performance optimization over np function

This commit is contained in:
Carsten 2018-06-10 17:53:26 +02:00
parent 2cbb06ea94
commit 2c93c98269

View File

@ -9,15 +9,21 @@
# https://www.clarin.si/repository/xmlui/handle/11356/1048 # https://www.clarin.si/repository/xmlui/handle/11356/1048
# https://github.com/words/emoji-emotion # https://github.com/words/emoji-emotion
# In[1]: # In[34]:
import pandas as pd import pandas as pd
import math import math
import numpy as np import numpy as np
# In[35]:
N=3 N=3
# In[53]:
# In[2]:
#read in csv as panda file #read in csv as panda file
@ -25,41 +31,72 @@ df = pd.read_csv("/Users/Carsten/GitRepos/NLP-LAB/Project/Tools/Emoji_Sentiment_
#df.head() #df.head()
# In[54]: # In[3]:
def dataframe_to_dictionary():
data = {}
data_only_emoticons = {}
list_sentiment_vectors = []
list_emojis = []
list_sentiment_emoticon_vectors = []
list_emoticon_emojis = []
for index, row in df.iterrows():
emo = row["Emoji"]
occ = row["Occurrences"]
pos = row["Positive"]
neg = row["Negative"]
neu = row["Neutral"]
data.update({emo:[pos/occ,neg/occ,neu/occ]})
list_sentiment_vectors.append(np.array([pos/occ,neg/occ,neu/occ]))
list_emojis.append(emo)
if(row["Unicode block"]=="Emoticons"):
data_only_emoticons.update({emo:[pos/occ,neg/occ,neu/occ]})
list_sentiment_emoticon_vectors.append(np.array([pos/occ,neg/occ,neu/occ]))
list_emoticon_emojis.append(emo)
return data,data_only_emoticons,np.array(list_sentiment_vectors), np.array(list_emojis), np.array(list_sentiment_emoticon_vectors),np.array(list_emoticon_emojis)
#d , doe = dataframe_to_dictionary()
# In[4]:
data , data_only_emoticons, list_sentiment_vectors , list_emojis , list_sentiment_emoticon_vectors , list_emoticon_emojis = dataframe_to_dictionary()
# In[5]:
#calculates vector distance between 2 3-dim sentiment representations of emojis #calculates vector distance between 2 3-dim sentiment representations of emojis
def sentiment_vector_dist(v1,v2): def sentiment_vector_dist(v1,v2):
#pos_v1 = v1[0]
#neg_v1 = v1[1]
#neu_v1 = v1[2]
#pos_v2 = v2[0]
#neg_v2 = v2[1]
#neu_v2 = v2[2]
#tmp_dist = float(np.abs(pos_v1-pos_v2))+float(np.abs(neg_v1-neg_v2))+float(np.abs(neu_v1-neu_v2))
#calculates vector distance between 2 3-dim sentiment representations of emojis consisting of positive neutral and negative probabilistic occuring #calculates vector distance between 2 3-dim sentiment representations of emojis consisting of positive neutral and negative probabilistic occuring
tmp_dist = np.linalg.norm(np.array(v1)-np.array(v2)) tmp_dist = np.linalg.norm(np.array(v1)-np.array(v2))
return tmp_dist return tmp_dist
# In[55]: # In[6]:
#calculates vector representation in a 3dim 0 to 1space of dimension: positive,negative,neutral #calculates vector representation in a 3dim 0 to 1space of dimension: positive,negative,neutral
def emoji_to_sentiment_vector(e): def emoji_to_sentiment_vector(e, only_emoticons=True):
tmp = df[df["Emoji"]==e] """tmp = df[df["Emoji"]==e]
#calculate by espacial labeled occurences devided by sum of overall occurences #calculate by espacial labeled occurences devided by sum of overall occurences
pos = tmp["Positive"].values[0]/tmp["Occurrences"].values[0] pos = tmp["Positive"].values[0]/tmp["Occurrences"].values[0]
neg = tmp["Negative"].values[0]/tmp["Occurrences"].values[0] neg = tmp["Negative"].values[0]/tmp["Occurrences"].values[0]
neu = tmp["Neutral"].values[0]/tmp["Occurrences"].values[0] neu = tmp["Neutral"].values[0]/tmp["Occurrences"].values[0]
#return as np array #return as np array
return np.array([pos,neg,neu]) return np.array([pos,neg,neu])"""
if e in (data_only_emoticons if only_emoticons else data):
return np.array((data_only_emoticons if only_emoticons else data)[e])
return np.array([float('NaN')]*N)
# In[56]: # In[7]:
#function to call for evaluating two emojis in its sentimental distance #function to call for evaluating two emojis in its sentimental distance
@ -71,40 +108,65 @@ def emoji_distance(e1,e2):
return d return d
# In[57]: # In[27]:
def sentiment_vector_to_emoji(v1): def sentiment_vector_to_emoji(v1, only_emoticons=True):
#if(len(v1) == 3): #more efficient approach for min distance
#set initial values to compare with distances = (list_sentiment_emoticon_vectors if only_emoticons else list_sentiment_vectors) - v1
distances = np.linalg.norm(distances, axis=1)
#find min entry
min_entry = np.argmin(distances)
return (list_emoticon_emojis if only_emoticons else list_emojis)[min_entry]
#version for dics
"""#set initial values to compare with
best_emoji = "😐" best_emoji = "😐"
min_distance = 10000 min_distance = 10000
#compare only with filtred emoticons #compare only with filtred emoticons not containing other elements like cars etc.
#compare for each existing emoticons sentment vector to find the minimal distance equivalent to the best match
for e,v2 in doe.items():
#v2 = emoji_to_sentiment_vector(e)
d = sentiment_vector_dist(v1,v2)
if(d < min_distance):
min_distance = d
best_emoji = e
#print("for sentiment vector: "+str(v1)+" the emoji is : "+str(best_emoji)+" with distance of "+str(min_distance)+"!")
return best_emoji"""
#old version
"""#set initial values to compare with
best_emoji = "😐"
min_distance = 10000
#compare only with filtred emoticons not containing other elements like cars etc.
df_filtered = df[df["Unicode block"]=="Emoticons"] df_filtered = df[df["Unicode block"]=="Emoticons"]
all_smilies = list(df_filtered["Emoji"]) all_smilies = list(df_filtered["Emoji"])
#compare for each existing emoticons sentment vector to find the minimal distance equivalent to the best match
for e in all_smilies: for e in all_smilies:
v2 = emoji_to_sentiment_vector(e) v2 = emoji_to_sentiment_vector(e)
d = sentiment_vector_dist(v1,v2) d = sentiment_vector_dist(v1,v2)
if(d < min_distance): if(d < min_distance):
min_distance = d min_distance = d
best_emoji = e best_emoji = e
#print(str(v1),str(v2),str(min_distance),str(type(v1)),str(type(v2)),e)
#print("for sentiment vector: "+str(v1)+" the emoji is : "+str(best_emoji)+" with distance of "+str(min_distance)+"!") #print("for sentiment vector: "+str(v1)+" the emoji is : "+str(best_emoji)+" with distance of "+str(min_distance)+"!")
return best_emoji return best_emoji"""
#else:
#print("WRONG SENTIMENT VECTOR")
# In[58]: # In[28]:
def show_demo(): def show_demo_min_distances(only_emoticons = True):
df_filtered = df[df["Unicode block"]=="Emoticons"] #df_filtered = df[df["Unicode block"]=="Emoticons"]
all_smilies = list(df_filtered["Emoji"]) all_smilies = list_emoticon_emojis if only_emoticons else list_emojis
d_m = np.zeros(shape=(len(all_smilies),len(all_smilies))) d_m = np.zeros(shape=(len(all_smilies),len(all_smilies)))
@ -128,19 +190,58 @@ def show_demo():
closest+=all_smilies[i] closest+=all_smilies[i]
print(emoji+": "+closest) print(emoji+": "+closest)
"""df_filtered = df[df["Unicode block"]=="Emoticons"]
all_smilies = list(df_filtered["Emoji"])
# In[60]: d_m = np.zeros(shape=(len(all_smilies),len(all_smilies)))
for c1 in range(len(all_smilies)):
for c2 in range(len(all_smilies)):
e1 = all_smilies[c1]
e2 = all_smilies[c2]
d = emoji_distance(e1,e2)
d_m[c1,c2] = d
for c in range(len(d_m[0])):
emoji = all_smilies[c]
row = d_m[c]
row_sorted = np.argsort(row)
#closest 5
r = row_sorted[0:10]
#print()
closest = ""
for i in r:
closest+=all_smilies[i]
print(emoji+": "+closest)"""
#show_demo() # In[29]:
# In[61]: show_demo_min_distances()
# In[30]:
#test bipolar matching entiment vector vs. emoji #test bipolar matching entiment vector vs. emoji
#def show_demo_matching_bipolar
# df_filtered = df[df["Unicode block"]=="Emoticons"] # df_filtered = df[df["Unicode block"]=="Emoticons"]
# all_smilies = list(df_filtered["Emoji"]) # all_smilies = list(df_filtered["Emoji"])
# for e in all_smilies: # for e in all_smilies:
# v2 = emoji_to_sentiment_vector(e) # v2 = emoji_to_sentiment_vector(e)
# sentiment_vector_to_emoji(v2) # sentiment_vector_to_emoji(v2)
# In[36]:
[(e,sentiment_vector_to_emoji(emoji_to_sentiment_vector(e,only_emoticons=False))) for e in list_emojis]
# In[26]:
sentiment_vector_to_emoji(np.array([ 0.72967448, 0.05173769, 0.21858783]))