diff --git a/Project/simple_approach/simple_twitter_learning.ipynb b/Project/simple_approach/simple_twitter_learning.ipynb index a69701f..eccd552 100644 --- a/Project/simple_approach/simple_twitter_learning.ipynb +++ b/Project/simple_approach/simple_twitter_learning.ipynb @@ -22,7 +22,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -36,7 +36,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -60,7 +60,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -76,7 +76,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -99,7 +99,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -1191,7 +1191,7 @@ "[68733 rows x 9 columns]" ] }, - "execution_count": 5, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -1210,7 +1210,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -1229,7 +1229,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -1247,7 +1247,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -1264,7 +1264,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -1277,18 +1277,11 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ - "mlb_multi = MultiLabelBinarizer()\n", - "mlb_single = MultiLabelBinarizer()\n", - "\n", - "multi_labels = mlb_multi.fit_transform(emojis)\n", - "single_labels = mlb_single.fit_transform(np.array([latest(x) for x in emojis]))\n", - "\n", - "mlb = mlb_single if SINGLE_LABEL else mlb_multi\n", - "labels = single_labels if SINGLE_LABEL else multi_labels" + "labels = [emoji2sent(latest(x)) for x in emojis]" ] }, { @@ -1300,7 +1293,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -1341,7 +1334,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -1350,16 +1343,16 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ - "y1_weights = np.array([(sum([emoji_weights[e] for e in e_list]) / len(e_list)) if len(e_list) > 0 else 0 for e_list in mlb.inverse_transform(y1)])" + "y1_weights = np.array([(sum([emoji_weights[e] for e in e_list]) / len(e_list)) if len(e_list) > 0 else 0 for e_list in sent2emoji(y1)])" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -1619,7 +1612,9 @@ "outputs": [], "source": [ "# build a dataframe to visualize test results:\n", - "testlist = pd.DataFrame({'text': Xt1, 'teacher': (mlb_single if SINGLE_LABEL else mlb).inverse_transform(yt1), 'predict': (mlb_single if SINGLE_LABEL else mlb).inverse_transform(binary_pred)})" + "testlist = pd.DataFrame({'text': Xt1, \n", + " 'teacher': mlb_single.inverse_transform(yt1) if SINGLE_LABEL else sent2emoji(yt1), \n", + " 'predict': mlb_single.inverse_transform(binary_pred) if SINGLE_LABEL else sent2emoji(binary_pred)})" ] }, { @@ -2214,7 +2209,7 @@ " \n", " binary_pred = np.array(binary_pred)\n", " \n", - " display(Markdown(\"# \" + str((mlb_single if SINGLE_LABEL else mlb).inverse_transform(binary_pred))))\n", + " display(Markdown(\"# \" + str(mlb_single.inverse_transform(binary_pred) if SINGLE_LABEL else sent2emoji(binary_pred))))\n", "\n", "b.on_click(handle_submit)\n", " \n",