FastText eingebunden

This commit is contained in:
Maren 2018-07-21 15:15:04 +02:00
parent 7bc2215ec9
commit e5f6029172
2 changed files with 12 additions and 8 deletions

Binary file not shown.

View File

@ -42,14 +42,18 @@ def stemming(message):
# * compare words to emoji descriptions # * compare words to emoji descriptions
def evaluate_sentence(sentence, description_key = 'description', lang = 'eng', emojis_to_consider="all",\ def evaluate_sentence(sentence, description_key = 'description', lang = 'eng', emojis_to_consider="all",\
stem=True, use_wordnet=True): stem=True, embeddings="wordnet"):
# assumes there is a trained w2v model stored in the same directory! # assumes there is a trained w2v model stored in the same directory!
__location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) __location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))
if use_wordnet==False:
wv = KeyedVectors.load(str(__location__)+"/word2vec.model", mmap='r')
if embeddings=="word2Vec":
wv = KeyedVectors.load(str(__location__)+"/word2vec.model", mmap='r')
elif embeddings=="fastText":
wv = KeyedVectors.load("/fastTextVectors.kv", mmap='r')
if (stem): if (stem):
sentence = stemming(sentence) sentence = stemming(sentence)
tokenized_sentence = word_tokenize(sentence) tokenized_sentence = word_tokenize(sentence)
n = len(tokenized_sentence) n = len(tokenized_sentence)
matrix_list = [] matrix_list = []
@ -61,7 +65,7 @@ def evaluate_sentence(sentence, description_key = 'description', lang = 'eng', e
mat = np.zeros(shape=(m,n)) mat = np.zeros(shape=(m,n))
for i in range(len(emoji_tokens)): for i in range(len(emoji_tokens)):
for j in range(len(tokenized_sentence)): for j in range(len(tokenized_sentence)):
if use_wordnet: if embeddings=="wordnet":
syn1 = wordnet.synsets(emoji_tokens[i],lang=lang) syn1 = wordnet.synsets(emoji_tokens[i],lang=lang)
if len(syn1) == 0: if len(syn1) == 0:
continue continue
@ -74,7 +78,7 @@ def evaluate_sentence(sentence, description_key = 'description', lang = 'eng', e
val = w1.wup_similarity(w2) val = w1.wup_similarity(w2)
if val is None: if val is None:
continue continue
else: elif (embeddings == "word2Vec" or embeddings == "fastText"):
try: try:
val = wv.similarity(emoji_tokens[i], tokenized_sentence[j]) val = wv.similarity(emoji_tokens[i], tokenized_sentence[j])
except KeyError: except KeyError:
@ -112,11 +116,11 @@ def prepareData(stem=True, lower=True):
return lookup return lookup
# make a prediction for an input sentence # make a prediction for an input sentence
# use_wordnet=True --> use wordnet similarites, otherwise use Word2Vec # embeddings = ["wordnet", "word2Vec", "fastText"]
def predict(sentence, lookup, emojis_to_consider="all", criteria="threshold", lang = 'eng',\ def predict(sentence, lookup, emojis_to_consider="all", criteria="threshold", lang = 'eng',\
use_wordnet=True, n=10, t=0.9): embeddings="wordnet", n=10, t=0.9):
result = evaluate_sentence(sentence, lang, emojis_to_consider=emojis_to_consider, use_wordnet=use_wordnet) result = evaluate_sentence(sentence, lang, emojis_to_consider=emojis_to_consider, embeddings=embeddings)
try: try:
if(criteria=="summed"): if(criteria=="summed"):