merge prediction optimization

This commit is contained in:
Carsten 2018-06-26 23:05:27 +02:00
parent 33b1e26a2a
commit cd6167f80a

View File

@ -139,7 +139,9 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 5, "execution_count": 5,
"metadata": {}, "metadata": {
"collapsed": true
},
"outputs": [], "outputs": [],
"source": [ "source": [
"#sys.path.append(\"..\")\n", "#sys.path.append(\"..\")\n",
@ -151,7 +153,9 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 6, "execution_count": 6,
"metadata": {}, "metadata": {
"collapsed": true
},
"outputs": [], "outputs": [],
"source": [ "source": [
"tmp_dict = clf_naive.prepareData()" "tmp_dict = clf_naive.prepareData()"
@ -167,8 +171,10 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 25, "execution_count": 7,
"metadata": {}, "metadata": {
"collapsed": true
},
"outputs": [], "outputs": [],
"source": [ "source": [
"def merged_prediction(msg , split = 0.5 , number = 8, target_emojis = top_emojis):\n", "def merged_prediction(msg , split = 0.5 , number = 8, target_emojis = top_emojis):\n",
@ -178,10 +184,23 @@
" number_naive = round((1-split)*number)\n", " number_naive = round((1-split)*number)\n",
" \n", " \n",
" #predict emojis with the naive approach\n", " #predict emojis with the naive approach\n",
" prediction_naive = clf_naive.predict(sentence = msg, lookup= tmp_dict, n = number_naive)\n", " prediction_naive , prediction_naive_values = clf_naive.predict(sentence = msg, lookup= tmp_dict, n = number_naive)\n",
"\n",
" #filter 0 values\n",
" tmp1 = []\n",
" tmp2 = []\n",
" epsilon = 0.0001\n",
"\n",
" for i in range(len(prediction_naive)):\n",
" if(abs(prediction_naive_values[i]) > epsilon):\n",
" tmp1.append(prediction_naive[i])\n",
" tmp2.append(prediction_naive[i])\n",
"\n",
" prediction_naive = tmp1\n",
" prediction_naive_values = tmp2\n",
" \n", " \n",
" if(len(prediction_naive) < number_naive):\n", " if(len(prediction_naive) < number_naive):\n",
" print(\"only few matches\")\n", " #print(\"only few matches\")\n",
" number_advanced = number - len(prediction_naive)\n", " number_advanced = number - len(prediction_naive)\n",
" \n", " \n",
" #print(number, number_advanced, number_naive)\n", " #print(number, number_advanced, number_naive)\n",
@ -222,6 +241,7 @@
" #p = ed.sentiment_vector_to_emoji(sent,n_results = 8, custom_target_emojis=top_emojis)\n", " #p = ed.sentiment_vector_to_emoji(sent,n_results = 8, custom_target_emojis=top_emojis)\n",
" \n", " \n",
" #merged prediction\n", " #merged prediction\n",
" if(current_message != \"\"):\n",
" p = merged_prediction(msg = current_message, target_emojis=top_emojis)\n", " p = merged_prediction(msg = current_message, target_emojis=top_emojis)\n",
"\n", "\n",
" predictions = p\n", " predictions = p\n",
@ -527,13 +547,13 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 24, "execution_count": 23,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"data": { "data": {
"application/vnd.jupyter.widget-view+json": { "application/vnd.jupyter.widget-view+json": {
"model_id": "9b6fd63901c84db9a5a2d10399053cb3", "model_id": "3b8a6a311c1e4a1bb2b711d59246577a",
"version_major": 2, "version_major": 2,
"version_minor": 0 "version_minor": 0
}, },
@ -543,16 +563,6 @@
}, },
"metadata": {}, "metadata": {},
"output_type": "display_data" "output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"8 4 4\n",
"8 4 4\n",
"8 4 4\n",
"8 4 4\n"
]
} }
], ],
"source": [ "source": [