Datenstruktur zu Dictionary geändert

This commit is contained in:
aikira7 2018-06-27 16:01:10 +02:00
parent cd6167f80a
commit bde4216707

View File

@ -19,6 +19,12 @@ import pprint
# # Naive Approach
table = pd.read_csv('../Tools/emoji_descriptions.csv')
##Store table in the format:
## { index: [emoji, description]}
tableDict = {}
for index, row in table.iterrows():
tableDict.update({index: [row['character'], row['description']]})
#######################
# Helper functions
#######################
@ -37,15 +43,15 @@ def stemming(messages):
# * compare words to emoji descriptions
def evaluate_sentence(sentence, table, description_key = 'description', lang = 'eng', emojis_to_consider="all"):
def evaluate_sentence(sentence, description_key = 'description', lang = 'eng', emojis_to_consider="all"):
tokenized_sentence = word_tokenize(sentence)
n = len(tokenized_sentence)
l = table.shape[0]
matrix_list = []
for index, row in table.iterrows():
emoji_tokens = word_tokenize(row[description_key])
for index in tableDict.keys():
emoji_tokens = word_tokenize(tableDict[index][1])
m = len(emoji_tokens)
mat = np.zeros(shape=(m,n))
@ -79,23 +85,24 @@ def evaluate_sentence(sentence, table, description_key = 'description', lang = '
# emojis_to_consider can be either a list or "all"
def prepareData(stemming=False):
if(stemming):
table['description'] = stemming(table['description'])
for index in tableDict.keys():
tableDict[index][1] = stemming(tableDict[index][1])
#collect the emojis
lookup = {}
emoji_set = []
for index, row in table.iterrows():
lookup[index] = row['character']
emoji_set.append(row['character'])
for index in tableDict.keys():
lookup[index] = tableDict[index][0]
emoji_set.append(tableDict[index][0])
emoji_set = set(emoji_set)
return lookup
# make a prediction for an input sentence
def predict(sentence, lookup, emojis_to_consider="all", criteria="threshold", description_key='description', lang = 'eng', n=10, t=0.9):
def predict(sentence, lookup, emojis_to_consider="all", criteria="threshold", lang = 'eng', n=10, t=0.9):
result = evaluate_sentence(sentence, table, description_key, lang, emojis_to_consider=emojis_to_consider)
result = evaluate_sentence(sentence, lang, emojis_to_consider=emojis_to_consider)
try:
if(criteria=="summed"):
@ -118,20 +125,22 @@ def predict(sentence, lookup, emojis_to_consider="all", criteria="threshold", de
results2.append(results[i])
indexes = indexes2
results = results2
indexes = indexes[0:n]
results = results[0:n]
# build a result table
table_array = [[lookup[indexes[i]], str(table.iloc[indexes[i]][description_key])] for i in range(n) ]
table_array = [lookup[indexes[i]] for i in range(n) ]
table_frame = pd.DataFrame(table_array, columns=[criteria, 'description'])
#table_frame = pd.DataFrame(table_array, columns=[criteria, 'description'])
#display(table_frame)
return list(table_frame[criteria]), results
return table_array, results
except ZeroDivisionError as err:
print("There seems to be a problem with the input format. Please enter a nonempty string")
return [], []
#predict("I like to travel by train", description_key='description' , lang='eng')