# Emoji Prediction for Text Messages

Carsten Draschner- 2719095Maren Pielka- 2468882Jonas Weinz- 2571421

#### **Motivation**

- In addition to the widespreadly used auto correction for texts and prediction of next words (i.e SwiftKey) propose also Emojis etc.
- Usage of Emojis are related to topics occuring in text message as well as to the writers sentiment
- Also Emojis are common to indicate writers sentiments
  - labeling for text messages
  - $\odot$   $\,$  with some noise and possible misunderstandings  $\,$ 
    - irony, sarcasm
    - insider

### Emoji Prediction - Topic vs Sentiment

#### Topic 🛲 🗃 🖼 🔞 🔞

- close to occuring words in text
- less interpretation
- no need for large intelligence

#### Sentiment 🛞 😌 😂

- not easy to interpret sentiment directly from text
- need of intelligence
- Machine learning and mining of text messages
- prediction can be tuned by reinforcement learning
  - i.e. by recognizing selected emoji after providing a set of best fitting emojis

# Preprocessing Data

## Getting data and resources

- get public twitter stream from the <u>Internet Archive</u> in JSON
- Emoji specification is <u>available</u> in an easy processable plain text format
- → raw data can easily be filtered to a huge set of messages containing emojis
- >3.000.000 english twitter messages containing emojis



### Preprocessing

#### For the emoji specifications:

- Lowercasing
- Stopword removal

#### For the text corpus:

- removed retweets
- removed URLs
- replaced emojis, usernames and hashtags with keywords and added them as own labels

| LINKED_USER            | lang | text                                                                                                                     | EMOJI           |   |
|------------------------|------|--------------------------------------------------------------------------------------------------------------------------|-----------------|---|
| D                      | en   | fashionbombdaily's photo <emoji><br/><emoji></emoji></emoji>                                                             | [👋, 🏐]          | 0 |
| D                      | en   | It's scary how on point my horoscope be<br><emoji< th=""><th>[6]</th><th>1</th></emoji<>                                 | [6]             | 1 |
| 0                      | en   | Woooaaaahhh <emoji></emoji>                                                                                              | [@]             | 2 |
| D                      | en   | <emoji> vivalcli: Portraits by Zhao Guojing an</emoji>                                                                   | [18]            | 3 |
| [@hiphopphiles]        | en   | <user> I wanna know too<emoji><br/><emoji></emoji></emoji></user>                                                        | [8,8]           | 4 |
| [@WizMommma]           | en   | <user> veda was yoda too <emoji><br/><emoji></emoji></emoji></user>                                                      | [ <b>⑧</b> , ♥] | 5 |
| D                      | en   | I'm less stressed about turning 30 now<br><emoji></emoji>                                                                | [@]             | 6 |
| 0                      | en   | Full charged. < EMOJI>                                                                                                   | [@]             | 7 |
| [@SeaDimon, @Isarsour] | en   | <user> That's part of the problem, (they) <use< th=""><th>[2]</th><th>8</th></use<></user>                               | [2]             | 8 |
| [@lan_khetye]          | en   | <user> got me emotional there<emoji><br/><emoji><em< th=""><th>[&amp;, ③, ③]</th><th>9</th></em<></emoji></emoji></user> | [&, ③, ③]       | 9 |

# Naive Approach

## Naive Approach







### Naive Approach - Different language: German



## Findings from the Naive approach

#### Positive

- The Naive approach is efficient in matching topic-related emojis to text which contains the respective specification
- I.e. "I like to drive my car", "I like soccer" etc)

#### æ 🕃

→ can roughly be used for topic dependent emoji prediction

#### Negative

- It fails in recognizing emotion-related emojis (smileys) ②
- sentiment is rarely related to used words in text
- $\rightarrow$  A more sophisticated approach is needed!

# Advanced Approach

### Advanced Approach: Outline



## Emoji distance

The distance or the correlation of sentiment of a pair of Emoticons

**Sentiment Space:** Transform Emoji into sentiment space to interpret each emoji as representation of its cluster or group of similar emojis

- 1-dim: Negative/Positive
- 2-dim: Negative/Positive, Neutrality
- 3-dim: Negative, Positive, Neutrality
- 6-dim: Sadness Anger Joy Fear Surprise Disgust

## Emoji distance

The distance or the correlation of sentiment of a pair of Emoticons

**Sentiment Space:** Transform Emoji into sentiment space to interpret each emoji as representation of its cluster or group of similar emojis

- 1-dim: Negative/Positive
- 2-dim: Negative/Positive, Neutrality
- 3-dim: Negative, Positive, Neutrality
- 6-dim: Sadness Anger Joy Fear Surprise Disgust

## Emoji representation

- 3-dimensional feature space
- The vector entries correspond to the relative occurrence of the emoji in different contexts.
- The possible contexts are "Positive", "Negative" and "Neutral".

We obtained this approach and the values from the work of *Novak et. al.*, 2015.

| Emoji/<br>Sentiment |               | ि ८<br>३७     | <b>::</b> |
|---------------------|---------------|---------------|-----------|
| Positive            | 0.269113<br>1 | 0.754660      | 0.162962  |
| Negative            | 0.480122<br>3 | 0.052905      | 0.555555  |
| Neutral             | 0.250764      | 0.192434<br>2 | 0.281481  |

### Problem specification and error function

- Using the 3-dimensional vector representation
- Distances Example
- Error function:
  - Euclidean distance of the prediction to the correct outcome in the feature space.
    - → regression problem

| Original<br>Emoji | Emojis with closest distance to the original emoji (rank 1 to 7) |
|-------------------|------------------------------------------------------------------|
| (```)<br>}        | 够േ⊜⊜⊜⊛                                                           |
|                   | <u> </u>                                                         |

# **Current Project Status**

### Training

#### • very first run so far:

- $\bigcirc$  using keras
- NN with three hidden layers (10000, 5000, 2500 Neurons)
- O 3D output in sentiment space, mean squared error as loss function
- $\odot$   $\,$  RELU as activation function  $\,$

trained on smaller twitter subset and only with the 20 most used emojis:

## (Very) First Results

| interactive tests:    |            |
|-----------------------|------------|
| sentence              | prediction |
| "I am so sad!"        |            |
| "I am so happy!"      |            |
| "I love you so much!" |            |

• on test dataset:

| predict | teacher | text                                           |
|---------|---------|------------------------------------------------|
| 3       | -       | I feel like I care so much more in every situa |
|         | ۲       | I did not meat to add that '2' therehavent     |
| ۲       | 0       | never                                          |
| ۲       | -       | Lmao on me!!! Wtf was he supposed to say       |
| \$      | 0       | This dude always help me get through my schoo  |

unfortunately still very random (2)

## Prospects and further Ideas

#### Prospects and further ideas

 Combine naive and advanced approach into a model that can deal with both topic-related and emotion-related emojis



### Prospects and further ideas (1)

#### • Design Feature Vector

- $\odot$   $\,$  Add more preprocessing options  $\,$ 
  - Stemming, Lemmatization, emoticon emoji replacement
- Compare different classifiers
  - Hyperparameter Tuning
- Compare different learning Approaches:
  - O Multiclass or Multidimensional Regression
  - Choose of sentiment dimensions
  - Modify the error function
- Resulting Demo Application
  - Searching and using for existing Chatbot/Chat/Dialog User Interface

### Prospects and further ideas (2)

#### • Multi Language Support

- currently english
- later german...

#### Handling Emoji Modifiers

- hair/skin colour
- O sex

#### • Consider the contexts of emoji usage

- $\bigcirc$  individual
- O dialog ("insider")
- overall

## References

#### References

Hallsmar, F. and Palm, J.: *Multi-class Sentiment Classification on Twitter using an Emoji Training Heuristic*, KTH Royal Institute of Technology, Stockholm 2016.

Novak, P.K.; Smailovic, J.; Sluban, B. and Mozetic, I.: *Sentiment of Emojis* (Journal Paper), PLoS ONE 2015.

Zhao, L. and Zeng, C.: *Using Neural Networks to Predict Emoji Usage from Twitter Data*, Stanford University, 2017.

# Thank you for your attention!