batch fitting with sparse matrices and keras is very uncomfortable *sigh*

This commit is contained in:
Jonas Weinz 2018-06-25 19:17:38 +02:00
parent 7e3b5be4fe
commit 3dcc18221f
2 changed files with 602 additions and 8 deletions

View File

@ -0,0 +1,571 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Continous Learner for Emoji classifier 🤓\n",
"**usage:**\n",
"run all cells, then go to the [user interface](#User-Interface)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using TensorFlow backend.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[nltk_data] Downloading package punkt to /home/jonas/nltk_data...\n",
"[nltk_data] Package punkt is already up-to-date!\n",
"[nltk_data] Downloading package averaged_perceptron_tagger to\n",
"[nltk_data] /home/jonas/nltk_data...\n",
"[nltk_data] Package averaged_perceptron_tagger is already up-to-\n",
"[nltk_data] date!\n",
"[nltk_data] Downloading package wordnet to /home/jonas/nltk_data...\n",
"[nltk_data] Package wordnet is already up-to-date!\n"
]
}
],
"source": [
"import simple_twitter_learning as stl\n",
"import glob\n",
"import sys\n",
"from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer, HashingVectorizer"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## user interface area:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"* UI helper functions and global states"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from IPython.display import clear_output, Markdown, Math\n",
"import ipywidgets as widgets\n",
"\n",
"out_areas = {}\n",
"shown_widgets = {}\n",
"tab_manager = widgets.Tab()\n",
"\n",
"def mp(obj):\n",
" display(Markdown(obj))\n",
"\n",
"def set_widget_visibility(widget_names, visible=True):\n",
" for w in widget_names:\n",
" shown_widgets[w].disabled = not visible\n",
"\n",
"def create_area(area_name:str, list_widgets:list, out_name:str, tab=tab_manager):\n",
" \"\"\"\n",
" creates a table of widgets with corresponding output area below\n",
" \n",
" @param area_name: title of the area\n",
" @param list_widgets: list of tuples: (widget, name:str)\n",
" @param out_name: name for the output area\n",
" \"\"\"\n",
" if out_name is not None:\n",
" out = widgets.Output()\n",
" out_areas[out_name] = out\n",
" h_box_widgets = []\n",
" v_box_widgets = []\n",
" for v in list_widgets:\n",
" for h in v:\n",
" if 'description' in h[0].__dir__():\n",
" h[0].description = h[1]\n",
" shown_widgets[h[1]] = h[0]\n",
" h_box_widgets.append(h[0])\n",
" v_box_widgets.append(widgets.HBox(h_box_widgets))\n",
" h_box_widgets = []\n",
" \n",
" if out_name is not None:\n",
" v_box_widgets += [out]\n",
" tab.children = list(tab.children) + [widgets.VBox(v_box_widgets)]\n",
" tab.set_title(len(tab.children) - 1, area_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"* build UI"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/markdown": [
"----"
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/markdown": [
"## User Interface"
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3c11801d12b643d9b059ba1058d66d5e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Tab(children=(VBox(children=(HBox(children=(Text(value='./data_en/', description='root_path'), Button(descript…"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"mp(\"----\")\n",
"mp(\"## User Interface\")\n",
"# create widgets\n",
"create_area(\"load dataset 💾\",\n",
" [\n",
" [\n",
" (widgets.Text(value=\"./data_en/\"), \"root_path\"),\n",
" (widgets.Button(), \"set_path\")\n",
" ],\n",
" [\n",
" (widgets.IntRangeSlider(disabled=True, min=0, max=0), \"file_range\"),\n",
" (widgets.Checkbox(disabled=True), \"only_emoticons\")\n",
" ],\n",
" [\n",
" (widgets.BoundedIntText(disabled=True,min=-1, max=10), \"k_means_cluster\"),\n",
" (widgets.BoundedIntText(disabled=True,min=-1, max=10), \"n_top_emojis\")\n",
" ],\n",
" [\n",
" (widgets.Button(disabled=True),\"load_data\")\n",
" ]\n",
" ],\n",
" \"load\")\n",
"\n",
"classifier_tab = widgets.Tab()\n",
"\n",
"create_area(\"keras\",\n",
" [\n",
" [\n",
" (widgets.IntSlider(min=0, max=10), \"n_keras_layer\")\n",
" ],\n",
" [\n",
" (widgets.HBox([]), \"n_keras_neurons\")\n",
" ],\n",
" [\n",
" (widgets.HBox([]), \"keras_funcs\")\n",
" ]\n",
" ],\n",
" None,\n",
" classifier_tab)\n",
"\n",
"create_area(\"create classifier\",\n",
" [\n",
" [\n",
" (classifier_tab, \"classifier_tab\")\n",
" ],\n",
" [\n",
" (widgets.Button(), \"create_classifier\")\n",
" ],\n",
" [\n",
" (widgets.Text(), \"classifier name\"),\n",
" (widgets.Button(), \"save classifier\")\n",
" ]\n",
" ],\n",
" \"create\")\n",
"\n",
"create_area(\"train classifier 🎓\", \n",
" [\n",
" [\n",
" (widgets.IntSlider(value=0,min=0,max=0), \"batch_size\"),\n",
" (widgets.FloatSlider(value=0.15, min=0, max=1), \"val_split\"),\n",
" (widgets.IntText(value=1), \"n_epochs\")\n",
" ],\n",
" [\n",
" (widgets.Button(),\"train\")\n",
" ]\n",
" ], \n",
" \"train\" )\n",
"tab_manager"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"----\n",
"## global variables:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"sdm = None\n",
"pm = None\n",
"tr = None"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## pretty jupyter print"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"import collections\n",
"import traceback\n",
"from pprint import pprint as pp\n",
"\n",
"def jupyter_print(obj, cell_w = 10, headers=None, p_type=True, ret_mdown=False, index_offset=0, list_horizontal=False):\n",
" \"\"\"\n",
" pretty hacky function to convert arrays, lists and matrices into\n",
" nice readable markdown code and render that in jupyter. if that is not possible\n",
" it will use pretty print instead\n",
" \"\"\"\n",
" try:\n",
" ts = \"**Type:** \" + str(type(obj)).strip(\"<>\") + \"\\n\\n\"\n",
" if type(obj) == str:\n",
" display(Markdown(obj))\n",
" elif isinstance(obj, collections.Iterable):\n",
" if isinstance(obj[0], collections.Iterable) and type(obj[0]) is not str:\n",
" # we have a table\n",
" \n",
" if headers is None:\n",
" headers = [str(i) for i in range(len(obj[0]))]\n",
" \n",
" if len(headers) < len(obj[0]):\n",
" headers += [\" \" for i in range(len(obj[0]) - len(headers))]\n",
" \n",
" s = \"|\" + \" \" * cell_w + \"|\"\n",
" \n",
" for h in headers:\n",
" s += str(h) + \" \" * (cell_w - len(h)) + \"|\"\n",
" s += \"\\n|\" + \"-\" * (len(headers) + (len(headers) + 1) * cell_w) + \"|\\n\"\n",
" \n",
" #s = (\"|\" + (\" \" * (cell_w))) * len(obj[0]) + \"|\\n\" + \"|\" + (\"-\" * (cell_w + 1)) * len(obj[0])\n",
" #s += '|\\n'\n",
" \n",
" row = index_offset\n",
" \n",
" for o in obj:\n",
" s += \"|**\" + str(row) + \"**\" + \" \" * (cell_w - (len(str(row))+4))\n",
" row += 1\n",
" for i in o:\n",
" s += \"|\" + str(i) + \" \" * (cell_w - len(str(i)))\n",
" s+=\"|\" + '\\n'\n",
" s += ts\n",
" display(Markdown(s))\n",
" return s if ret_mdown else None\n",
" else:\n",
" # we have a list\n",
" \n",
" \n",
" if headers is None:\n",
" headers = [\"index\",\"value\"]\n",
" \n",
" index_title = headers[0]\n",
" value_title = headers[1]\n",
" \n",
" s = \"|\" + index_title + \" \" * (cell_w - len(value_title)) + \"|\" + value_title + \" \" * (cell_w - len(value_title)) + \"|\" + '\\n'\n",
" s += \"|\" + \"-\" * (1 + 2 * cell_w) + '|\\n'\n",
" i = index_offset\n",
" for o in obj:\n",
" s_i = str(i)\n",
" s_o = str(o)\n",
" s += \"|\" + s_i + \" \" * (cell_w - len(s_i)) + \"|\" + s_o + \" \" * (cell_w - len(s_o)) + \"|\" + '\\n'\n",
" i+=1\n",
" s += ts\n",
" #print(s)\n",
" display(Markdown(s))\n",
" return s if ret_mdown else None\n",
" else:\n",
" jupyter_print([obj])\n",
" except Exception as e:\n",
" print(ts)\n",
" pp(obj) \n",
"\n",
"jp = jupyter_print"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## output progress printing:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"class progress_indicator(object):\n",
" \n",
" def __init__(self, n, description=\"progress\"):\n",
" self.w = widgets.IntProgress(value=0, min=0,max=n, description = description)\n",
" display(self.w)\n",
" def update(self, dn=1):\n",
" self.w.value += dn\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"----\n",
"## load datasets"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"def set_path(b):\n",
" with out_areas[\"load\"]:\n",
" clear_output()\n",
" mp(\"----\")\n",
" files = sorted(glob.glob(shown_widgets[\"root_path\"].value + \"/*.json\"))\n",
" \n",
" if len(files) == 0:\n",
" sys.stderr.write(\"ERROR: no json files available in \" + shown_widgets[\"root_path\"].value + \"\\n\")\n",
" set_widget_visibility([\"file_range\",\n",
" \"only_emoticons\",\n",
" \"k_means_cluster\",\n",
" \"n_top_emojis\",\n",
" \"load_data\"], False)\n",
" return\n",
" \n",
" mp(\"**available files:**\")\n",
" jp(files, headers=[\"fileindex\",\"filepath\"])\n",
" set_widget_visibility([\"file_range\",\n",
" \"only_emoticons\",\n",
" \"k_means_cluster\",\n",
" \"n_top_emojis\",\n",
" \"load_data\"], True)\n",
" shown_widgets[\"file_range\"].min=0\n",
" shown_widgets[\"file_range\"].max=len(files) -1\n",
"\n",
"def load_data(b):\n",
" global sdm\n",
" with out_areas[\"load\"]:\n",
" clear_output()\n",
" mp(\"----\")\n",
" \n",
" r = shown_widgets[\"file_range\"].value\n",
" r = (r[0], r[1] + 1) # range has to be exclusive according to the last element!\n",
" \n",
" p = progress_indicator(r[1] - r[0], \"reading progress\")\n",
" \n",
" sdm = stl.sample_data_manager.generate_and_read(path=shown_widgets[\"root_path\"].value,\n",
" n_top_emojis=shown_widgets[\"n_top_emojis\"].value,\n",
" file_range=range(r[0], r[1]),\n",
" n_kmeans_cluster=shown_widgets[\"k_means_cluster\"].value,\n",
" progress_callback=p.update)\n",
" shown_widgets[\"batch_size\"].max = len(sdm.labels)\n",
" \n",
" \n",
"# linking functions with buttons:\n",
"shown_widgets[\"set_path\"].on_click(set_path)\n",
"shown_widgets[\"load_data\"].on_click(load_data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## train"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"def train(b):\n",
" global sdm\n",
" global pm\n",
" global tr\n",
" with out_areas[\"train\"]:\n",
" clear_output()\n",
" mp(\"----\")\n",
" if sdm is None or pm is None:\n",
" sys.stderr.write(\"ERROR: sample data and/or classifier missing!\\n\")\n",
" return\n",
" \n",
" batch_size = shown_widgets[\"batch_size\"].value\n",
" val_split = shown_widgets[\"val_split\"].value\n",
" n_epochs = shown_widgets[\"n_epochs\"].value\n",
" \n",
" print(\"update train test split:\")\n",
" sdm.create_train_test_split(split=val_split)\n",
" batch_n = len(sdm.X) // batch_size\n",
" \n",
" print(\"fit\")\n",
" \n",
" p = progress_indicator(batch_n)\n",
" \n",
" tr = stl.trainer(sdm=sdm, pm=pm)\n",
" tr.fit(progress_callback=p.update, batch_size=batch_size, n_epochs=n_epochs)\n",
" \n",
"\n",
"# linking:\n",
"shown_widgets[\"train\"].on_click(train)\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## create classifier"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"keras_acivations = [\n",
" \"softmax\",\n",
" \"elu\",\n",
" \"selu\",\n",
" \"softplus\",\n",
" \"softsign\",\n",
" \"relu\",\n",
" \"tanh\",\n",
" \"sigmoid\",\n",
" \"hard_sigmoid\",\n",
" \"linear\",\n",
" \"None\"\n",
"]\n",
"\n",
"def populate_keras_options(b):\n",
" n_layers = shown_widgets[\"n_keras_layer\"].value\n",
" hbox_neurons = shown_widgets[\"n_keras_neurons\"]\n",
" hbox_funcs = shown_widgets[\"keras_funcs\"]\n",
" \n",
" hbox_neurons.children = [widgets.IntText(description = str(i)) for i in range(n_layers)]\n",
" hbox_funcs.children = [widgets.Dropdown(options=keras_acivations,description = str(i)) for i in range(n_layers)]\n",
" \n",
" #hbox_neurons.children[-1].disabled = True\n",
"\n",
"def create_classifier(b):\n",
" global sdm\n",
" global pm\n",
" global tr\n",
" with out_areas[\"create\"]:\n",
" clear_output()\n",
" mp(\"----\")\n",
" if sdm is None:\n",
" sys.stderr.write(\"load a dataset first!\\n\")\n",
" return\n",
" \n",
" chosen_classifier = classifier_tab.get_title(classifier_tab.selected_index)\n",
" \n",
" mp(\"**chosen classifier**: `\" + chosen_classifier + \"`\")\n",
" \n",
" # TODO: add more classifier options here:\n",
" if chosen_classifier is 'keras':\n",
" sdm.create_train_test_split()\n",
" \n",
" n_layers = shown_widgets[\"n_keras_layer\"].value\n",
" hbox_neurons = shown_widgets[\"n_keras_neurons\"]\n",
" hbox_funcs = shown_widgets[\"keras_funcs\"]\n",
"\n",
" layers = []\n",
" for i in range(n_layers):\n",
" func = hbox_funcs.children[i].value\n",
" if func == 'None':\n",
" func = None\n",
" layers.append((hbox_neurons.children[i].value, func))\n",
" \n",
" # modify last layer:\n",
" layers[-1] = (sdm.y.shape[1], layers[-1][1])\n",
" \n",
" mp(\"**layers:** \")\n",
" jp(layers, headers=['#neurons', 'activation_func'])\n",
"\n",
" pm = stl.pipeline_manager.create_keras_pipeline_with_vectorizer(vectorizer=TfidfVectorizer(stop_words='english'),\n",
" layers=layers, sdm=sdm)\n",
"\n",
"# link\n",
"shown_widgets[\"n_keras_layer\"].observe(populate_keras_options)\n",
"shown_widgets[\"create_classifier\"].on_click(create_classifier)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@ -122,7 +122,7 @@ def get_wordnet_pos(treebank_tag):
class sample_data_manager(object): class sample_data_manager(object):
@staticmethod @staticmethod
def generate_and_read(path:str, only_emoticons=True, apply_stemming=True, n_top_emojis=-1, file_range=None, n_kmeans_cluster=-1): def generate_and_read(path:str, only_emoticons=True, apply_stemming=True, n_top_emojis=-1, file_range=None, n_kmeans_cluster=-1, progress_callback=None):
""" """
generate, read and process train data in one step. generate, read and process train data in one step.
@ -136,7 +136,7 @@ class sample_data_manager(object):
@return: sample_data_manager object @return: sample_data_manager object
""" """
sdm = sample_data_manager(path) sdm = sample_data_manager(path)
sdm.read_files(file_index_range=range(sdm.n_files) if file_range is None else file_range, only_emoticons=only_emoticons) sdm.read_files(file_index_range=range(sdm.n_files) if file_range is None else file_range, only_emoticons=only_emoticons, progress_callback=progress_callback)
if apply_stemming: if apply_stemming:
sdm.apply_stemming_and_lemmatization() sdm.apply_stemming_and_lemmatization()
@ -176,7 +176,7 @@ class sample_data_manager(object):
self.kmeans_cluster = None self.kmeans_cluster = None
self.label_binarizer = None self.label_binarizer = None
def read_files(self, file_index_range:list, only_emoticons=True): def read_files(self, file_index_range:list, only_emoticons=True, progress_callback=None):
""" """
reading (multiple) files to one panda table. reading (multiple) files to one panda table.
@ -190,7 +190,8 @@ class sample_data_manager(object):
self.raw_data = pd.read_json(self.json_files[i], encoding="utf-8") self.raw_data = pd.read_json(self.json_files[i], encoding="utf-8")
else: else:
self.raw_data = self.raw_data.append(pd.read_json(self.json_files[i], encoding="utf-8")) self.raw_data = self.raw_data.append(pd.read_json(self.json_files[i], encoding="utf-8"))
if progress_callback is not None:
progress_callback()
self.emojis = self.raw_data['EMOJI'] self.emojis = self.raw_data['EMOJI']
self.plain_text = self.raw_data['text'] self.plain_text = self.raw_data['text']
@ -500,7 +501,7 @@ class trainer(object):
self.sdm = sdm self.sdm = sdm
self.pm = pm self.pm = pm
def fit(self, max_size=10000, disabled_fit_steps=['vectorizer']): def fit(self, max_size=10000, disabled_fit_steps=['vectorizer'], keras_batch_fitting_layer=['keras_model'], batch_size=None, n_epochs=1, progress_callback=None):
""" """
fitting data in the pipeline. Because we don't want to refit the vectorizer, the pipeline models containing the vectorizer have to be named explicitly fitting data in the pipeline. Because we don't want to refit the vectorizer, the pipeline models containing the vectorizer have to be named explicitly
@ -513,22 +514,44 @@ class trainer(object):
disabled_fits = {} disabled_fits = {}
disabled_fit_transforms = {} disabled_fit_transforms = {}
disabled_keras_fits = {}
named_steps = self.pm.pipeline.named_steps named_steps = self.pm.pipeline.named_steps
for s in disabled_fit_steps: for s in disabled_fit_steps:
# now it gets a little bit dirty: # now it gets really dirty:
# replace fit functions we don't want to call again (e.g. for vectorizers) # replace fit functions we don't want to call again (e.g. for vectorizers)
disabled_fits[s] = named_steps[s].fit disabled_fits[s] = named_steps[s].fit
disabled_fit_transforms[s] = named_steps[s].fit_transform disabled_fit_transforms[s] = named_steps[s].fit_transform
named_steps[s].fit = lambda self, X, y=None: self named_steps[s].fit = lambda self, X, y=None: self
named_steps[s].fit_transform = named_steps[s].transform named_steps[s].fit_transform = named_steps[s].transform
self.pm.fit(X = self.sdm.X[:max_size], y = self.sdm.y[:max_size]) for k in keras_batch_fitting_layer:
# forcing batch fitting on keras
disabled_keras_fits[k]=named_steps[k].fit
named_steps[k].fit = lambda X, y: named_steps[k].train_on_batch(X.todense(), y) # ← why has keras no sparse support on batch progressing!?!?!
if batch_size is None:
self.pm.fit(X = self.sdm.X[:max_size], y = self.sdm.y[:max_size])
else:
n = len(self.sdm.X) // batch_size
for i in range(n_epochs):
for j in range(n):
self.pm.fit(X = np.array(self.sdm.X[j*batch_size:(j+1)*batch_size]), y = np.array(self.sdm.y[j*batch_size:(j+1)*batch_size]))
if progress_callback is not None:
progress_callback()
pred, yt = self.test()
mean_squared_error = ((pred - yt)**2).mean(axis=0)
print("#" + str(j) + ": loss: ", mean_squared_error)
# restore replaced fit functions: # restore replaced fit functions:
for s in disabled_fit_steps: for s in disabled_fit_steps:
named_steps[s].fit = disabled_fits[s] named_steps[s].fit = disabled_fits[s]
named_steps[s].fit_transform = disabled_fit_transforms[s] named_steps[s].fit_transform = disabled_fit_transforms[s]
for k in keras_batch_fitting_layer:
named_steps[k].fit = disabled_keras_fits[k]
def test(self): def test(self):
''' '''