2018-07-27 15:14:58 +02:00
# naive_approach
2018-07-24 11:27:07 +02:00
This directory contains the functions necessary to run the Naive Approach.
Prerequisites:
2018-07-27 15:15:30 +02:00
* the file [emoji_descriptions_preprocessed.csv ](../Tools/emoji_descriptions_preprocessed.csv ) has to be located in the specified folder [../Tools ](../Tools )
* pandas has to be installed
2018-07-24 11:27:07 +02:00
2018-07-27 15:14:58 +02:00
For testing, import [naive_approach.py ](naive_approach.py ) and execute the following commands:
2018-07-24 11:27:07 +02:00
2018-07-27 15:14:58 +02:00
1. `prepareData(stem, lower)`
* preprocesses the emoji descriptions and returns a dictionary with the indexed emojis
* parameters:
* `stem` : Apply stemming (default=`True`)
* `lower` : Apply lowercasing (default=`True`)
2018-07-24 11:27:07 +02:00
2018-07-27 15:14:58 +02:00
2. `predict(sentence, lookup, emojis_to_consider, criteria, lang, embeddings, n=10, t=0.9)`
* evaluates an input sentence and returns a list of predicted emojis
* parameters:
* `sentence` : Input sentence (required parameter)
* `lookup` : dictionary with emoji data (return value of prepareData, required parameter)
* `emojis_to_consider` : set of emojis to include in prediction, or `"all"` (default=`"all"`)
* `criteria` : criteria to evaluate the values of the description - message matching.
* options: `"sum"` , `"mean"` , `"max_val"` , `"threshold"` (default: `"threshold"` )
* `lang` : language to use (default: "eng")
* `embeddings` : word embeddings
* options: `"wordnet"` , `"word2Vec"` , `"fastText"` , default: `"wordnet"`
* `n` : number of top ranked emojis to return (default=`10`)
* `t` : threshold for the `"threshold"` criteria (default=`0.9`)