Emoji Prediction for Text Messages Final presentation 24.07.2018

Carsten Draschner Maren Pielka Jonas Weinz

- 2719095
- 2468882
- 2571421

Outline

- I. Introduction
- II. Naive Approach
- III. Advanced Approach
- IV. Merged Approach
- V. Discussion and Evaluation
- VI. References

Introduction

Motivation

- In addition to the widespreadly used auto correction for texts and prediction of next words (i.e SwiftKey) propose also Emoji Predictions
- Usage of larger Dataset including generate labeling (based on Emojis)
 - Search for multidimensional sentiment labels (instead of positive to negative)
 - Usage of Emojis are related to topics occuring in text message, as well as to the writers sentiment

Topic vs Sentiment Emojis

Topic 🚐 🚝 🎯 🎱

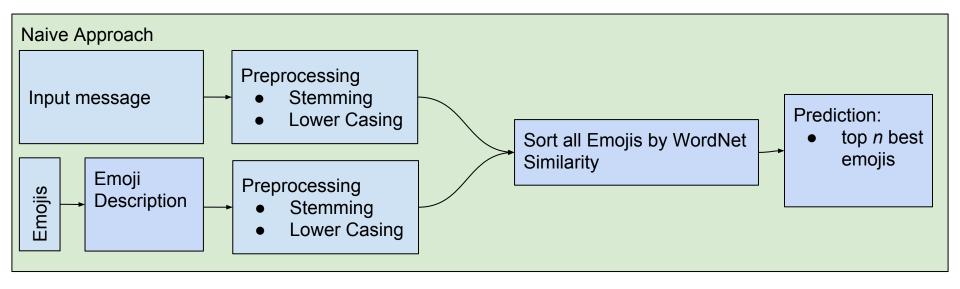
- close to occuring words in text
- less interpretation

Sentiment 😹 😃 😅

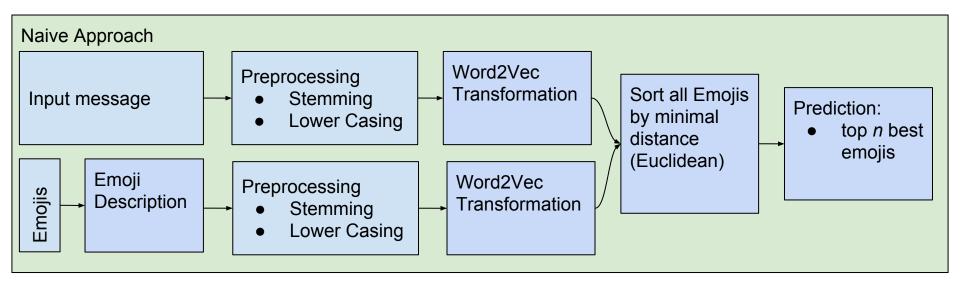
- not easy to interpret sentiment directly from text
- need of intelligence
- Machine learning and mining of text messages

Naive Approach

Naive Approach - Wordnet (slow)



Naive Approach - Word2Vec



Naive Approach

• Emoji Specifications (see [4])

Emoji	Specifications
	BIRTHDAY CAKE
Ø	HIGH-SPEED TRAIN
	FACE WITH ROLLING EYES

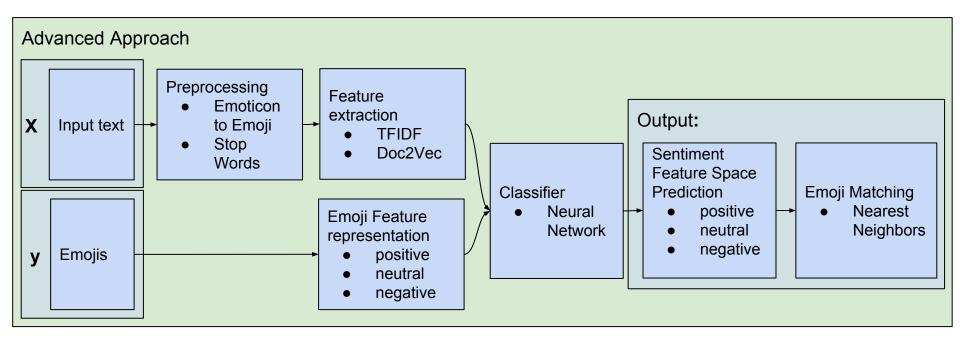
- Transform message to vector representation
- Matching by similarity or closest distance
- → Effective for topic-related emojis
- → Not good for emotion-related emojis (too complex)
- → Development of Advanced Approach

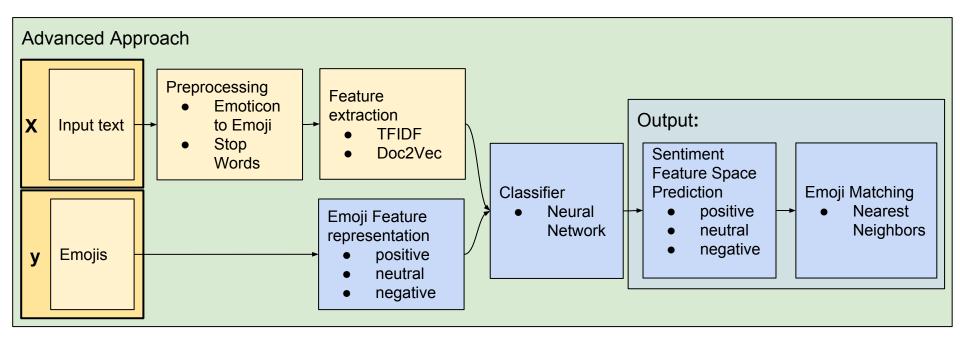
WordNet vs. Word2Vec & Distance

- WordNet
 - built in Similarity function
 - used on message words and all word in specifications
 - old Naive Approach (more intuitive similarity)
- Word2Vec & Distance
 - Vector Embedding of each Word
 - pairwise Euclidean distance of words in message and emoji specifications

→ we use "WordNet" because it performs better

Advanced Approach





Twitter Data to Feature Representation

Workflow

DATA

- Twitter Data
 - + Huge Dataset
 - + Interesting for Mining for Sentiment Analysis
 - + Broad Usage of Emojis
 - No true Labelings → have to construct our own based on Emojis
- Split each message into text as X and sentiment representation of emojis as y
 - also store metadata for additional input (see outlook)
- use emojis as sentiment label
 - \circ accepting noise

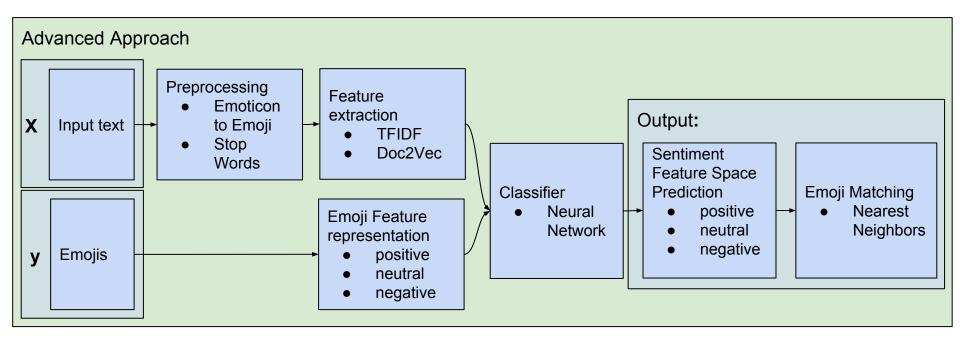
Feature extraction

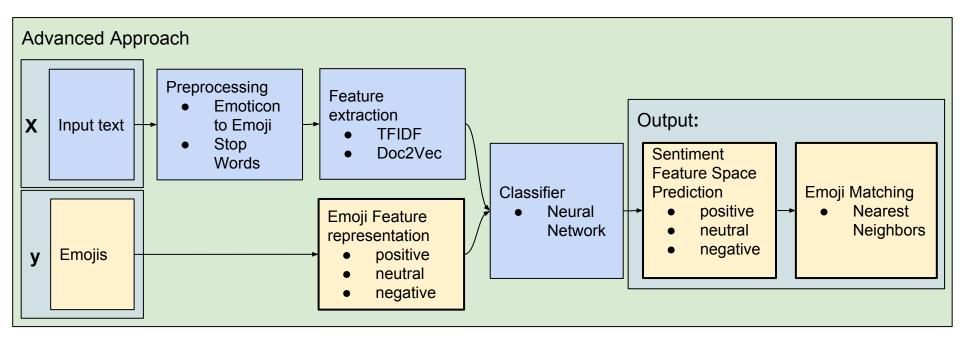
TFIDF

• Relative frequency of terms (TF), weighted by inverse document frequency (IDF)

Doc2Vec

- Feature representation of words, based on their semantic similarity
- Additional vector for each document (message)





Sentiment Space

Emoji Representation

- 3-dimensional feature space
- The vector entries correspond to the relative occurrence of the emoji in different contexts [2].
- The possible contexts are "Positive", "Negative" and "Neutral".

Emoji/ Sentiment	*	<u> (</u>	
positive	0.27	0.75	0.16
negative	0.48	0.05	0.56
neutral	0.25	0.19	0.28

Emoji Neighborhood

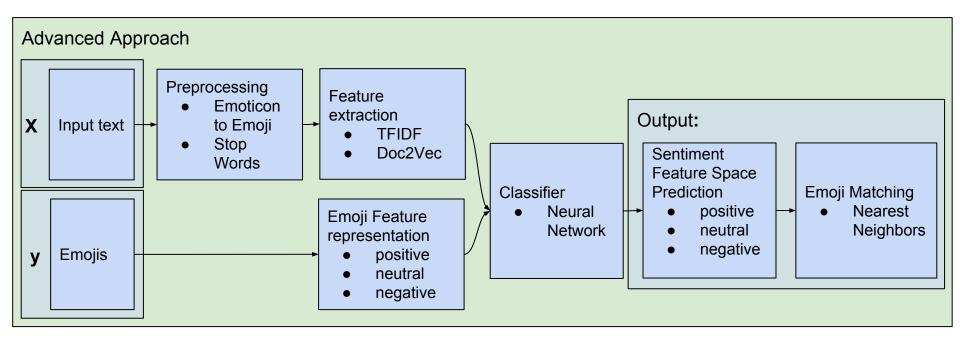
- Using the 3-dimensional vector representation
- Error function:
 - Euclidean distance of the prediction to the correct outcome in the feature space.
 - → Regression Problem

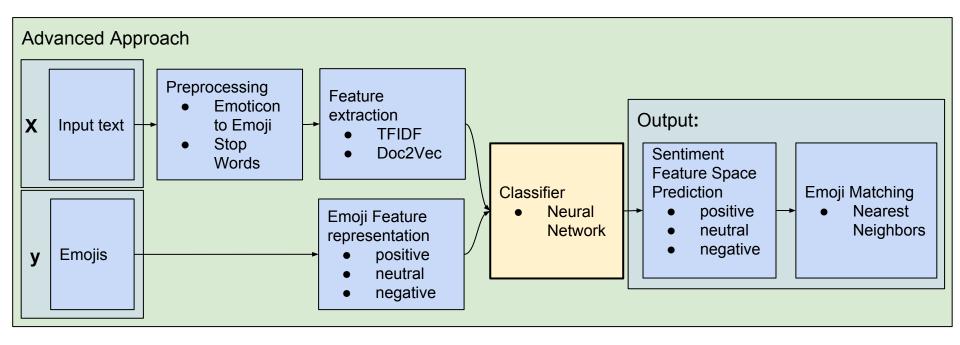
Distances example:

Emoji	Neighborhood
	G G 🙂 G 🙂 G 😜
	•••••••

Distribution of Emojis in Twitter Data 500000 Sentiment Related Emojis - Distribution in Sentiment Space 400000 sentiment score = positive - negative 0 Emoticon Emoji space -- sentiment-plot Emoticon Emoji space -- positive-negative-plot 0.6 0.70.6 0.5300000 ۲ 0 0.50.4 neutrality 5.0 methods 5.0 $\underset{0.3}{\text{negative}} 0.4$ 200000 1 0.20.2 0.10.1 100000 0.0 0.8 0.2 -0.4-0.20.0 0.20.40.6 0.30.40.50.6 0.80.7sentiment score positive Histogram of sorted emoji occurrences 0

NLP LAB 2018 - Emoji Prediction for Text Messages

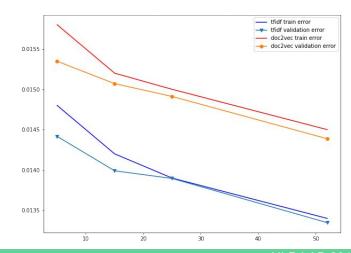




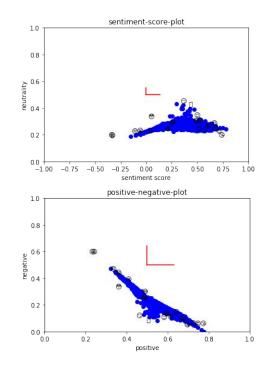
Training and Evaluation

Parameter

- training over 52 datasets
 - 1 Million messages used for training
- 3 hidden layers
- doc2vec vs. TFIDF

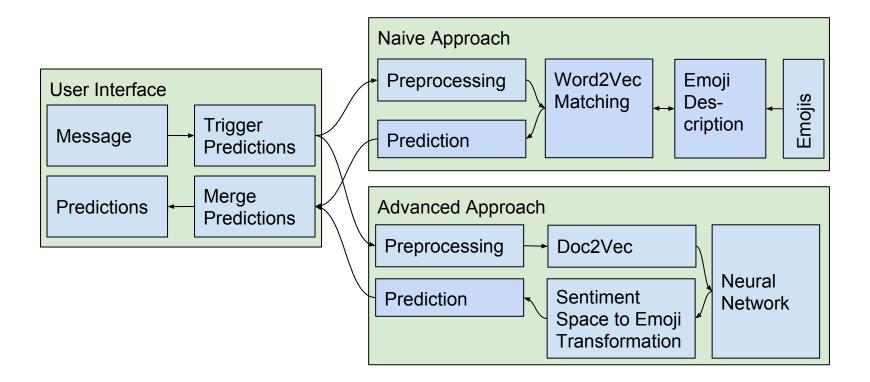


TFIDF plot validation set:



Merged Approach

Merged Approach - Design



User Interface

•	Implemented for interactive Hands On Using Jupyter widgets to have opportunity	2018-07-03 12:33:52.725504 hi	
	 o offer buttons labeled with predictions o also for potential reinforcement learning (see outlook) 	2018-07-03 12:34:26.707709 how	
•	Components	2018-07-03 12:34:27.045911	
	 Chat History Predictions (Buttons) 	 2018-07-03 12:34:27.092008	
	 Sentiment & Topic related 8 Predictions (usual 50/50 split) 	 2018-07-03 12:34:50.806964 car	
	 Message Input • 		2 4 4
		i hate trains	Sent

Discussion and Evaluation

Limitations and Problems

Dataset (Twitter Data)

- easy and free access
- no true labeling
 - have to use emoji as labeling
- few dialogues with deep emotions but bashing, sarcasm
 - emoji usage less likely to lead to a sentiment labeling

Emoji-Sentiment Representation (see Advanced Approach)

- Sentiment space + continuous labeling
- only 3 dimensions (very rough approximation of true sentiment)
 - Usage based on access to data for emoji to sentiment transformation
- but all in all not developed or improved on our own

Limitations and Problems - Evaluation

Evaluation - Metric

- Prediction based on regression so continuous results
 - \circ but not so intuitive whether prediction is good or bad
 - error based on our NN or on the used sentiment space
- Idea of emoji clustering as a smooth multiclass evaluation
 - k-means clustering on the top 20 most used emojis
 - \circ k = 5 yields meaningful clusters
 - could be used as an alternative performance measure
 - check if the regression result lies in the correct cluster
 - more interpretable than mean squared error
 - but not an exact measure

1: ['\`, '♥']

2: ['\2', '\2']

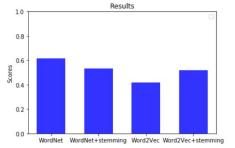
3: ['॑॑॑,', '☺', '⊜', '♥', 'ອ', '♡']

4: ['☆', '♀', '⇔', '☆']

5: ['♥', '♡', '嗡', '₩', '♡', '⊎']

Limitations and Problems - Evaluation

- Alternative Evaluation on 120 sentences
 - as validation data
 - designed to have a true labeling
 - 60 sentences topic, 60 sents sentiment
- Topic related
 - Compared different Vectorizers
 - Wordnet, Word2Vec, Stemming (on/off)



- Sentiment related
 - Compared different Vectorizers
 - TFIDF (acc = 85%), Doc2Vec (acc = 60%)

Examples

Topic Related	sentence	prediction
good examples	would you kiss a frog to get your prince	() o o o 🗑 🏂 🐸 💋
	what a beautiful dress	🙌 😄 😂 😁 😂 🦾
	do you ever climbed a mountain	😂 😅 😜 🏊 🎆 🔽 🚈
bad example	let's go out in a bar tonight	😂 😂 😂 🗆 👘 🍫 📊

Sentiment Related	sentence	prediction
good examples	I hate school	19 ≅ 19 2 ≈ ∞ 11 8
	I am so happy	☺ ☺ ♥ ₩ ₽ 0 0 0
	you are my best friend ever	⊜ ⇔ ⇔ ⇔ ⊕ ⊕ ∺ ⊖
bad example	I want to dance and sing aloud	≝ ⊜ () © e e ø e

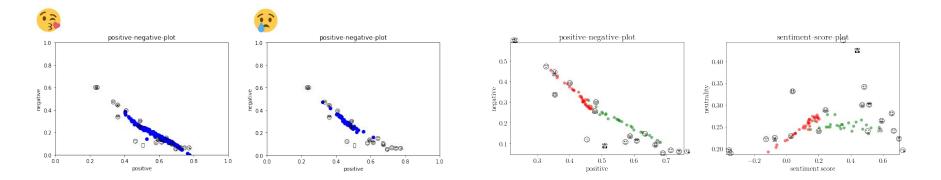
Results in Sentiment Space

Twitter Data

- Overall performance: still a little bit random.
- E.g. compare prediction of messages labeled with the following emojis:

Validation Data (60 sentiment sentences)

- better prediction with same classifier on messages with strong emotional content.
- result on hand labeled messages:
 - (green = positive, red = negative)



Outlook

Reinforcement Learning

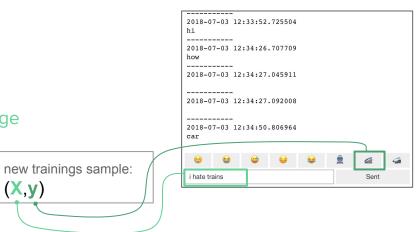
generate training samples from usage of UI by taking clicked emoticon as training-label for written textmessage to improve our prediction online

Metadata as Additional Input

- Dialog dependent prediction
 - better personalisation of predicted emojis (based on Ο Overall/Dialog/Individual Usage)

Multi Language

currently only english



(X,y)

References

NLP LAB 2018 - Emoji Prediction for Text Messages

References

[1] Hallsmar, F. and Palm, J.: *Multi-class Sentiment Classification on Twitter using an Emoji Training Heuristic*, KTH Royal Institute of Technology, Stockholm 2016.

[2] Novak, P.K.; Smailovic, J.; Sluban, B. and Mozetic, I.: *Sentiment of Emojis* (Journal Paper), PLoS ONE 2015.

[3] Zhao, L. and Zeng, C.: *Using Neural Networks to Predict Emoji Usage from Twitter Data*, Stanford University, 2017.

[4] Emoji specifications: https://unicode.org/emoji/charts/full-emoji-list.html.

Thank you for your attention!