From 55bd7a9b3a81346441f68cc16492c0fe0d67fe34 Mon Sep 17 00:00:00 2001 From: Jonas Weinz Date: Tue, 26 Jun 2018 20:47:33 +0200 Subject: [PATCH] minor fixes --- .../simple_approach/Continous_Learner.ipynb | 135 ++++++++++++++++-- 1 file changed, 124 insertions(+), 11 deletions(-) diff --git a/Project/simple_approach/Continous_Learner.ipynb b/Project/simple_approach/Continous_Learner.ipynb index 1738d1a..5b0958c 100644 --- a/Project/simple_approach/Continous_Learner.ipynb +++ b/Project/simple_approach/Continous_Learner.ipynb @@ -11,9 +11,31 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[nltk_data] Downloading package punkt to /home/jonas/nltk_data...\n", + "[nltk_data] Package punkt is already up-to-date!\n", + "[nltk_data] Downloading package averaged_perceptron_tagger to\n", + "[nltk_data] /home/jonas/nltk_data...\n", + "[nltk_data] Package averaged_perceptron_tagger is already up-to-\n", + "[nltk_data] date!\n", + "[nltk_data] Downloading package wordnet to /home/jonas/nltk_data...\n", + "[nltk_data] Package wordnet is already up-to-date!\n" + ] + } + ], "source": [ "import simple_twitter_learning as stl\n", "import glob\n", @@ -37,7 +59,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -92,9 +114,48 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/markdown": [ + "----" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/markdown": [ + "## User Interface" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4fd5552e6a024dcaa0f35a594c77ae99", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Tab(children=(VBox(children=(HBox(children=(Text(value='./data_en/', description='root_path'), Button(descript…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "mp(\"----\")\n", "mp(\"## User Interface\")\n", @@ -174,6 +235,18 @@ " ]\n", " ], \n", " \"train\" )\n", + "create_area(\"playground 😎\",\n", + " [\n", + " [\n", + " (widgets.Text(),\"test_input\"),\n", + " (widgets.HTML(),\"prediction\")\n", + " ],\n", + " [\n", + " (widgets.Checkbox(),\"show_sorted_list\")\n", + " ]\n", + " ],\n", + " \"playground\")\n", + "\n", "tab_manager" ] }, @@ -187,7 +260,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -205,7 +278,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -293,7 +366,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -317,7 +390,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -381,7 +454,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -425,7 +498,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -541,6 +614,46 @@ "\n", "\n" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## testing area" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "def test_input(b):\n", + " global sdm\n", + " global pm\n", + " global tr\n", + " with out_areas[\"playground\"]:\n", + " clear_output()\n", + " mp(\"----\")\n", + " if pm is None:\n", + " sys.stderr.write(\"ERROR: load or create classifier first\")\n", + " return\n", + " X = shown_widgets[\"test_input\"].value\n", + " pred = pm.predict([X])\n", + " shown_widgets[\"prediction\"].value = \"

\" + str(stl.sent2emoji(pred)[0]) + \"

\"\n", + " if shown_widgets[\"show_sorted_list\"].value:\n", + " mp(\"## \" + \"\".join(stl.edist.sentiment_vector_to_emoji(pred, only_emoticons=True, n_results=100)))\n", + "\n", + "#link\n", + "shown_widgets[\"test_input\"].observe(test_input)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": {