FastText eingebunden
This commit is contained in:
		
							
								
								
									
										
											BIN
										
									
								
								Project/naive_approach/fastTextVectors.kv
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								Project/naive_approach/fastTextVectors.kv
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| @ -42,14 +42,18 @@ def stemming(message): | ||||
|  | ||||
| # * compare words to emoji descriptions | ||||
| def evaluate_sentence(sentence, description_key = 'description', lang = 'eng', emojis_to_consider="all",\ | ||||
|                       stem=True, use_wordnet=True): | ||||
|                       stem=True, embeddings="wordnet"): | ||||
|     # assumes there is a trained w2v model stored in the same directory! | ||||
|     __location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) | ||||
|     if use_wordnet==False: | ||||
|      | ||||
|     if embeddings=="word2Vec": | ||||
|         wv = KeyedVectors.load(str(__location__)+"/word2vec.model", mmap='r') | ||||
|     elif embeddings=="fastText": | ||||
|         wv = KeyedVectors.load("/fastTextVectors.kv", mmap='r') | ||||
|          | ||||
|     if (stem): | ||||
|         sentence = stemming(sentence) | ||||
|          | ||||
|     tokenized_sentence = word_tokenize(sentence) | ||||
|     n = len(tokenized_sentence) | ||||
|     matrix_list = [] | ||||
| @ -61,7 +65,7 @@ def evaluate_sentence(sentence, description_key = 'description', lang = 'eng', e | ||||
|         mat = np.zeros(shape=(m,n)) | ||||
|         for i in range(len(emoji_tokens)): | ||||
|             for j in range(len(tokenized_sentence)): | ||||
|                 if use_wordnet: | ||||
|                 if embeddings=="wordnet": | ||||
|                     syn1 = wordnet.synsets(emoji_tokens[i],lang=lang) | ||||
|                     if len(syn1) == 0: | ||||
|                         continue | ||||
| @ -74,7 +78,7 @@ def evaluate_sentence(sentence, description_key = 'description', lang = 'eng', e | ||||
|                     val = w1.wup_similarity(w2) | ||||
|                     if val is None: | ||||
|                         continue | ||||
|                 else: | ||||
|                 elif (embeddings == "word2Vec" or embeddings == "fastText"): | ||||
|                     try: | ||||
|                         val = wv.similarity(emoji_tokens[i], tokenized_sentence[j]) | ||||
|                     except KeyError: | ||||
| @ -112,11 +116,11 @@ def prepareData(stem=True, lower=True): | ||||
|     return lookup | ||||
|  | ||||
| # make a prediction for an input sentence | ||||
| # use_wordnet=True --> use wordnet similarites, otherwise use Word2Vec | ||||
| # embeddings = ["wordnet", "word2Vec", "fastText"] | ||||
| def predict(sentence, lookup, emojis_to_consider="all", criteria="threshold", lang = 'eng',\ | ||||
|             use_wordnet=True, n=10, t=0.9): | ||||
|             embeddings="wordnet", n=10, t=0.9): | ||||
|  | ||||
|     result = evaluate_sentence(sentence, lang, emojis_to_consider=emojis_to_consider, use_wordnet=use_wordnet) | ||||
|     result = evaluate_sentence(sentence, lang, emojis_to_consider=emojis_to_consider, embeddings=embeddings) | ||||
|      | ||||
|     try: | ||||
|         if(criteria=="summed"): | ||||
|  | ||||
		Reference in New Issue
	
	Block a user