4u2+Te8ilF3/LT0J/PDK8c3p9FNvD/32z813+1qdSTHqmDObq8tP/frG1Tfe0XwfbeqFM9OLmLTu9GYxfTqXvmuWDhTTlhTp1MVN11+j8xPmqfc/7Zy7lhTpk6v0hnV6vySSWtfbrjqxeePX6jY73NM+1GofOO/ySc13Jru+8Uxzndaw69c90jUInn6m+5hpz6To+nO4XUuKqQ7pe9FHT7iwOS0/FU19ufXmBd5aX92n+RpTqwt99uZxldac9q30vcipt/QpwsbrfLa5tkhvHlfJ8fLrbosrzjis+SS61b7Sl/VP72+n3Ud7Kil2GzU+hq6/ZrczKdbecr/42b/OpEhnj6TCsOtFcf/8v39t5n/VWUd07s+pHDjl3IlxzokjY6EF3hE/uuv+uPza2zpLiqmnh06db0/rn15JsewH3tsr41Q+HnJc9+eHdJ/T+/m7qSVFetPd6vGZPpmd0fPftPtvbx7rM5NxT89drZ6v0r5/9dlHTPfrHj1lPyOv6R0r0gu/3t56U1Kkx8sPf/LLmHDEiJn+lLq380l/15vngalvVPrD8bXVPjHtxf+6Pif3h2NYT881c+oYlp4jkvfwHTZuyvm+3GZ0DEsfpGy/17huj+O+bH92/G1vHjtvxzG062ukg8adPcuOodN77Tn1sd/q9Uyr5/10dl8642JGH+zNjtcHM/PYmfY1ddeve7wdx5CZfez0pqRIX7Pa5YDx8feX/hGLLrxgUyR+ZuWPNQ+JruuY+vzf0+u4aY+lfT3OT1tSzO7j2+x4Hij5PpQUsymdab/3N7277fq9uXQBoG1GHNN8ar/0uxePLXc7svkqSHqznC5qlq6mfu+k05trT6QLOqbT79Ob+PS97svPOCzSp3fb7TGmOS36Q8ss3Zwd8Ldnn2+uVzG9W3qRkN4MTntNit68mUp/0/UNSnqDtMjCCzXf5euY0tFctyD97w2+NropTdK1J6Zek+LiUw5uTmFP36lfZOEFO7/HfOudv2w+WZ160am0zQ8us3TzyX/6/tnX9hwbm2245r+VFOk0vPR/p47du7kmRbrAUSp9eiopmu9IfveHcdJR32ia2vQpdLpKffqqQ/r+WtOo77JZc4bLY088HUu+c0g8O/nvb4t7ml96czijMxHSNSRa7QPp4k7b7zU2zjtxVCzz3iU71zytYdc3MGkd6boe6ecG0wUZ03cA09eB0qcEU69J0eqgnq4Vkr4Skm7pokTpxVjaT6e9JcNjTrqouRBqOmuj621GL/DS3y6/1g7xqx+e2+MjdEaPq6nfp00XRkvXQkmnoO6wz3HNz7umT0VamaZrV7x36Xc11z1I3wVNn0okm572lb6svzePq55Kiutv+Wmkr6SkMw/Sc8K4Uy5trrly6D5faz4dPOX8iXHRyQc1WaZbOuinx0w6o2vq9SXSv6fHSirs0uMlPUeMOuaMeP31N1qWFD2tf3olRXpstzLuapBOpV1v29Gx/+5bNM8P6fkvzf0Pf/6/f/sJ2a4lRavHZ3oB1er5r9X+22pb0zsdPH11YvLzLzbPXTO69fTc1er5Kn0XOl1fZOrzcVfbnrLvqaRI+8n0jhVTf0Gk6zrSdY/S6er99ZoU/fn42mqf6Kmk6A/HsJ6ea2bnMWyjtVdrLoicjpXpGJUuML3+Fz8TX/xc96+Ipn0o5xjWX69JMe1jZ2aPoa1em/7slw+3fL2V+9p0eq890/WwenrstHreT9fVGfr1w2K37TZsPjxLx9BHH3+q+aDw7Xh9kNaaXjulC5qnC0L3dJuZx860r6m7vrmf2WNIuiBzbx876TVrOvt72rNMe1NSpOuqpR8VmPpVm64205YUPb02TuOmPZb25TifxrsmxYxe4cza/66kmLW+nVvfffSE2GrjL3R7gzDtXadTsL78+U81Z0G88sprsflGa3V+JyudOTDp1p81FyBM14K44rrbmrMS0gXZ0rUe/vnmm80vdWy/2Zc7rxVx1y9+3VxgM5UT6Y12OiNjk3U/O90Vp/mlMxmGrtf91z1682Yq/U3XF9GpnT9qwoXNrymkW3qSWudfv+5x6HHnNtfZSGVAKiymnr2QLiSYfnIyXQvim4ft3vycaXoDmq5Qv8t2Gzbfnz/gqNPjjTfeaJ7UP7XSR5tflpj2TIr0ouKU8yY2F9159fV/Ni8+0v33VFKkOaZPXi+ZeGtT9KSyZOzorzfXYEj/+/jTLo877n6guaL6Mu9ZMs48ft/m51vfDvcvbbl/c12MdO2BGd1a7QNpXHqjefLZV8cLL73cXAQstf9pvl0N09c10i+AnH/SWz/HedtP7otvnnFF81319P3+w/fdviks0q2ng3p683z3L34Tg+abJ97z7nfFmNE7NWe1THtLB6P0Vad0oalUlHW99aqk6M2ve8zgcZVeYF11w+3NRSXve+iPzfccR39jq84L2LYyvfS7tzZlYHpMpRJp9B5bd2bUal/py/p787jqqaRI49P3NtMvAaUXOKt84r+aoij9Gke6MOijjz3VXLMl3RYbsnBT/g3be1x8aJml/v9z0vZfiVU/+bHY89Bvx18ee7LJcJuha8cNN/+0ZUnR02Ol1dc9etpvuzqkMij9UlF64ZYutHvGuH2bIqnrPpv+vmtJ0erxmd6Qt3r+a7X/9rStafNKFytOv6DSmyv3p69gtHruavV8lb5+M/ZblzTPk+k6HdM+f7XKvqeSIj0vt3rOmnZ96UyrPzzyWHONmq633pxJMUd+3aONjq+t9omenpP7wzEsPb5aPdfMzmNY+vrc1/c/IZ597oUYOHBgrLbKcs3z+/TeKOYcw/rNr3vMomNoT69Ne3sMTftFX16btnrt2dNjp6fn/fRhzlEnXtRcmym9Nk1f8z1k7+3i7Xh9kErgDbc/qPmKZvowpKfbzDx2pn1NnZ67u54ZOTPHkPQaobePnZT/6LFnxU3fObbHX/eY3rrTB4XpOJ++6pE+HEy/hLLHjps21xGbtqRI43t6jTHtsbQvx/m0bb/uMaN3JrP2vyspZq1v59bTaWPpAT6j61LMpum4mwIE0kWrNthudPzwyhM7P/EuYFqzZQozKinu//UfY/8jT4tbLv9mj/PxuJotcbmTaQTSmSup0Es/E13TbUYlRTojJl2PYu01V2kuSji7bp4HZpd09/txDNum+TBj6i1dWHuPnTZpzoBKP7OZ3iiOGbXTnAmnl/fqsdNLqLf5z9KHRDf84K7mQ7mabr05kyJdg2K/XTdvfrkoXSvrd3/63+arqrdeMX62U3UtKebU8W22L7qgO1RSzKYw0mn9h59wXnzwP5bu8/f3Z9MU3c1sFrj7l7+JO3/2YJX7Q/o5zUf+969NcbfZBmvGGRddFy+/8lrzCX76etDJ51wd++26RfPzuz3dPK5m807r7hqBHfc5LsYfPrw506GmW3rO2u+I0+Idg+aNPXcaGmdefH289NIrzRu1bx2zR6SL76YLzaaLuqZPwGbXzfPA7JLufj+OYdM/hqWvSzU/9bzfsFiqF18JmzPpvXWvHjtzRv9b51wTy3/sg32+Fsqcme3bd6/pDN/PbbxHc4bqmquu2FxnbtrbZ7/yjbj2/DGdvy53x92/ijO+c123C6C/fTNqvaX006clHN9mx1pLvQ8lRanJmBcBAgQIECBAgAABAgQqEfj+7ffG2ZfcEHPNNVdzXbulllws9ttti5bX1KuEpcplKimqjN2iCRAgQIAAAQIECBAgQIBAeQJKivIyMSMCBAgQIECAAAECBAgQIFClgJKiytgtmgABAgQIECBAgAABAgQIlCegpCgvEzMiQIAAAQIECBAgQIAAAQJVCigpqozdogkQIECAAAECBAgQIECAQHkCSoryMjEjAgQIECBAgAABAgQIECBQpYCSosrYLZoAAQIECBAgQIAAAQIECJQnoKQoLxMzIkCAAAECBAgQIECAAAECVQooKaqM3aIJECBAgAABAgQIECBAgEB5AkqK8jIxIwIECBAgQIAAAQIECBAgUKWAkqLK2C2aAAECBAgQIECAAAECBAiUJ6CkKC8TMyJAgAABAgQIECBAgAABAlUKKCmqjN2iCRAgQIAAAQIECBAgQIBAeQJKivIyMSMCBAgQIECAAAECBAgQIFClgJKiytgtmgABAgQIECBAgAABAgQIlCegpCgvEzMiQIAAAQIECBAgQIAAAQJVCigpqozdogkQIECAAAECBAgQIECAQHkCSoryMjEjAgQIECBAgAABAgQIECBQpYCSosrYLZoAAQIECBAgQIAAAQIECJQnoKQoLxMzIkCAAAECBAgQIECAAAECVQooKaqM3aIJECBAgAABAgQIECBAgEB5AkqK8jIxIwIECBAgQIAAAQIECBAgUKWAkqLK2C2aAAECBAgQIECAAAECBAiUJ6CkKC8TMyJAgAABAgQIECBAgAABAlUKKCmqjN2iCRAgQIAAAQIECBAgQIBAeQJKivIyMSMCBAgQIECAAAECBAgQIFClgJKiytgtmgABAgQIECBAgAABAgQIlCegpCgvEzMiQIAAAQIECBAgQIAcTfvsAAADPklEQVQAAQJVCigpqozdogkQIECAAAECBAgQIECAQHkCSoryMjEjAgQIECBAgAABAgQIECBQpYCSosrYLZoAAQIECBAgQIAAAQIECJQnoKQoLxMzIkCAAAECBAgQIECAAAECVQooKaqM3aIJECBAgAABAgQIECBAgEB5AkqK8jIxIwIECBAgQIAAAQIECBAgUKWAkqLK2C2aAAECBAgQIECAAAECBAiUJ6CkKC8TMyJAgAABAgQIECBAgAABAlUKKCmqjN2iCRAgQIAAAQIECBAgQIBAeQJKivIyMSMCBAgQIECAAAECBAgQIFClgJKiytgtmgABAgQIECBAgAABAgQIlCegpCgvEzMiQIAAAQIECBAgQIAAAQJVCigpqozdogkQIECAAAECBAgQIECAQHkCSoryMjEjAgQIECBAgAABAgQIECBQpYCSosrYLZoAAQIECBAgQIAAAQIECJQnoKQoLxMzIkCAAAECBAgQIECAAAECVQooKaqM3aIJECBAgAABAgQIECBAgEB5AkqK8jIxIwIECBAgQIAAAQIECBAgUKWAkqLK2C2aAAECBAgQIECAAAECBAiUJ6CkKC8TMyJAgAABAgQIECBAgAABAlUKKCmqjN2iCRAgQIAAAQIECBAgQIBAeQJKivIyMSMCBAgQIECAAAECBAgQIFClgJKiytgtmgABAgQIECBAgAABAgQIlCegpCgvEzMiQIAAAQIECBAgQIAAAQJVCigpqozdogkQIECAAAECBAgQIECAQHkCSoryMjEjAgQIECBAgAABAgQIECBQpYCSosrYLZoAAQIECBAgQIAAAQIECJQnoKQoLxMzIkCAAAECBAgQIECAAAECVQooKaqM3aIJECBAgAABAgQIECBAgEB5AkqK8jIxIwIECBAgQIAAAQIECBAgUKWAkqLK2C2aAAECBAgQIECAAAECBAiUJ6CkKC8TMyJAgAABAgQIECBAgAABAlUKKCmqjN2iCRAgQIAAAQIECBAgQIBAeQJKivIyMSMCBAgQIECAAAECBAgQIFClgJKiytgtmgABAgQIECBAgAABAgQIlCegpCgvEzMiQIAAAQIECBAgQIAAAQJVCvw/vyZA1poBjHAAAAAASUVORK5CYII=",
"text/html": [
"<div>\n",
" \n",
" \n",
" <div id=\"77b39475-1e92-45a5-b567-1aa6f9d241e8\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>\n",
" <script type=\"text/javascript\">\n",
" require([\"plotly\"], function(Plotly) {\n",
" window.PLOTLYENV=window.PLOTLYENV || {};\n",
" \n",
" if (document.getElementById(\"77b39475-1e92-45a5-b567-1aa6f9d241e8\")) {\n",
" Plotly.newPlot(\n",
" '77b39475-1e92-45a5-b567-1aa6f9d241e8',\n",
" [{\"histfunc\": \"sum\", \"type\": \"histogram\", \"x\": [\"{\\\"base\\\": \\\"ricotta cheese\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"mozzarella cheese\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"cheese\\\", \\\"actions\\\": []}\", \"{\\\"base\\\": \\\"cheese\\\", \\\"actions\\\": [\\\"grate\\\"]}\"], \"y\": [0.005435964340073929, 0.0034655371582595304, 0.0003054101221640489, 0.0002708911234396671]}],\n",
" {\"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}},\n",
" {\"responsive\": true}\n",
" ).then(function(){\n",
" \n",
"var gd = document.getElementById('77b39475-1e92-45a5-b567-1aa6f9d241e8');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" })\n",
" };\n",
" });\n",
" </script>\n",
" </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"ing = EA.Ingredient(\"noodle\")\n",
"ing.apply_action(\"cook\")\n",
"\n",
"keys, values = normalized_score(ing.to_json(), EA.m_mix)\n",
"data = go.Histogram(x=keys, y=values, histfunc=\"sum\")\n",
"iplot([data])"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"linkText": "Export to plot.ly",
"plotlyServerURL": "https://plot.ly",
"showLink": false
},
"data": [
{
"histfunc": "sum",
"type": "histogram",
"x": [
"heat",
"prepare",
null,
"cool"
],
"y": [
1696,
1395,
446,
103
]
}
],
"layout": {
"autosize": true,
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"xaxis": {
"autorange": true,
"range": [
-0.5,
2.5
],
"type": "category"
},
"yaxis": {
"autorange": true,
"range": [
0,
1785.2631578947369
],
"type": "linear"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABCkAAAHCCAYAAADCTZOBAAAgAElEQVR4Xu3deZyeZXXw8ZMgSdgXUanYt61VixUraCkKCMimEEBBVEBBAUWQkZdFIQhlkc0Asi8aXBEQZa2oFFBRWivV4lLcbWmrFkkAoyKL0Uzez/P4Ggs2IeSEe57rPt98Pv1DZ66Zc33P3TH8mHlm0oIFCxaEPwQIECBAgAABAgQIECBAgACBCRaYJFJM8AZ8egIECBAgQIAAAQIECBAgQGAoIFJ4EAgQIECAAAECBAgQIECAAIGREBApRmINhiBAgAABAgQIECBAgAABAgRECs8AAQIECBAgQIAAAQIECBAgMBICIsVIrMEQBAgQIECAAAECBAgQIECAgEjhGSBAgAABAgQIECBAgAABAgRGQkCkGIk1GIIAAQIECBAgQIAAAQIECBAQKTwDBAgQIECAAAECBAgQIECAwEgIiBQjsQZDECBAgAABAgQIECBAgAABAiKFZ4AAAQIECBAgQIAAAQIECBAYCQGRYiTWYAgCBAgQIECAAAECBAgQIEBApPAMECBAgAABAgQIECBAgAABAiMhIFKMxBoMQYAAAQIECBAgQIAAAQIECIgUngECBAgQIECAAAECBAgQIEBgJAREipFYgyEIECBAgAABAgQIECBAgAABkcIzQIAAAQIECBAgQIAAAQIECIyEgEgxEmswBAECBAgQIECAAAECBAgQICBSeAYIECBAgAABAgQIECBAgACBkRAQKUZiDYYgQIAAAQIECBAgQIAAAQIERArPAAECBAgQIECAAAECBAgQIDASAiLFSKzBEAQIECBAgAABAgQIECBAgIBI4RkgQIAAAQIECBAgQIAAAQIERkJApBiJNRiCAAECBAgQIECAAAECBAgQECk8AwQIECBAgAABAgQIECBAgMBICIgUI7EGQxAgQIAAAQIECBAgQIAAAQIihWeAAAECBAgQIECAAAECBAgQGAkBkWIk1mAIAgQIECBAgAABAgQIECBAQKTwDBAgQIAAAQIECBAgQIAAAQIjISBSjMQaDEGAAAECBAgQIECAAAECBAiIFJ4BAgQIECBAgAABAgQIECBAYCQERIqRWIMhCBAgQIAAAQIECBAgQIAAAZHCM0CAAAECBAgQIECAAAECBAiMhIBIMRJrMAQBAgQIECBAgAABAgQIECAgUngGCBAgQIAAAQIECBAgQIAAgZEQEClGYg2GIECAAAECBAgQIECAAAECBEQKzwABAgQIECBAgAABAgQIECAwEgIixUiswRAECBAgQIAAAQIECBAgQICASOEZIECAAAECBAgQIECAAAECBEZCQKQYiTUYggABAgQIECBAgAABAgQIEBApPAMECBAgQIAAAQIECBAgQIDASAiIFCOxBkMQIECAAAECBAgQIECAAAECIoVngAABAgQIECBAgAABAgQIEBgJAZFiJNZgCAIECBAgQIAAAQIECBAgQECk8AwQIECAAAECBAgQIECAAAECIyEgUozEGgxBgAABAgQIECBAgAABAgQIiBSeAQIECBAgQIAAAQIECBAgQGAkBESKkViDIQgQIECAAAECBAgQIECAAAGRwjNAgAABAgQIECBAgAABAgQIjISASDESazAEAQIECBAgQIAAAQIECBAgIFJ4BggQIECAAAECBAgQIECAAIGREBApRmINhiBAgAABAgQIECBAgAABAgRECs8AAQIECBAgQIAAAQIECBAgMBICIsVIrMEQBAgQIECAAAECBAgQIECAgEjhGSBAgAABAgQIECBAgAABAgRGQkCkGIk1GIIAAQIECBAgQIAAAQIECBAQKTwDBAgQIECAAAECBAgQIECAwEgIiBQjsQZDECBAgAABAgQIECBAgAABAiKFZ4AAAQIECBAgQIAAAQIECBAYCQGRYiTWYAgCBAgQIECAAAECBAgQIEBApPAMECBAgAABAgQIECBAgAABAiMhIFKMxBoMQYAAAQIECBAgQIAAAQIECIgUngECBAgQIECAAAECBAgQIEBgJAREipFYgyEIECBAgAABAgQIECBAgAABkcIzQIAAAQIECBAgQIAAAQIECIyEgEgxEmswBAECBAgQIECAAAECBAgQICBSeAYIECBAgAABAgQIECBAgACBkRAQKUZiDYYgQIAAAQIECBAgQIAAAQIERArPAAECBAgQIECAAAECBAgQIDASAiLFSKzBEAQIECBAgAABAgQIECBAgIBI4RkgQIAAAQIECBAgQIAAAQIERkJApBiJNRiCAAECBAgQIECAAAECBAgQECk8AwQIECBAgAABAgQIECBAgMBICIgUI7EGQxAgQIAAAQIECBAgQIAAAQIihWeAAAECBAgQIECAAAECBAgQGAkBkWIk1mAIAgQIECBAgAABAgQIECBAQKTwDBAgQIAAAQIECBAgQIAAAQIjISBSjMQaDEGAAAECBAgQIECAAAECBAiIFJ4BAgQIECBAgAABAgQIECBAYCQERIqRWIMhCBAgQIAAAQIECBAgQIAAAZHCM0CAAAECBAgQIECAAAECBAiMhIBIMRJrMAQBAgQIECBAgAABAgQIECAgUngGCBAgQIAAAQIECBAgQIAAgZEQEClGYg2GIECAAAECBAgQIECAAAECBEQKzwABAgQIECBAgAABAgQIECAwEgIixUiswRAECBAgQIAAAQIECBAgQICASOEZIECAAAECBAgQIECAAAECBEZCQKQYiTUYggABAgQIECBAgAABAgQIEBApPAMECBAgQIAAAQIECBAgQIDASAiIFCOxBkMQIECAAAECBAgQIECAAAECIoVngAABAgQIECBAgAABAgQIEBgJAZFiJNZgCAIECBAgQIAAAQIECBAgQECk8AwQIECAAAECBAgQIECAAAECIyEgUozEGgxBgAABAgQIECBAgAABAgQIiBSeAQIECBAgQIAAAQIECBAgQGAkBESKkViDIQgQIECAAAECBAgQIECAAAGRwjNAgAABAgQIECBAgAABAgQIjISASDESazAEAQIECBAgQIAAAQIECBAgIFJ4BggQIECAAAECBAgQIECAAIGREBApRmINhiBAgAABAgQIECBAgAABAgREiuQzcOe9DyY/guMECBAgQIAAAQIECBAg0BeBpz5xhb5cZULuIVIk2UWKJKDjBAgQIECAAAECBAgQ6JGASJFbpkiR8wuRIgnoOAECBAgQIECAAAECBHokIFLklilS5PxEiqSf4wQIECBAgAABAgQIEOiTgEiR26ZIkfMTKZJ+jhMgQIAAAQIECBAgQKBPAiJFbpsiRc5PpEj6OU6AAAECBAgQIECAAIE+CYgUuW2KFDk/kSLp5zgBAgQIECBAgAABAgT6JCBS5LYpUuT8RIqkn+MECBAgQIAAAQIECBDok4BIkdumSJHzEymSfo4TIECAAAECBAgQIECgTwIiRW6bIkXOT6RI+jlOgAABAgQIECBAgACBPgmIFLltihQ5P5Ei6ec4AQIECBAgQIAAAQIE+iQgUuS2KVLk/ESKpJ/jBAgQIECAAAECBAgQ6JOASJHbpkiR8xMpkn6OEyBAgAABAgQIECBAoE8CIkVumyJFzm/CIsXNX5icnNxxAgQmWuAlm49P9Ag+PwECBAgQIECAwDIWEClyoCJFzm/CIsV5Fy4Xc+6elJzecQIEJkpgEChEionS93kJECBAgAABAo+fgEiRsxUpcn4iRdLPcQJVBUSKqpt3bwIECBAgQKDvAiJFbsMiRc5PpEj6OU6gqoBIUXXz7k2AAAECBAj0XUCkyG1YpMj5iRRJP8cJVBUQKapu3r0JECBAgACBvguIFLkNixQ5P5Ei6ec4gaoCIkXVzbs3AQIECBAg0HcBkSK3YZEi5ydSJP0cJ1BVQKSounn3JkCAAAECBPouIFLkNixS5PxEiqSf4wSqCogUVTfv3gQIECBAgEDfBUSK3IZFipyfSJH0c5xAVQGRourm3ZsAAQIECBDou4BIkduwSJHzEymSfo4TqCogUlTdvHsTIECAAAECfRcQKXIbFilyfiJF0s9xAlUFRIqqm3dvAgQIECBAoO8CIkVuwyJFzk+kSPo5TqCqgEhRdfPuTYAAAQIECPRdQKTIbVikyPmJFEk/xwlUFRApqm7evQkQIECAAIG+C4gUuQ2LFDk/kSLp5ziBqgIiRdXNuzcBAgQIECDQdwGRIrdhkSLnJ1Ik/RwnUFVApKi6efcmQIAAAQIE+i4gUuQ2LFLk/ESKpJ/jBKoKiBRVN+/eBAgQIECAQN8FRIrchkWKnJ9IkfRznEBVAZGi6ubdmwABAgQIEOi7gEiR27BIkfMTKZJ+jhOoKiBSVN28exMgQIAAAQJ9FxApchsWKXJ+IkXSz3ECVQVEiqqbd28CBAgQIECg7wIiRW7DIkXOT6RI+jlOoKqASFF18+5NgAABAgQI9F1ApMhtWKTI+YkUST/HCVQVECmqbt69CRAgQIAAgb4LiBS5DYsUOT+RIunnOIGqAiJF1c27NwECBAgQINB3AZEit2GRIucnUiT9HCdQVUCkqLp59yZAgAABAgT6LiBS5DYsUuT8RIqkn+MEqgqIFFU3794ECBAgQIBA3wVEityGRYqcn0iR9HOcQFUBkaLq5t2bAAECBAgQ6LuASJHbcC8jxQMPPhRHnDhrKHPuSQctFPrq7d+PNxw8M6Ys/4SF/93NV50Vq6y0Qsz9+X1x5MkXxe3fuSPWWH2VOOHwfWKD9Z45fL/Fve3Oex/MbWApT5934XIx5+5JS3naMQIEJlpApJjoDfj8BAgQIECAAIHHR0CkyLn2LlLcNeenMXbU2bH+c54Rs++e+7BI8Zlbbotbv/rtOPrgPf9AbcZJs2KdtdeKA/feOb75vTvisOMuiOsuPiWmTZ0Si3ubSJF7AJ0mUFVApKi6efcmQIAAAQIE+i4gUuQ23LtIcf8DD8X37/hRzJv3m7jkqpseFik+9ombY+7P7ov999rpYWrj4wti450OjM9feVZMmzZl+LaDjj4nXjl9s3jxRs9b5Ns2f9H6ftwj9/w5TaCsgEhRdvUuToAAAQIECPRcQKTILbh3keJ3HF+67Vtx2dWffVik+ODHro+Lr7ghpkxZPlacNjVeveNLYvedt4rZ98yNPcdOihsvP32h5hmzrojVV105pm/9wkW+bZ/dthMpcs+f0wTKCogUZVfv4gQIECBAgEDPBUSK3IJLRYr54+Mxb96vY4VpU+OH/z07Djr63Bjbe+d45tOfNvwRkes+fPJCzQs+dG2ML1gQO26z8SLfNjg795fzchtYytOnnz0pZs9ZysOOESAw4QLbbhmxzVYLJnwOAxAgQIAAAQIECCxbgTVW/u135/uzdAKlIsUjia647vPxze/+x/B1KHbb//j43JVnLnyXmed/NNZac7VhpFjU2/bdfft48Ffzl04+eerkd4/HT2YnP4jjBAhMmMD220yK7bbx4rcTtgCfmAABAgQIECDwOAmsMHW5x+kj1/iwpSPFR6/9bPznj+6KGWN7xCYvH4sbLjstVll5xeHmD5hxRuy6wxax5SYbLPJtW236fD/uUeP/T9ySwDIX8OMey5zUByRAgAABAgQIjISAH/fIraFUpBj8Zo/nrvv0WGnFaXHn7Htjv7efHsce9vrY8HnrxrGnfTCeuOaqMbb3LsPf7jH2jrPj+ktPHb7v4t7mt3vkHkCnCVQVECmqbt69CRAgQIAAgb4LiBS5DZeKFO+77FNx6dU3DcVWXXml2HeP6bHTthsP//N9v3wgjjzlovja7T8YfjfFMYfsFRtvuN6jvk2kyD2AThOoKiBSVN28exMgQIAAAQJ9FxApchvubaTIsSz5aZFiya28JwECvxcQKTwNBAgQIECAAIF+CogUub2KFDk/r0mR9HOcQFUBkaLq5t2bAAECBAgQ6LuASJHbsEiR8xMpkn6OE6gqIFJU3bx7EyBAgAABAn0XEClyGxYpcn4iRdLPcQJVBUSKqpt3bwIECBAgQKDvAiJFbsMiRc5PpEj6OU6gqoBIUXXz7k2AAAECBAj0XUCkyG1YpMj5iRRJP8cJVBUQKapu3r0JECBAgACBvguIFLkNixQ5P5Ei6ec4gaoCIkXVzbs3AQIECBAg0HcBkSK3YZEi5ydSJP0cJ1BVQKSounn3JkCAAAECBPouIFLkNixS5PxEiqSf4wSqCogUVTfv3gQIECBAgEDfBUSK3IZFipyfSJH0c5xAVQGRourm3ZsAAQIECBDou4BIkduwSJHzEymSfo4TqCogUlTdvHsTIECAAAECfRcQKXIbFilyfiJF0s9xAlUFRIqqm3dvAgQIECBAoO8CIkVuwyJFzk+kSPo5TqCqQLVIMWfOpLhw1nJV1+3eBHohcMCb58eTn7SgF3dxCQIECDyeAiJFTlekyPmJFEk/xwlUFagYKc57j0hR9Xl3734IjB0gUvRjk25BgMDjLSBS5IRFipyfSJH0c5xAVQGRourm3ZtAuwIiRbu7MzkBAt0KiBQ5b5Ei5ydSJP0cJ1BVQKSounn3JtCugEjR7u5MToBAtwIiRc5bpMj5iRRJP8cJVBUQKapu3r0JtCsgUrS7O5MTINCtgEiR8xYpcn4iRdLPcQJVBUSKqpt3bwLtCogU7e7O5AQIdCsgUuS8RYqcn0iR9HOcQFUBkaLq5t2bQLsCIkW7uzM5AQLdCogUOW+RIucnUiT9HCdQVUCkqLp59ybQroBI0e7uTE6AQLcCIkXOW6TI+YkUST/HCVQVECmqbt69CbQrIFK0uzuTEyDQrYBIkfMWKXJ+IkXSz3ECVQVEiqqbd28C7QqIFO3uzuQECHQrIFLkvEWKnJ9IkfRznEBVAZGi6ubdm0C7AiJFu7szOQEC3QqIFDlvkSLnJ1Ik/RwnUFVApKi6efcm0K6ASNHu7kxOgEC3AiJFzlukyPmJFEk/xwlUFRApqm7evQm0KyBStLs7kxMg0K2ASJHzFilyfiJF0s9xAlUFRIqqm3dvAu0KiBTt7s7kBAh0KyBS5LxFipyfSJH0c5xAVQGRourm3ZtAuwIiRbu7MzkBAt0KiBQ5b5Ei5ydSJP0cJ1BVQKSounn3JtCugEjR7u5MToBAtwIiRc5bpMj5iRRJP8cJVBUQKapu3r0JtCsgUrS7O5MTINCtgEiR8xYpcn4iRdLPcQJVBUSKqpt3bwLtCogU7e7O5AQIdCsgUuS8RYqcn0iR9HOcQFUBkaLq5t2bQLsCIkW7uzM5AQLdCogUOW+RIucnUiT9HCdQVUCkqLp59ybQroBI0e7uTE6AQLcCIkXOW6TI+YkUST/HCVQVECmqbt69CbQrIFK0uzuTEyDQrYBIkfMWKXJ+IkXSz3ECVQVEiqqbd28C7QqIFO3uzuQECHQrIFLkvEWKnJ9IkfRznEBVAZGi6ubdm0C7AiJFu7szOQEC3QqIFDlvkSLnJ1Ik/RwnUFVApKi6efcm0K6ASNHu7kxOgEC3AiJFzlukyPmJFEk/xwlUFRApqm7evQm0KyBStLs7kxMg0K2ASJHzFilyfiJF0s9xAlUFRIqqm3dvAu0KiBTt7s7kBAh0KyBS5LxFipyfSJH0c5xAVQGRourm3ZtAuwIiRbu7MzkBAt0KiBQ5b5Ei5ydSJP0cJ1BVQKSounn3JtCugEjR7u5MToBAtwIiRc5bpMj5iRRJP8cJVBUQKapu3r0JtCsgUrS7O5MTINCtgEiR8xYpcn4iRdLPcQJVBUSKqpt3bwLtCogU7e7O5AQIdCsgUuS8RYqcn0iR9HOcQFUBkaLq5t2bQLsCIkW7uzM5AQLdCogUOW+RIucnUiT9HCdQVUCkqLp59ybQroBI0e7uTE6AQLcCIkXOW6TI+YkUST/HCVQVECmqbt69CbQrIFK0uzuTEyDQrYBIkfMWKXJ+IkXSz3ECVQVEiqqbd28C7QqIFO3uzuQECHQrIFLkvEWKnJ9IkfRznEBVAZGi6ubdm0C7AiJFu7szOQEC3QqIFDlvkSLnJ1Ik/RwnUFVApKi6efcm0K6ASNHu7kxOgEC3AiJFzlukyPmJFEk/xwlUFRApqm7evQm0KyBStLs7kxMg0K2ASJHzFilyfiJF0s9xAlUFRIqqm3dvAu0KiBTt7s7kBAh0KyBS5LxFipyfSJH0c5xAVQGRourm3ZtAuwIiRbu7MzkBAt0KiBQ5b5Ei5ydSJP0cJ1BVQKSounn3JtCugEjR7u5MToBAtwIiRc5bpMj5iRRJP8cJVBUQKapu3r0JtCsgUrS7O5MTINCtgEiR8xYpcn4iRdLPcQJVBUSKqpt3bwLtCogU7e7O5AQIdCsgUuS8RYqcn0iR9HOcQFUBkaLq5t2bQLsCIkW7uzM5AQLdCogUOW+RIucnUiT9HCdQVUCkqLp59ybQroBI0e7uTE6AQLcCIkXOW6TI+YkUST/HCVQVECmqbt69CbQrIFK0uzuTEyDQrYBIkfMWKXJ+IkXSz3ECVQVEiqqbd28C7QqIFO3uzuQECHQrIFLkvEWKnJ9IkfRznEBVAZGi6ubdm0C7AiJFu7szOQEC3QqIFDlvkSLnJ1Ik/RwnUFVApKi6efcm0K6ASNHu7kxOgEC3AiJFzlukyPmJFEk/xwlUFRApqm7evQm0KyBStLs7kxMg0K2ASJHzFilyfiJF0s9xAlUFRIqqm3dvAu0KiBTt7s7kBAh0KyBS5LxFipyfSJH0c5xAVQGRourm3ZtAuwIiRbu7MzkBAt0KiBQ5b5Ei5ydSJP0cJ1BVQKSounn3JtCugEjR7u5MToBAtwIiRc5bpMj5iRRJP8cJVBUQKapu3r0JtCsgUrS7O5MTINCtgEiR8xYpcn4iRdLPcQJVBUSKqpt3bwLtCogU7e7O5AQIdCsgUuS8RYqcn0iR9HOcQFUBkaLq5t2bQLsCIkW7uzM5AQLdCogUOe9eRooHHnwojjhx1lDm3JMOWig0Pr4gZp5/WXz6s7fG8k94Quy3546x28u3HL597s/viyNPvihu/84dscbqq8QJh+8TG6z3zEd92533PpjbwFKePu/C5WLO3ZOW8rRjBAhMtIBIMdEb8PkJEHisAiLFYxXz/gQIVBUQKXKb712kuGvOT2PsqLNj/ec8I2bfPfdhkeKqT90yDBTnn3JwPPDgr2Kvt54UM/92/3jOs/40Zpw0K9ZZe604cO+d45vfuyMOO+6CuO7iU2La1CmLfZtIkXsAnSZQVUCkqLp59ybQroBI0e7uTE6AQLcCIkXOu3eR4v4HHorv3/GjmDfvN3HJVTc9LFLsf8QZsdeu28bGG643VPvIlTfGXXf/NA5782ti450OjM9feVZMmzZl+LaDjj4nXjl9s3jxRs9b5Ns2f9H6ftwj9/w5TaCsgEhRdvUuTqBZAZGi2dUZnACBjgVEihx47yLF7zi+dNu34rKrP/uwSLHda4+I959xeDz1KU8cvts/fvn2uPTqm+K4t+0de46dFDdefvpCzTNmXRGrr7pyTN/6hYt82z67bSdS5J4/pwmUFRApyq7exQk0KyBSNLs6gxMg0LGASJEDLxUpXrLrwXHVRe+MNddYdaj2lW98N877wDXxzrfvM/wRkes+fPJCzQs+dG2ML1gQO26z8SLfNrb3zvGrX4/nNrCUp088fTx+cteCpTztGAECEy0wfdtJsf22kyd6jM4+/513LYiTTp+Yr5edXdInItBzgaPfNjn+aG2vh9XzNbseAQLLQGDq8nX+jrcMuP7gQ5SKFNu/7oh4z8xD4/+s85QhxM1f/Fp87BM3DyPFbvsfH5+78syFQDPP/2isteZqw0ixqLftu/v2ce8vfvV47OVRP+YZ506O2XMe9d28AwECIyqwzUsWxNZb1gmNd82OOPM8/4M9oo+jsQgskcChbx2Ppzx5id7VOxEgQKC0wBNXnVr6/tnLl4oUB77jrHj1jlvE4LUkBn8+cPn1MeeeuXHEgbvHJi8fixsuOy1WWXnF4dsOmHFG7LrDFrHlJhss8m1bbfp8P+6RfQKdJ1BUwI97FF28axNoWMCPezS8PKMTINCpgB/3yHGXihSfvOlLcc31/7Dwt3u8buzEOOHwfeMFf/WsOPa0D8YT11w1xvbeZfjbPcbecXZcf+mpsdKK0xb7Nr/dI/cAOk2gqoBIUXXz7k2gXQGRot3dmZwAgW4FRIqcd6lIMaA6470fj2v+/h9j8BOVb3jNdjF48cvBn/t++UAcecpF8bXbfzD8bopjDtlr4W8BWdzbRIrcA+g0gaoCIkXVzbs3gXYFRIp2d2dyAgS6FRApct69jRQ5liU/LVIsuZX3JEDg9wIihaeBAIHWBESK1jZmXgIEJkpApMjJixQ5P69JkfRznEBVAZGi6ubdm0C7AiJFu7szOQEC3QqIFDlvkSLnJ1Ik/RwnUFVApKi6efcm0K6ASNHu7kxOgEC3AiJFzlukyPmJFEk/xwlUFRApqm7evQm0KyBStLs7kxMg0K2ASJHzFilyfiJF0s9xAlUFRIqqm3dvAu0KiBTt7s7kBAh0KyBS5LxFipyfSJH0c5xAVQGRourm3ZtAuwIiRbu7MzkBAt0KiBQ5b5Ei5ydSJP0cJ1BVQKSounn3JtCugEjR7u5MToBAtwIiRc5bpMj5iRRJP8cJVBUQKapu3r0JtCsgUrS7O5MTINCtgEiR8xYpcn4iRdLPcQJVBUSKqpt3bwLtCogU7e7O5AQIdCsgUuS8RYqcn0iR9HOcQFUBkaLq5t2bQLsCIkW7uzM5AQLdCogUOW+RIucnUiT9HCdQVUCkqLp59ybQroBI0e7uTE6AQLcCIkXOW6TI+YkUST/HCVQVECmqbt69CbQrIFK0uzuTEyDQrYBIkfMWKXJ+IkXSz3ECVQVEiqqbd28C7QqIFO3uzuQECHQrIFLkvEWKnJ9IkfRznEBVAZGi6ubdm0C7AiJFu7szOQEC3QqIFDlvkSLnJ1Ik/RwnUFVApKi6efcm0K6ASNHu7kxOgL0k5vEAACAASURBVEC3AiJFzlukyPmJFEk/xwlUFRApqm7evQm0KyBStLs7kxMg0K2ASJHzFilyfiJF0s9xAlUFRIqqm3dvAu0KiBTt7s7kBAh0KyBS5LxFipyfSJH0c5xAVQGRourm3ZtAuwIiRbu7MzkBAt0KiBQ5b5Ei5ydSJP0cJ1BVQKSounn3JtCugEjR7u5MToBAtwIiRc5bpMj5iRRJP8cJVBUQKapu3r0JtCsgUrS7O5MTINCtgEiR8xYpcn4iRdLPcQJVBUSKqpt3bwLtCogU7e7O5AQIdCsgUuS8RYqcn0iR9HOcQFUBkaLq5t2bQLsCIkW7uzM5AQLdCogUOW+RIucnUiT9HCdQVUCkqLp59ybQroBI0e7uTE6AQLcCIkXOW6TI+YkUST/HCVQVECmqbt69CbQrIFK0uzuTEyDQrYBIkfMWKXJ+IkXSz3ECVQVEiqqbd28C7QqIFO3uzuQECHQrIFLkvEWKnJ9IkfRznEBVAZGi6ubdm0C7AiJFu7szOQEC3QqIFDlvkSLnJ1Ik/RwnUFVApKi6efcm0K6ASNHu7kxOgEC3AiJFzlukyPmJFEk/xwlUFRApqm7evQm0KyBStLs7kxMg0K2ASJHzFilyfiJF0s9xAlUFRIqqm3dvAu0KiBTt7s7kBAh0KyBS5LxFipyfSJH0c5xAVQGRourm3ZtAuwIiRbu7MzkBAt0KiBQ5b5Ei5ydSJP0cJ1BVQKSounn3JtCugEjR7u5MToBAtwIiRc5bpMj5iRRJP8cJVBUQKapu3r0JtCsgUrS7O5MTINCtgEiR8xYpcn4iRdLPcQJVBUSKqpt3bwLtCogU7e7O5AQIdCsgUuS8RYqcn0iR9HOcQFUBkaLq5t2bQLsCIkW7uzM5AQLdCogUOW+RIucnUiT9HCdQVUCkqLp59ybQroBI0e7uTE6AQLcCIkXOW6TI+YkUST/HCVQVECmqbt69CbQrIFK0uzuTEyDQrYBIkfMWKXJ+IkXSz3ECVQVEiqqbd28C7QqIFO3uzuQECHQrIFLkvEWKnJ9IkfRznEBVAZGi6ubdm0C7AiJFu7szOQEC3QqIFDlvkSLnJ1Ik/RwnUFVApKi6efcm0K6ASNHu7kxOgEC3AiJFzlukyPmJFEk/xwlUFRApqm7evQm0KyBStLs7kxMg0K2ASJHzFilyfiJF0s9xAlUFRIqqm3dvAu0KiBTt7s7kBAh0KyBS5LxFipyfSJH0c5xAVQGRourm3ZtAuwIiRbu7MzkBAt0KiBQ5b5Ei5ydSJP0cJ1BVQKSounn3JtCugEjR7u5MToBAtwIiRc5bpMj5iRRJP8cJVBUQKapu3r0JtCsgUrS7O5MTINCtgEiR8xYpcn4iRdLPcQJVBUSKqpt3bwLtCogU7e7O5AQIdCsgUuS8RYqcn0iR9HOcQFUBkaLq5t2bQLsCIkW7uzM5AQLdCogUOW+RIucnUiT9HCdQVUCkqLp59ybQroBI0e7uTE6AQLcCIkXOW6TI+YkUST/HCVQVECmqbt69CbQrIFK0uzuTEyDQrYBIkfMWKXJ+IkXSz3ECVQVEiqqbd28C7QqIFO3uzuQECHQrIFLkvEWKnJ9IkfRznEBVAZGi6ubdm0C7AiJFu7szOQEC3QqIFDlvkSLnJ1Ik/RwnUFVApKi6efcm0K6ASNHu7kxOgEC3AiJFzlukyPmJFEk/xwlUFRApqm7evQm0KyBStLs7kxMg0K2ASJHzFilyfiJF0s9xAlUFRIqqm3dvAu0KiBTt7s7kBAh0KyBS5LxFipyfSJH0c5xAVQGRourm3ZtAuwIiRbu7MzkBAt0KiBQ5b5Ei5ydSJP0cJ1BVQKSounn3JtCugEjR7u5MToBAtwIiRc5bpMj5iRRJP8cJVBUQKapu3r0JtCsgUrS7O5MTINCtgEiR8xYpcn4iRdLPcQJVBUSKqpt3bwLtCogU7e7O5AQIdCsgUuS8RYqcn0iR9HOcQFUBkaLq5t2bQLsCIkW7uzM5AQLdCogUOW+RIucnUiT9HCdQVUCkqLp59ybQroBI0e7uTE6AQLcCIkXOW6TI+YkUST/HCVQVECmqbt69CbQrIFK0uzuTEyDQrYBIkfMWKXJ+IkXSz3ECVQVEiqqbd28C7QqIFO3uzuQECHQrIFLkvEWKnJ9IkfRznEBVAZGi6ubdm0C7AiJFu7szOQEC3QqIFDlvkSLnJ1Ik/RwnUFVApKi6efcm0K6ASNHu7kxOgEC3AiJFzlukyPmJFEk/xwlUFRApqm7evQm0KyBStLs7kxMg0K2ASJHzFilyfiJF0s9xAlUFRIqqm3dvAu0KiBTt7s7kBAh0KyBS5LxFipyfSJH0c5xAVQGRourm3ZtAuwIiRbu7MzkBAt0KiBQ5b5Ei5ydSJP0cJ1BVQKSounn3JtCugEjR7u5MToBAtwIiRc67VKT46u3fjzccPDOmLP+EhWo3X3VWrLLSCjH35/fFkSdfFLd/545YY/VV4oTD94kN1nvm8P0W97Y7730wt4GlPH3ehcvFnLsnLeVpxwgQmGgBkWKiN+DzEyDwWAVEiscq5v0JEKgqIFLkNl8qUnzmltvi1q9+O44+eM8/UJtx0qxYZ+214sC9d45vfu+OOOy4C+K6i0+JaVOnxOLeJlLkHkCnCVQVECmqbt69CbQrIFK0uzuTEyDQrYBIkfMuFSk+9ombY+7P7ov999rpYWrj4wti450OjM9feVZMmzZl+LaDjj4nXjl9s3jxRs9b5Ns2f9H6ftwj9/w5TaCsgEhRdvUuTqBZAZGi2dUZnACBjgVEihx4qUjxwY9dHxdfcUNMmbJ8rDhtarx6x5fE7jtvFbPvmRt7jp0UN15++kLNM2ZdEauvunJM3/qFi3zbPrttF7PnPpTbwFKePvuCyTFnjh/3WEo+xwhMuMBWW4zHllssmPA5uhpg9pxJcc4Fk7v6dD4PAQKPg8D/fcv8ePKTH4cP7EMSIECgZwJPWWNaz27U7XVKRYr54+Mxb96vY4VpU+OH/z07Djr63Bjbe+d45tOfFmNHnR3XffjkhfoXfOjaGF+wIHbcZuNFvm1wdv74xPxDxvEz58edd03M5+72EfXZCPRTYMeXTY4dXlrnH9rv/MmCOP7U+f1cplsRKCJw7BHLxVPX9i9IiqzbNQkQSAgsN9nXygRflIoUj4S64rrPxze/+x/D16HYbf/j43NXnrnwXWae/9FYa83VhpFiUW/bd/ft/bhH5ulzlkBhAT/uUXj5rk6gUQE/7tHo4oxNgEDnAn7cI0deOlJ89NrPxn/+6K6YMbZHbPLysbjhstNilZVXHIoeMOOM2HWHLWLLTTZY5Nu22vT5IkXu+XOaQFkBkaLs6l2cQLMCIkWzqzM4AQIdC4gUOfBSkWLwmz2eu+7TY6UVp8Wds++N/d5+ehx72Otjw+etG8ee9sF44pqrxtjeuwx/u8fYO86O6y89dfi+i3ub3+6RewCdJlBVQKSounn3JtCugEjR7u5MToBAtwIiRc67VKR432WfikuvvmkoturKK8W+e0yPnbbdePif7/vlA3HkKRfF127/wfC7KY45ZK/YeMP1HvVtIkXuAXSaQFUBkaLq5t2bQLsCIkW7uzM5AQLdCogUOe9SkSJH9b+fFikeD1Ufk0D/BUSK/u/YDQn0TUCk6NtG3YcAgcdLQKTIyYoUOT+vSZH0c5xAVQGRourm3ZtAuwIiRbu7MzkBAt0KiBQ5b5Ei5ydSJP0cJ1BVQKSounn3JtCugEjR7u5MToBAtwIiRc5bpMj5iRRJP8cJVBUQKapu3r0JtCsgUrS7O5MTINCtgEiR8xYpcn4iRdLPcQJVBUSKqpt3bwLtCogU7e7O5AQIdCsgUuS8RYqcn0iR9HOcQFUBkaLq5t2bQLsCIkW7uzM5AQLdCogUOW+RIucnUiT9HCdQVUCkqLp59ybQroBI0e7uTE6AQLcCIkXOW6TI+YkUST/HCVQVECmqbt69CbQrIFK0uzuTEyDQrYBIkfMWKXJ+IkXSz3ECVQVEiqqbd28C7QqIFO3uzuQECHQrIFLkvEWKnJ9IkfRznEBVAZGi6ubdm0C7AiJFu7szOQEC3QqIFDlvkSLnJ1Ik/RwnUFVApKi6efcm0K6ASNHu7kxOgEC3AiJFzlukyPmJFEk/xwlUFRApqm7evQm0KyBStLs7kxMg0K2ASJHzFilyfiJF0s9xAlUFRIqqm3dvAu0KiBTt7s7kBAh0KyBS5LxFipyfSJH0c5xAVQGRourm3ZtAuwIiRbu7MzkBAt0KiBQ5b5Ei5ydSJP0cJ1BVQKSounn3JtCugEjR7u5MToBAtwIiRc5bpMj5iRRJP8cJVBUQKapu3r0JtCsgUrS7O5MTINCtgEiR8xYpcn4iRdLPcQJVBUSKqpt3bwLtCogU7e7O5AQIdCsgUuS8RYqcn0iR9HOcQFUBkaLq5t2bQLsCIkW7uzM5AQLdCogUOW+RIucnUiT9HCdQVUCkqLp59ybQroBI0e7uTE6AQLcCIkXOW6TI+YkUST/HCVQVECmqbt69CbQrIFK0uzuTEyDQrYBIkfMWKXJ+IkXSz3ECVQVEiqqbd28C7QqIFO3uzuQECHQrIFLkvEWKnJ9IkfRznEBVAZGi6ubdm0C7AiJFu7szOQEC3QqIFDlvkSLnJ1Ik/RwnUFVApKi6efcm0K6ASNHu7kxOgEC3AiJFzlukyPmJFEk/xwlUFRApqm7evQm0KyBStLs7kxMg0K2ASJHzFilyfiJF0s9xAlUFRIqqm3dvAu0KiBTt7s7kBAh0KyBS5LxFipyfSJH0c5xAVQGRourm3ZtAuwIiRbu7MzkBAt0KiBQ5b5Ei5ydSJP0cJ1BVQKSounn3JtCugEjR7u5MToBAtwIiRc5bpMj5iRRJP8cJVBUQKapu3r0JtCsgUrS7O5MTINCtgEiR8xYpcn4iRdLPcQJVBUSKqpt3bwLtCogU7e7O5AQIdCsgUuS8RYqcn0iR9HOcQFUBkaLq5t2bQLsCIkW7uzM5AQLdCogUOW+RIucnUiT9HCdQVUCkqLp59ybQroBI0e7uTE6AQLcCIkXOW6TI+YkUST/HCVQVECmqbt69CbQrIFK0uzuTEyDQrYBIkfMWKXJ+IkXSz3ECVQVEiqqbd28C7QqIFO3uzuQECHQrIFLkvEWKnJ9IkfRznEBVAZGi6ubdm0C7AiJFu7szOQEC3QqIFDlvkSLnJ1Ik/RwnUFVApKi6efcm0K6ASNHu7kxOgEC3AiJFzlukyPmJFEk/xwlUFRApqm7evQm0KyBStLs7kxMg0K2ASJHzFilyfiJF0s9xAlUFRIqqm3dvAu0KiBTt7s7kBAh0KyBS5LxFipyfSJH0c5xAVQGRourm3ZtAuwIiRbu7MzkBAt0KiBQ5b5Ei5ydSJP0cJ1BVQKSounn3JtCugEjR7u5MToBAtwIiRc5bpMj5iRRJP8cJVBUQKapu3r0JtCsgUrS7O5MTINCtgEiR8xYpcn4iRdLPcQJVBUSKqpt3bwLtCogU7e7O5AQIdCsgUuS8RYqcn0iR9HOcQFUBkaLq5t2bQLsCIkW7uzM5AQLdCogUOW+RIucnUiT9HCdQVUCkqLp59ybQroBI0e7uTE6AQLcCIkXOW6TI+YkUST/HCVQVECmqbt69CbQrIFK0uzuTEyDQrYBIkfMWKXJ+IkXSz3ECVQVEiqqbd28C7QqIFO3uzuQECHQrIFLkvEWKnJ9IkfRznEBVAZGi6ubdm0C7AiJFu7szOQEC3QqIFDlvkSLnJ1Ik/RwnUFVApKi6efcm0K6ASNHu7kxOgEC3AiJFzlukyPmJFEk/xwlUFRApqm7evQm0KyBStLs7kxMg0K2ASJHzFilyfiJF0s9xAlUFRIqqm3dvAu0KiBTt7s7kBAh0KyBS5LxFipyfSJH0c5xAVQGRourm3ZtAuwIiRbu7MzkBAt0KiBQ5b5Ei5ydSJP0cJ1BVQKSounn3JtCugEjR7u5MToBAtwIiRc5bpMj5iRRJP8cJVBUQKapu3r0JtCsgUrS7O5MTINCtgEiR8xYpcn4iRdLPcQJVBUSKqpt3bwLtCogU7e7O5AQIdCsgUuS8RYqcn0iR9HOcQFUBkaLq5t2bQLsCIkW7uzM5AQLdCogUOW+RIucnUiT9HCdQVUCkqLp59ybQroBI0e7uTE6AQLcCIkXOW6TI+YkUST/HCVQVECmqbt69CbQrUC1S3PyFyfHAA+3uy+QECERM3258QhhEihy7SJHzEymSfo4TqCogUlTdvHsTaFegYqQYhAp/CBBoU+DJT1oQg69bE/FHpMipixQ5P5Ei6ec4gaoCIkXVzbs3gXYFRIp2d2dyAhUFRIp2ty5SJHd3570PJj/C0h0/78LlYs7dk5busFMECEy4gEgx4SswAAECj1FApHiMYN6dAIEJFRApJpQ/9clFihRf+E6KpJ/jBKoKiBRVN+/eBNoVECna3Z3JCVQUECna3bpIkdyd76RIAjpOoKiASFF08a5NoGEBkaLh5RmdQEEBkaLdpYsUyd2JFElAxwkUFRApii7etQk0LCBSNLw8oxMoKCBStLt0kSK5O5EiCeg4gaICIkXRxbs2gYYFRIqGl2d0AgUFRIp2ly5SJHcnUiQBHSdQVECkKLp41ybQsIBI0fDyjE6goIBI0e7SRYrk7kSKJKDjBIoKiBRFF+/aBBoWECkaXp7RCRQUECnaXbpIkdydSJEEdJxAUQGRoujiXZtAwwIiRcPLMzqBggIiRbtLFymWYHdzf35fHHnyRXH7d+6INVZfJU44fJ/YYL1nDk+KFEsA6F0IEPgDAZHCQ0GAQGsCIkVrGzMvgdoCIkW7+xcplmB3M06aFeusvVYcuPfO8c3v3RGHHXdBXHfxKTFt6hSRYgn8vAsBAn8oIFJ4KggQaE1ApGhtY+YlUFtApGh3/yLFo+xufHxBbLzTgfH5K8+KadOmDN/7oKPPiVdO3yw2f9H6IkW7z77JCUyogEgxofw+OQECSyEgUiwFmiMECEyYgEgxYfTpTyxSPArh7Hvmxp5jJ8WNl5++8D3PmHVFrL7qyrHPbtuJFOlH0AcgUFNApKi5d7cm0LKASNHy9sxOoJ6ASNHuzkWKR9ndf/14dowddXZc9+GTF77nBR+6NsYXLIixvXeesM0fc8pv4s67FkzY5/eJCRDICey03eTY6WXL5T5IQ6f/+ycL4th3/aahiY1KgMAjBd555BPiqWtPKgPzib+fH5+4frzMfV2UQN8EBl+vBl+3/GlPQKR4lJ3Nuednsdv+x8fnrjxz4XvOPP+jsdaaq8W+u2/f3sZNTIAAAQIECBAgQIAAAQIERlRApHiUxSxYsCA2eflY3HDZabHKyisO3/uAGWfErjtsEVtt+vwRXauxCBAgQIAAAQIECBAgQIBAewIixRLs7NjTPhhPXHPVGNt7l+Fv9xh7x9lx/aWnxkorTluC096FAAECBAgQIECAAAECBAgQWBIBkWIJlO775QNx5CkXxddu/8HwuymOOWSv2HjD9ZbgpHch8HuB/d7+7njTa6fHhuuvi4UAAQIECBAgQKABgW98+9/jzPdeER86e0YD0xqRQD8ERIp+7NEtGhB4PCLFF79ye7zguX+x8NfjNsBgRAIECBAgQIBAMwIiRTOrMmiPBESKHi3TVUZbYFlHisHrpezxlhPjgncdHGustspoX950BAgQIECAAIEGBUSKBpdm5OYFRIrmV+gCrQgMIsWmGz03rv7ULfGLXz4Qz3r60+LUo98cq66y0vAKt9z6r3HmrI/Hgw/Ni402eHYcdfCeMWX5J8TPfvHLOPLkWXHHD38Sv/nN/Nj9FVvFG/eYHqddeHlcctVN8ed/8tThx/jQWb4NsZVnwZwEJlpg8PVoo+c/O2796rfj/vsfjD952lPi2EPfMPyurPdd9qnhay7901e+FV/++nfi8vccG3/2x2vHRZd+Mv7uhi/G+Ph47LHz1vG6V24zvMbiPtaivn797twbXvOyOP3Cy+P+Bx8avkD14Nd+H3PaB2L23XNjnbXXipNmvDHWfvKaE83l8xMg0JDA4F/iDL6OXfmpL8QDD/4qpm/1wpgxtkf88v4H4+RzL43bvvG9mDx5crxqxy1in922G97sd2euuf4fhn/XGnx9PPKtr40VV5gWIkVDyzdqbwREit6s0kVGXWDwF/l58349/M6HFaZNjaNnvj/++KlPjv332inumvPTeO3YiXHJuUcN/0J+1LveN4wP++4xPcbHF8TXv/WDeP5znxX3zv1FTN9zRnz6kpmx5uqrxJa7HhJXvf+dvpNi1JdvPgIjJjD4erTiClPjjOMOjMmTJ8UJZ14cq6+2crx1n12Gf7n/yJU3DgPBpn/z3OHkf3/zl+Pyv/tcvPfUw4Z/gd/jLSfEOw/fJ573l38+jBSL+liL+/o1ODeIGKcfs3/8n3WeMvxat8u+fxuH7f/qePFGfxVXf/of4obPf3n4Of0hQIDAkgp86jO3xmXXfibe865DY+WVVhh+nRl8x+nghfBXXWXFOPTNrx7Gi/0OPz322vWl8dItNoxP3vSluPKTX4gLZx4S06ZOiXedd1nMnz8eRx+8p0ixpPDej8AyFBApliGmD0VgcQKDv5C/4mWbxPZbvXD4bp/+3D/HLV/6RrzrqP3i4itvjJ/cdU8cMbbH8G1f+fp349wPXB0Xn/OOP/iQg5hx1EF7xl8+609ECo8cAQJLJTD4evSqHTePbTb76+H57/37j2LGybPimvefMIwU37/jR3Hq0fsv/NhvPeqc2Hn7TWPLTX77q7fP/9C1w++oGESNxX2sRw73P79+Dc5tu/lfx647bD58t+/+2w+Hgfaq971z+J/nz58fL3jZm+Nfrn9vPOEJyy3VPR0iQKCewNhRZ8crXrZpbP3iFzzs8htNPyA+87F3D18Ef/DnM7fcNvzusHNPOigOfMdZscv2m8VWm/72a9zPf3F/vHT3t8Wtn7pQpKj3CLnxCAiIFCOwBCPUEBj8hfyNe2wff7PBs4cXvvELX4kbv/AvcfoxB8TpF34s/u6Gf4zV/v+PfswfXxCrrbpSXH7hMfHjO++O917yibjr7rkxKSbF7d+9I953+tviOX/xZyJFjUfHLQksc4HB16O9d3tZvOgFzxl+7Dn3/Cx2fdMxccs15wwjxUO/mhdje++88PO++s3Hx9yf/SKmTll++N/9at6vY+vN/jqOOHD3YaRY1Mda3NevR35N/MKt34jDjrsg1n7SGgs/78/vuz+u+cCJsdaaqy1zAx+QAIF+Cgy+Xv3twXvGc5/99IUXvP+Bh2KznQ+K226YtfC/+9fv/HuceNYl8fH3Hhuv2u/YOOaQ1z/szPO3fVN88RPnxffv+LHf7tHPR8WtRlhApBjh5RitXwKPfOHM/xkpLr7ihrjnpz8ffgviI/8M/sd2r123jR22edHwTa/e77g49rDX/zZSvOrQuOp9x/txj349Km5D4HEXGHw9GnxN2WnbjYef6+vf+rc4/owPL/xOikGEOPANr1g4x+DfTL5mp5cMfwzjkX8W97EW9/XrkV8Tv/OD/xrOMIiz/hAgQGBpBd4y48x45Q6bL/yuiMHHGbzmxN9sf0B89uPvXvhaYP/zOykOmHFG7LrDFg/7Toptd39b/LPvpFjaNThHICUgUqT4HCaw5AKLixQ/mX1v7HXQyXHhzEPjGX+6zvDfUt5978/iaX/0pNj6NYfFmccdOKz7t/3r9+ONh50al5x31DBSDH5+e/DzkoPXq/CHAAECSyow+Hr04EO/ilmnHTZ8gd5Dj7sgnvFn6yx8TYpHRorha1Jc+7k4+4S3Dr/La/Az3oPXkBi8Ns7iPtbivn498mvi/PHx2PVNx8YBe+0U226+4fAfKv7zx7OHL9rpDwECBJZUYPDil4P/u+CUQ4avSTH7nrnxlLXWGL4o78orrRhvP+A1C1+T4nW7bBPbbblRXHfTP8UV130+3jPz0OHrhs08/6PD1xE75tDX+3GPJYX3fgSWoYBIsQwxfSgCixNYXKQYnPvSbd8a/tjHIE5MmbJ8vOX1r4hdtn9xfPqzt8aZs66IlVZcIdZf7xkx79e/idfuvNUwUtx0y7/EKedeNvyHhsHPkvtDgACBJREYfD3aYL1nxOe++NW4d+59sdEG6z7st3s8MlIMPubgO74uu+az8cCDDw1fZPOUI980/Dq0uI+1uK9f/9uvZf7RnXPihDM/MnxNjMFrXgxeM+NvD9lrSa7kfQgQIDAUGATU8z94TXzixi/GQ/N+HTts/aLhj6YNfuRj8CLB//y1b8e0qVNj1+mbxT67bx+TJk0annvvR66Lj193cyw3eXJsuP668Y6DXjf8TUd+u4cHi0D3AiJF9+Y+IwECBAgQmFCBYSB43fTY8HnrpudYlh8rPYwPQIAAAQIECDQvIFI0v0IXIECAAAECj03gf/suhsf2EX7/3svyYy3tDM4RIECAAAEC/REQKfqzSzchQIAAAQJLJLAsw8Ky/FhLNLx3IkCAAAECBHotIFL0er0uR4AAAQIECBAgQIAAAQIE2hEQKdrZlUkJECBAgAABAgQIECBAgECvBUSKXq/X5QgQIECAAAECBAgQIECAQDsCIkU7uzIpAQIECBAgQIAAAQIECBDotYBI0ev1uhwBAgQIECBAgAABAgQIEGhHQKRoZ1cmJUCAAAECBAgQIECAAAECvRYQKXq9XpcjQIAAAQIECBAgQIAAAQLtCIgU7ezKpAQIECBAgAABAgQIECBAoNcCIkWv1+tyBAgQIECAAAECBAgQIECgHQGRop1dmZQAAQIECBAgQIAAAQIECPRaQKTo9XpdjgABAgQIECBAgAABAgQItCMgUrSzK5MSIECAAAECBAgQIECAAIFeC4gUvV6vyxEgQIAAAQIECBAgQIAAgXYERIp2dmVSAgQIECBAgAABAgQI4GW2kAAABIBJREFUECDQawGRotfrdTkCBAgQIECAAAECBAgQINCOgEjRzq5MSoAAAQIECBAgQIAAAQIEei0gUvR6vS5HgAABAgQIECBAgAABAgTaERAp2tmVSQkQIECAAAECBAgQIECAQK8FRIper9flCBAgQIAAAQIECBAgQIBAOwIiRTu7MikBAgQIECBAgAABAgQIEOi1gEjR6/W6HAECBAgQIECAAAECBAgQaEdApGhnVyYlQIAAAQIECBAgQIAAAQK9FhAper1elyNAgAABAgQIECBAgAABAu0IiBTt7MqkBAgQIECAAAECBAgQIECg1wIiRa/X63IECBAgQIAAAQIECBAgQKAdAZGinV2ZlAABAgQIECBAgAABAgQI9FpApOj1el2OAAECBAgQIECAAAECBAi0IyBStLMrkxIgQIAAAQIECBAgQIAAgV4LiBS9Xq/LESBAgAABAgQIECBAgACBdgREinZ2ZVICBAgQIECAAAECBAgQINBrAZGi1+t1OQIECBAgQIAAAQIECBAg0I6ASNHOrkxKgAABAgQIECBAgAABAgR6LSBS9Hq9LkeAAAECBAgQIECAAAECBNoRECna2ZVJCRAgQIAAAQIECBAgQIBArwVEil6v1+UIECBAgAABAgQIECBAgEA7AiJFO7syKQECBAgQIECAAAECBAgQ6LWASNHr9bocAQIECBAgQIAAAQIECBBoR0CkaGdXJiVAgAABAgQIECBAgAABAr0WECl6vV6XI0CAAAECBAgQIECAAAEC7QiIFO3syqQECBAgQIAAAQIECBAgQKDXAiJFr9frcgQIECBAgAABAgQIECBAoB0BkaKdXZmUAAECBAgQIECAAAECBAj0WkCk6PV6XY4AAQIECBAgQIAAAQIECLQjIFK0syuTEiBAgAABAgQIECBAgACBXguIFL1er8sRIECAAAECBAgQIECAAIF2BESKdnZlUgIECBAgQIAAAQIECBAg0GsBkaLX63U5AgQIECBAgAABAgQIECDQjoBI0c6uTEqAAAECBAgQIECAAAECBHotIFL0er0uR4AAAQIECBAgQIAAAQIE2hEQKdrZlUkJECBAgAABAgQIECBAgECvBUSKXq/X5QgQIECAAAECBAgQIECAQDsCIkU7uzIpAQIECBAgQIAAAQIECBDotYBI0ev1uhwBAgQIECBAgAABAgQIEGhHQKRoZ1cmJUCAAAECBAgQIECAAAECvRYQKXq9XpcjQIAAAQIECBAgQIAAAQLtCIgU7ezKpAQIECBAgAABAgQIECBAoNcCIkWv1+tyBAgQIECAAAECBAgQIECgHQGRop1dmZQAAQIECBAgQIAAAQIECPRaQKTo9XpdjgABAgQIECBAgAABAgQItCMgUrSzK5MSIECAAAECBAgQIECAAIFeC4gUvV6vyxEgQIAAAQIECBAgQIAAgXYERIp2dmVSAgQIECBAgAABAgQIECDQawGRotfrdTkCBAgQIECAAAECBAgQINCOgEjRzq5MSoAAAQIECBAgQIAAAQIEei3w/wAAVUdf2LzHrgAAAABJRU5ErkJggg==",
"text/html": [
"<div>\n",
" \n",
" \n",
" <div id=\"9afc4c11-0fa0-4591-bc07-dca2d4d6318e\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>\n",
" <script type=\"text/javascript\">\n",
" require([\"plotly\"], function(Plotly) {\n",
" window.PLOTLYENV=window.PLOTLYENV || {};\n",
" \n",
" if (document.getElementById(\"9afc4c11-0fa0-4591-bc07-dca2d4d6318e\")) {\n",
" Plotly.newPlot(\n",
" '9afc4c11-0fa0-4591-bc07-dca2d4d6318e',\n",
" [{\"histfunc\": \"sum\", \"type\": \"histogram\", \"x\": [\"heat\", \"prepare\", null, \"cool\"], \"y\": [1696, 1395, 446, 103]}],\n",
" {\"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}},\n",
" {\"responsive\": true}\n",
" ).then(function(){\n",
" \n",
"var gd = document.getElementById('9afc4c11-0fa0-4591-bc07-dca2d4d6318e');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" })\n",
" };\n",
" });\n",
" </script>\n",
" </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"keys, values = EA.m_grouped_act.get_backward_adjacent(EA.Ingredient(\"onion\").to_json())\n",
"data = go.Histogram(x=keys, y=values, histfunc=\"sum\")\n",
"iplot([data])"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"def prepare_ratio(ing:str):\n",
" keys, values = EA.m_grouped_act.get_backward_adjacent(EA.Ingredient(ing).to_json())\n",
" action_dict = dict(zip(keys,values))\n",
" return action_dict['prepare'] / action_dict['heat']"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.405195500803428"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prepare_ratio(\"sugar\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}