29 lines
1.3 KiB
Markdown
29 lines
1.3 KiB
Markdown
|
# naive_approach #
|
||
|
|
||
|
This directory contains the functions necessary to run the Naive Approach.
|
||
|
|
||
|
Prerequisites:
|
||
|
# the file "emoji_descriptions_preprocessed.csv" has to be located in the specified folder ("../Tools")
|
||
|
# pandas has to be installed
|
||
|
|
||
|
For testing, import naive_approach.py and execute the following commands:
|
||
|
|
||
|
1. prepareData(stem, lower)
|
||
|
# preprocesses the emoji descriptions and returns a dictionary with the indexed emojis
|
||
|
# parameters:
|
||
|
# stem: Apply stemming (default=True)
|
||
|
# lower: Apply lowercasing (default=True)
|
||
|
|
||
|
2. predict(sentence, lookup, emojis_to_consider, criteria, lang, embeddings, n=10, t=0.9)
|
||
|
# evaluates an input sentence and returns a list of predicted emojis
|
||
|
# parameters:
|
||
|
# sentence: Input sentence (required parameter)
|
||
|
# lookup: dictionary with emoji data (return value of prepareData, required parameter)
|
||
|
# emojis_to_consider: set of emojis to include in prediction, or "all" (default="all")
|
||
|
# criteria: criteria to evaluate the values of the description - message matching.
|
||
|
# options: "sum", "mean", "max_val", "threshold" (default: "threshold")
|
||
|
# lang: language to use (default: "eng")
|
||
|
# embeddings: word embeddings
|
||
|
# options: "wordnet", "word2Vec", "fastText", default: "wordnet"
|
||
|
# n: number of top ranked emojis to return (default=10)
|
||
|
# t: threshold for the "threshold" criteria (default=0.9)
|