master-thesis/RecipeAnalysis/AdjacencyMatrixTests.ipynb
2019-09-05 12:03:01 +02:00

73 lines
1.4 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Evaluate Adjacency Matrices"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pickle"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"m_act = pickle.load(open(\"m_act.pickle\", \"rb\"))\n",
"m_mix = pickle.load(open(\"m_mix.pickle\", \"rb\"))\n",
"m_base_act = pickle.load(open(\"m_base_act.pickle\", \"rb\"))\n",
"m_base_mix = pickle.load(open(\"m_base_mix.pickle\", \"rb\"))"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"c_act = m_act.get_csr()\n",
"c_mix = m_mix.get_csr()\n",
"c_base_act = m_base_act.get_csr()\n",
"c_base_mix = m_base_mix.get_csr()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}