filtered out empty labels
This commit is contained in:
parent
406460d031
commit
8300ed4510
@ -235,12 +235,38 @@ class sample_data_manager(object):
|
|||||||
|
|
||||||
# replacing keywords. TODO: maybe these information can be extracted and used
|
# replacing keywords. TODO: maybe these information can be extracted and used
|
||||||
plain_text_i = plain_text_i.str.replace("(<EMOJI>|<USER>|<HASHTAG>)","").str.replace("[" + "".join(list(emoji_blacklist)) + "]","")
|
plain_text_i = plain_text_i.str.replace("(<EMOJI>|<USER>|<HASHTAG>)","").str.replace("[" + "".join(list(emoji_blacklist)) + "]","")
|
||||||
|
|
||||||
|
# filter empty labels
|
||||||
|
empty_labels = []
|
||||||
|
|
||||||
|
for e in emojis_i:
|
||||||
|
if len(e) < 1:
|
||||||
|
empty_labels.append(True)
|
||||||
|
else:
|
||||||
|
empty_labels.append(False)
|
||||||
|
|
||||||
|
empty_labels = np.array(empty_labels, dtype=np.bool_)
|
||||||
|
|
||||||
|
plain_text_i = plain_text_i[np.invert(empty_labels)]
|
||||||
|
emojis_i = emojis_i[np.invert(empty_labels)]
|
||||||
|
|
||||||
|
print("ignored " + str(np.sum(empty_labels)) + " empty labels")
|
||||||
|
|
||||||
if not emoji_mean:
|
if not emoji_mean:
|
||||||
# so far filtering for the latest emoji. TODO: maybe there are also better approaches
|
# so far filtering for the latest emoji. TODO: maybe there are also better approaches
|
||||||
labels_i = emoji2sent([latest(e) for e in emojis_i], only_emoticons=only_emoticons )
|
labels_i = emoji2sent([latest(e) for e in emojis_i], only_emoticons=only_emoticons )
|
||||||
else:
|
else:
|
||||||
labels_i = np.array([np.mean(emoji2sent(e, only_emoticons=only_emoticons), axis=0).tolist() for e in emojis_i])
|
tmp = [np.nanmean(emoji2sent(e, only_emoticons=only_emoticons), axis=0, dtype=float) for e in emojis_i]
|
||||||
|
c = 0
|
||||||
|
for t in tmp:
|
||||||
|
|
||||||
|
if str(type(t)) != "<class 'numpy.ndarray'>":
|
||||||
|
print(t, type(t))
|
||||||
|
print(emojis_i[c])
|
||||||
|
print(emoji2sent(emojis_i[c], only_emoticons=only_emoticons))
|
||||||
|
c += 1
|
||||||
|
|
||||||
|
labels_i = np.array(tmp, dtype=float)
|
||||||
|
|
||||||
# and filter out all samples we have no label for:
|
# and filter out all samples we have no label for:
|
||||||
wrong_labels = np.isnan(np.linalg.norm(labels_i, axis=1))
|
wrong_labels = np.isnan(np.linalg.norm(labels_i, axis=1))
|
||||||
@ -678,4 +704,4 @@ class trainer(object):
|
|||||||
self.sdm.create_train_test_split()
|
self.sdm.create_train_test_split()
|
||||||
return self.pm.predict(self.sdm.Xt, use_lemmatization=False, use_stemming=False), self.sdm.yt
|
return self.pm.predict(self.sdm.Xt, use_lemmatization=False, use_stemming=False), self.sdm.yt
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user