{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/jonas/.local/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n", " from ._conv import register_converters as _register_converters\n", "Using TensorFlow backend.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[nltk_data] Downloading package punkt to /home/jonas/nltk_data...\n", "[nltk_data] Package punkt is already up-to-date!\n", "[nltk_data] Downloading package averaged_perceptron_tagger to\n", "[nltk_data] /home/jonas/nltk_data...\n", "[nltk_data] Package averaged_perceptron_tagger is already up-to-\n", "[nltk_data] date!\n", "[nltk_data] Downloading package wordnet to /home/jonas/nltk_data...\n", "[nltk_data] Package wordnet is already up-to-date!\n" ] }, { "data": { "text/plain": [ "True" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "from IPython.display import clear_output, Markdown, Math\n", "import ipywidgets as widgets\n", "import os\n", "import glob\n", "import json\n", "import numpy as np\n", "import itertools\n", "import sklearn.utils as sku\n", "from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer, HashingVectorizer\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import MultiLabelBinarizer, LabelBinarizer\n", "from sklearn.cluster import KMeans\n", "import nltk\n", "from keras.models import load_model\n", "from sklearn.externals import joblib\n", "import pickle\n", "import operator\n", "from sklearn.pipeline import Pipeline\n", "nltk.download('punkt')\n", "nltk.download('averaged_perceptron_tagger')\n", "nltk.download('wordnet')" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import sys\n", "sys.path.append(\"..\")\n", "\n", "import Tools.Emoji_Distance as edist\n", "\n", "def emoji2sent(emoji_arr, only_emoticons=True):\n", " return np.array([edist.emoji_to_sentiment_vector(e, only_emoticons=only_emoticons) for e in emoji_arr])\n", "\n", "def sent2emoji(sent_arr, custom_target_emojis=None, only_emoticons=True):\n", " return [edist.sentiment_vector_to_emoji(s, custom_target_emojis=custom_target_emojis, only_emoticons=only_emoticons) for s in sent_arr]" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "SINGLE_LABEL = True" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "----\n", "## classes and functions we are using later:\n", "----" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* functions for selecting items from a set / list" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def latest(lst):\n", " return lst[-1] if len(lst) > 0 else 'X' \n", "def most_common(lst):\n", " # trying to find the most common used emoji in the given lst\n", " return max(set(lst), key=lst.count) if len(lst) > 0 else \"X\" # setting label to 'X' if there is an empty emoji list" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* our emoji blacklist (skin and sex modifiers)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# defining blacklist for modifier emojis:\n", "emoji_blacklist = set([\n", " chr(0x1F3FB),\n", " chr(0x1F3FC),\n", " chr(0x1F3FD),\n", " chr(0x1F3FE),\n", " chr(0x1F3FF),\n", " chr(0x2642),\n", " chr(0x2640)\n", "])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* lemmatization helper functions" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "from nltk.stem.snowball import SnowballStemmer\n", "from nltk.stem import WordNetLemmatizer\n", "from nltk import pos_tag\n", "from nltk import word_tokenize\n", "from nltk.corpus import wordnet\n", "\n", "def get_wordnet_pos(treebank_tag):\n", "\n", " if treebank_tag.startswith('J'):\n", " return wordnet.ADJ\n", " elif treebank_tag.startswith('V'):\n", " return wordnet.VERB\n", " elif treebank_tag.startswith('N'):\n", " return wordnet.NOUN\n", " elif treebank_tag.startswith('R'):\n", " return wordnet.ADV\n", " else:\n", " return wordnet.NOUN" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### sample data manager\n", "the sample data manager loads and preprocesses data\n", "most common way to use:\n", "\n", "\n", "* `sdm = sample_data_manager.generate_and_read(path:str, only_emoticons=True, apply_stemming=True, n_top_emojis=-1, file_range=None)`\n", "\n", " * Generates a sample_data_manager object and preprocess data in one step\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "class sample_data_manager(object):\n", " @staticmethod\n", " def generate_and_read(path:str, only_emoticons=True, apply_stemming=True, n_top_emojis=-1, file_range=None, n_kmeans_cluster=-1):\n", " \"\"\"\n", " generate, read and process train data in one step.\n", " \n", " @param path: folder containing json files to process\n", " @param only_emoticons: if True, only messages containing emoticons (provided by Tools.Emoji_Distance) are used\n", " @param apply_stemming: apply stemming and lemmatization on dataset\n", " @param n_top_emojis: only use messages containing one of <`n_top_emojis`>-top emojis. set to `-1` to prevent top emoji filtering\n", " @param file_range: range of file's indices to read (eg `range(3)` to read the first three files). If `None`: all files are read\n", " @param n_kmeans_cluster: generating multilabeled labels with kmeans with these number of clusters. Set to -1 to use the plain sentiment space as label\n", " \n", " @return: sample_data_manager object\n", " \"\"\"\n", " sdm = sample_data_manager(path)\n", " sdm.read_files(file_index_range=range(sdm.n_files) if file_range is None else file_range, only_emoticons=only_emoticons)\n", " if apply_stemming:\n", " sdm.apply_stemming_and_lemmatization()\n", " \n", " sdm.generate_emoji_count_and_weights()\n", " \n", " if n_top_emojis > 0:\n", " sdm.filter_by_top_emojis(n_top=n_top_emojis)\n", " \n", " if n_kmeans_cluster > 0:\n", " sdm.generate_kmeans_binary_label(only_emoticons=only_emoticons, n_clusters=n_kmeans_cluster)\n", " \n", " return sdm\n", " \n", " \n", " def __init__(self, data_root_folder:str):\n", " \"\"\"\n", " constructor for manual initialization\n", " \n", " @param data_root_folder: folder containing json files to process\n", " \"\"\"\n", " self.data_root_folder = data_root_folder\n", " self.json_files = sorted(glob.glob(self.data_root_folder + \"/*.json\"))\n", " self.n_files = len(self.json_files)\n", " self.raw_data = None\n", " self.emojis = None\n", " self.plain_text = None\n", " self.labels = None\n", " self.emoji_count = None\n", " self.emoji_weights = None\n", " self.X = None\n", " self.y = None\n", " self.Xt = None\n", " self.yt = None\n", " self.top_emojis = None\n", " self.binary_labels = None\n", " self.use_binary_labels = False\n", " self.kmeans_cluster = None\n", " self.label_binarizer = None\n", " \n", " def read_files(self, file_index_range:list, only_emoticons=True):\n", " \"\"\"\n", " reading (multiple) files to one panda table.\n", " \n", " @param file_index_range: range of file's indices to read (eg `range(3)` to read the first three files)\n", " @param only_emoticons: if True, only messages containing emoticons (aka smileys) are used. This classification is derived from Tools.Emoji_Distance\n", " \"\"\"\n", " assert np.min(file_index_range) >= 0 and np.max(file_index_range) < self.n_files\n", " for i in file_index_range:\n", " print(\"reading file: \" + self.json_files[i] + \"...\")\n", " if self.raw_data is None:\n", " self.raw_data = pd.read_json(self.json_files[i], encoding=\"utf-8\")\n", " else:\n", " self.raw_data = self.raw_data.append(pd.read_json(self.json_files[i], encoding=\"utf-8\"))\n", " \n", " self.emojis = self.raw_data['EMOJI']\n", " self.plain_text = self.raw_data['text']\n", " \n", " # replacing keywords. TODO: maybe these information can be extracted and used\n", " self.plain_text = self.plain_text.str.replace(\"(||)\",\"\").str.replace(\"[\" + \"\".join(list(emoji_blacklist)) + \"]\",\"\")\n", " \n", " # so far filtering for the latest emoji. TODO: maybe there are also better approaches\n", " self.labels = emoji2sent([latest(e) for e in self.emojis], only_emoticons=only_emoticons )\n", " \n", " # and filter out all samples we have no label for:\n", " wrong_labels = np.isnan(np.linalg.norm(self.labels, axis=1)) \n", "\n", " self.labels = self.labels[np.invert(wrong_labels)]\n", " self.plain_text = self.plain_text[np.invert(wrong_labels)]\n", " self.emojis = self.emojis[np.invert(wrong_labels)]\n", " \n", " print(\"imported \" + str(len(self.labels)) + \" samples\")\n", " \n", " def apply_stemming_and_lemmatization(self):\n", " \"\"\"\n", " apply stemming and lemmatization to plain text samples\n", " \"\"\"\n", " stemmer = SnowballStemmer(\"english\")\n", " for key in self.plain_text.keys():\n", " stemmed_sent = []\n", " for word in self.plain_text[key].split(\" \"):\n", " word_stemmed = stemmer.stem(word)\n", " stemmed_sent.append(word_stemmed)\n", " stemmed_sent = (\" \").join(stemmed_sent)\n", " self.plain_text[key] = stemmed_sent\n", " \n", " lemmatizer = WordNetLemmatizer()\n", " for key in self.plain_text.keys():\n", " lemmatized_sent = []\n", " sent_pos = pos_tag(word_tokenize(self.plain_text[key]))\n", " for word in sent_pos:\n", " wordnet_pos = get_wordnet_pos(word[1].lower())\n", " word_lemmatized = lemmatizer.lemmatize(word[0], pos=wordnet_pos)\n", " lemmatized_sent.append(word_lemmatized)\n", " lemmatized_sent = (\" \").join(lemmatized_sent)\n", " self.plain_text[key] = lemmatized_sent\n", " \n", " def generate_emoji_count_and_weights(self):\n", " \"\"\"\n", " counting occurences of emojis\n", " \"\"\"\n", " self.emoji_count = {}\n", " for e_list in self.emojis:\n", " for e in set(e_list):\n", " if e not in self.emoji_count:\n", " self.emoji_count[e] = 0\n", " self.emoji_count[e] += 1\n", " \n", " emoji_sum = sum([self.emoji_count[e] for e in self.emoji_count])\n", "\n", " self.emoji_weights = {}\n", " for e in self.emoji_count:\n", " # tfidf for emojis\n", " self.emoji_weights[e] = np.log((emoji_sum / self.emoji_count[e]))\n", "\n", " weights_sum= sum([self.emoji_weights[x] for x in self.emoji_weights])\n", "\n", " # normalize:\n", " for e in self.emoji_weights:\n", " self.emoji_weights[e] = self.emoji_weights[e] / weights_sum\n", "\n", " self.emoji_weights['X'] = 0 # dummy values\n", " self.emoji_count['X'] = 0\n", " \n", " def get_emoji_count(self):\n", " \"\"\"\n", " @return: descending list of tuples in form (, ) \n", " \"\"\"\n", " assert self.emoji_count is not None\n", " \n", " sorted_emoji_count = list(reversed(sorted(self.emoji_count.items(), key=operator.itemgetter(1))))\n", " #display(sorted_emoji_count)\n", " return sorted_emoji_count\n", " \n", " def filter_by_top_emojis(self,n_top = 20):\n", " \"\"\"\n", " filgter out messages not containing one of the `n_top` emojis\n", " \n", " @param n_top: number of top emojis used for filtering\n", " \"\"\"\n", " assert self.labels is not None # ← messages are already read in\n", " \n", " self.top_emojis = [x[0] for x in self.get_emoji_count()[:n_top]]\n", " in_top = [edist.sentiment_vector_to_emoji(x) in self.top_emojis for x in self.labels]\n", " self.labels = self.labels[in_top]\n", " self.plain_text = self.plain_text[in_top]\n", " self.emojis = self.emojis[in_top]\n", " print(\"remaining samples after top emoji filtering: \", len(self.labels))\n", " \n", " def generate_kmeans_binary_label(self, only_emoticons=True, n_clusters=5):\n", " \"\"\"\n", " generate binary labels using kmeans.\n", " \n", " @param only_emoticons: set whether we're using the full emoji set or only emoticons\n", " @param n_clusters: number of cluster we're generating in emoji's sentiment space\n", " \"\"\"\n", " assert self.labels is not None\n", " array_sentiment_vectors = edist.list_sentiment_emoticon_vectors if only_emoticons else edist.list_sentiment_vectors\n", " array_sentiment_vectors = np.array(array_sentiment_vectors)\n", " \n", " list_emojis = edist.list_emoticon_emojis if only_emoticons else edist.list_emojis\n", " self.use_binary_labels = True\n", " print(\"clustering following emojis: \" + \"\".join(list_emojis) + \"...\")\n", " self.kmeans_cluster = KMeans(n_clusters=n_clusters).fit(array_sentiment_vectors)\n", " print(\"clustering done\")\n", " self.label_binarizer = LabelBinarizer()\n", " \n", " multiclass_labels = self.kmeans_cluster.predict(self.labels)\n", " \n", " # FIXME: we have to guarantee that in every dataset all classes occur.\n", " # otherwise batch fitting is not possible!\n", " # (or we have to precompute the mlb fitting process somewhere...)\n", " self.binary_labels = self.label_binarizer.fit_transform(multiclass_labels)\n", " \n", " \n", " def create_train_test_split(self, split = 0.1, random_state = 4222):\n", " assert self.plain_text is not None and self.labels is not None\n", " if self.X is not None:\n", " sys.stderr.write(\"WARNING: overwriting existing train/test split \\n\")\n", " \n", " labels = self.binary_labels if self.use_binary_labels else self.labels\n", " assert labels is not None\n", " self.X, self.Xt, self.y, self.yt = train_test_split(self.plain_text, labels, test_size=split, random_state=random_state)\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* the pipeline manager saves and stores sklearn pipelines. Keras models are handled differently, so the have to be named explicitly during save and load operations" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "class pipeline_manager(object):\n", " @staticmethod\n", " def load_pipeline_from_files(file_prefix:str, keras_models = [], all_models = []):\n", " \"\"\"\n", " load a pipeline from files. A pipeline should be represented by multiple model files in the form '.'\n", " \n", " @param file_prefix: basename of all files (without extension)\n", " @param keras_models: list of keras models (keras model files, only extension name). Leave this list empty if this is not a keras pipeline\n", " @param all_models: list of all models (including keras_models, only extension name).\n", " \n", " @return a pipeline manager object\n", " \"\"\"\n", " \n", " pm = pipeline_manager(keras_models=keras_models)\n", " pm.load(file_prefix, all_models)\n", " return pm\n", " \n", " @staticmethod\n", " def create_keras_pipeline_with_vectorizer(vectorizer, layers, sdm:sample_data_manager, loss=None, optimizer=None):\n", " '''\n", " creates pipeline with vectorizer and keras classifier\n", " \n", " @param vectorizer: Vectorizer object. will be fitted with data provided by sdm\n", " @param layers: list of keras layers. One keras layer is a tuple in form: (<#neurons:int>, )\n", " @param sdm: sample data manager to get data for the vectorizer\n", " @param loss: set keras loss function. Depending whether sdm use multiclass labels `categorical_crossentropy` or `mean_squared_error` is used as default\n", " @param optimizer: set keras optimizer. Depending whether sdm use multiclass labels `sgd` or `adam` is used as default\n", " \n", " @return: a pipeline manager object\n", " \n", " '''\n", " from keras.models import Sequential\n", " from keras.layers import Dense\n", " \n", " if sdm.X is None:\n", " sdm.create_train_test_split()\n", " \n", " vec_train = vectorizer.fit_transform(sdm.X)\n", " vec_test = vectorizer.transform(sdm.Xt)\n", " # creating keras model:\n", " model=Sequential()\n", " \n", " keras_layers = []\n", " first_layer = True\n", " for layer in layers:\n", " if first_layer:\n", " model.add(Dense(units=layer[0], activation=layer[1], input_dim=vectorizer.transform([\" \"])[0]._shape[1]))\n", " first_layer = False\n", " else:\n", " model.add(Dense(units=layer[0], activation=layer[1]))\n", " \n", " if sdm.use_binary_labels: \n", " loss_function = loss if loss is not None else 'categorical_crossentropy'\n", " optimizer_function = optimizer if optimizer is not None else 'sgd'\n", " model.compile(loss=loss_function,\n", " optimizer=optimizer_function,\n", " metrics=['accuracy'])\n", " else:\n", " loss_function = loss if loss is not None else 'mean_squared_error'\n", " optimizer_function = optimizer if optimizer is not None else 'adam'\n", " model.compile(loss=loss_function,\n", " optimizer=optimizer_function)\n", " \n", " pipeline = Pipeline([\n", " ('vectorizer',vectorizer),\n", " ('keras_model', model)\n", " ])\n", " \n", " return pipeline_manager(pipeline=pipeline, keras_models=['keras_model'])\n", " \n", " @staticmethod\n", " def create_pipeline_with_classifier_and_vectorizer(vectorizer, classifier, sdm:sample_data_manager = None):\n", " '''\n", " creates pipeline with vectorizer and non-keras classifier\n", " \n", " @param vectorizer: Vectorizer object. will be fitted with data provided by sdm\n", " @param classifier: unfitted classifier object (should be compatible with all sklearn classifiers)\n", " @param sdm: sample data manager to get data for the vectorizer\n", " \n", " @return: a pipeline manager object\n", " '''\n", " if sdm is not None:\n", " if sdm.X is None:\n", " sdm.create_train_test_split()\n", "\n", " vec_train = vectorizer.fit_transform(sdm.X)\n", " vec_test = vectorizer.transform(sdm.Xt)\n", " \n", " pipeline = Pipeline([\n", " ('vectorizer',vectorizer),\n", " ('classifier', classifier)\n", " ])\n", " \n", " return pipeline_manager(pipeline=pipeline, keras_models=[])\n", " \n", " def __init__(self, pipeline = None, keras_models = []):\n", " \"\"\"\n", " constructor\n", " \n", " @param pipeline: a sklearn pipeline\n", " @param keras_models: list of keras steps in pipeline. Neccessary because saving and loading from keras models differs from the scikit ones\n", " \"\"\"\n", " \n", " self.pipeline = pipeline\n", " self.additional_objects = {}\n", " self.keras_models = keras_models\n", " \n", " def save(self, prefix:str):\n", " \"\"\"\n", " saving the pipeline. It generates one file per model in the form: '.'\n", " \n", " @param prefix: file prefix for all models\n", " \"\"\"\n", " \n", " print(self.keras_models)\n", " # doing this like explained here: https://stackoverflow.com/a/43415459\n", " for step in self.pipeline.named_steps:\n", " if step in self.keras_models:\n", " self.pipeline.named_steps[step].model.save(prefix + \".\" + step)\n", " else:\n", " joblib.dump(self.pipeline.named_steps[step], prefix + \".\" + str(step))\n", " \n", " load_command = \"pipeline_manager.load_pipeline_from_files( '\"\n", " load_command += prefix + \"', \" + str(self.keras_models) + \", \"\n", " load_command += str(list(self.pipeline.named_steps.keys())) + \")\"\n", " \n", " import __main__ as main\n", " if not hasattr(main, '__file__'):\n", " display(\"saved pipeline. It can be loaded the following way:\")\n", " display(Markdown(\"> ```\\n\"+load_command+\"\\n```\")) # ← if we're in jupyter, print the fancy way :)\n", " else:\n", " print(\"saved pipeline. It can be loaded the following way:\")\n", " print(load_command)\n", " \n", " \n", " def load(self, prefix:str, models = []):\n", " \"\"\"\n", " load a pipeline. A pipeline should be represented by multiple model files in the form '.'\n", " NOTE: keras model names (if there are some) have to be defined in self.keras_models first!\n", " \n", " @param prefix: the prefix for all model files\n", " @param models: model_names to load\n", " \"\"\"\n", " self.pipeline = None\n", " model_list = []\n", " for model in models:\n", " if model in self.keras_models:\n", " model_list.append((model, load_model(prefix + \".\" + model)))\n", " else:\n", " model_list.append((model, joblib.load(prefix+\".\" + model)))\n", " self.pipeline = Pipeline(model_list)\n", " \n", " def fit(self,X,y):\n", " \"\"\"fitting the pipeline\"\"\"\n", " self.pipeline.fit(X,y)\n", " \n", " def predict(self,X):\n", " \"\"\"predict\"\"\"\n", " return self.pipeline.predict(X)\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* the trainer class passes Data from the sample manager to the pipeline manager" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "class trainer(object):\n", " def __init__(self, sdm:sample_data_manager, pm:pipeline_manager):\n", " \"\"\"constructor\"\"\"\n", " self.sdm = sdm\n", " self.pm = pm\n", " \n", " def fit(self, max_size=10000, disabled_fit_steps=['vectorizer']):\n", " \"\"\"\n", " fitting data in the pipeline. Because we don't want to refit the vectorizer, the pipeline models containing the vectorizer have to be named explicitly\n", " \n", " @param max_size: don't train more examples than that number\n", " @param disabled_fit_steps: list of pipeline steps that we want to prevent to refit. Normally all vectorizer steps\n", " \"\"\"\n", " # TODO: make batch fitting available here (eg: continous waiting for data and fitting them)\n", " if self.sdm.X is None:\n", " self.sdm.create_train_test_split()\n", " disabled_fits = {}\n", " disabled_fit_transforms = {}\n", " \n", " named_steps = self.pm.pipeline.named_steps\n", " \n", " for s in disabled_fit_steps:\n", " # now it gets a little bit dirty:\n", " # replace fit functions we don't want to call again (e.g. for vectorizers)\n", " disabled_fits[s] = named_steps[s].fit\n", " disabled_fit_transforms[s] = named_steps[s].fit_transform\n", " named_steps[s].fit = lambda self, X, y=None: self\n", " named_steps[s].fit_transform = named_steps[s].transform\n", " \n", " self.pm.fit(X = self.sdm.X[:max_size], y = self.sdm.y[:max_size])\n", " \n", " # restore replaced fit functions:\n", " for s in disabled_fit_steps:\n", " named_steps[s].fit = disabled_fits[s]\n", " named_steps[s].fit_transform = disabled_fit_transforms[s]\n", " \n", " def test(self):\n", " '''\n", " @return: prediction:list, teacher:list\n", " '''\n", " if self.sdm.X is None:\n", " self.sdm.create_train_test_split()\n", " return self.pm.predict(self.sdm.Xt), self.sdm.yt\n", "\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "----\n", "## Train" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* when in notebook environment: run the stuff below:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "reading file: ./data_en/2017-11-01.json...\n", "imported 33368 samples\n", "remaining samples after top emoji filtering: 26197\n", "Epoch 1/1\n", "100/100 [==============================] - 3s 28ms/step - loss: 0.1230\n" ] } ], "source": [ "import __main__ as main\n", "if not hasattr(main, '__file__'):\n", " # we are in an interactive environment (probably in jupyter)\n", " # load data:\n", " \n", " # setting n_kmeans_clusters to a value > 0 activates binarized labeling automatically! \n", " # set to -1 to disable kmeans clustering and generating labels in plain sentiment space\n", " \n", " #n_kmeans_cluster = 5\n", " n_kmeans_cluster = -1\n", " sdm = sample_data_manager.generate_and_read(path=\"./data_en/\", n_top_emojis=20, file_range=range(1), n_kmeans_cluster=n_kmeans_cluster)\n", " sdm.create_train_test_split()\n", " #pm = pipeline_manager.create_keras_pipeline_with_vectorizer(vectorizer=TfidfVectorizer(stop_words='english'),\\n\",\n", " # layers=[(10000, 'relu'),(5000, 'relu'),(2500, 'relu'),(y1[0].shape[0],None)], sdm=sdm)\\n\",\n", " pm = pipeline_manager.create_keras_pipeline_with_vectorizer(vectorizer=TfidfVectorizer(stop_words='english'),\n", " layers=[(2500, 'relu'),(sdm.y.shape[1],None)], sdm=sdm)\n", " tr = trainer(sdm=sdm, pm=pm)\n", " tr.fit(100)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "----\n", "## save classifier" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['keras_model']\n" ] }, { "data": { "text/plain": [ "'saved pipeline. It can be loaded the following way:'" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "> ```\n", "pipeline_manager.load_pipeline_from_files( 'custom_classifier', ['keras_model'], ['vectorizer', 'keras_model'])\n", "```" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import __main__ as main\n", "if not hasattr(main, '__file__'):\n", " pm.save('custom_classifier')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "----\n", "## Prediction\n", "\n", "* predict and save to `test.csv`" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[0.16062996, 0.08324276, 0.09433182],\n", " [0.16413 , 0.09421383, 0.07578427],\n", " [0.11994962, 0.05705731, 0.06310127],\n", " ...,\n", " [0.13887292, 0.08502828, 0.08176519],\n", " [0.18185864, 0.09223703, 0.10704609],\n", " [0.17687687, 0.09147045, 0.10650696]], dtype=float32)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "array([[0.46813021, 0.24716181, 0.28470797],\n", " [0.46813021, 0.24716181, 0.28470797],\n", " [0.70401758, 0.05932203, 0.23666039],\n", " ...,\n", " [0.46813021, 0.24716181, 0.28470797],\n", " [0.46813021, 0.24716181, 0.28470797],\n", " [0.46813021, 0.24716181, 0.28470797]])" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "prediction variance: 0.0005431187\n", "teacher variance: 0.03341702104519965\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
predictpredicted_sentimentteacherteacher_sentimenttext
35671πŸ˜‚[0.16062995791435242, 0.0832427591085434, 0.09...πŸ˜‚[0.46813021474490496, 0.24716181096977158, 0.2...i feel like i care so much more in everi situat
25683😒[0.16413000226020813, 0.0942138284444809, 0.07...πŸ˜‚[0.46813021474490496, 0.24716181096977158, 0.2...i did not meat to add that 2 there ... hav see...
8985πŸ˜‚[0.11994962394237518, 0.05705730617046356, 0.0...😊[0.7040175768989329, 0.059322033898305086, 0.2...never…
5410πŸ˜‚[0.18114930391311646, 0.10199417173862457, 0.1...πŸ˜‚[0.46813021474490496, 0.24716181096977158, 0.2...lmao on me ! ! ! wtf wa he suppos to say
62611πŸ˜‚[0.16997836530208588, 0.08633847534656525, 0.0...😊[0.7040175768989329, 0.059322033898305086, 0.2...this dude alway help me get through my school ...
\n", "
" ], "text/plain": [ " predict predicted_sentiment teacher \\\n", "35671 πŸ˜‚ [0.16062995791435242, 0.0832427591085434, 0.09... πŸ˜‚ \n", "25683 😒 [0.16413000226020813, 0.0942138284444809, 0.07... πŸ˜‚ \n", "8985 πŸ˜‚ [0.11994962394237518, 0.05705730617046356, 0.0... 😊 \n", "5410 πŸ˜‚ [0.18114930391311646, 0.10199417173862457, 0.1... πŸ˜‚ \n", "62611 πŸ˜‚ [0.16997836530208588, 0.08633847534656525, 0.0... 😊 \n", "\n", " teacher_sentiment \\\n", "35671 [0.46813021474490496, 0.24716181096977158, 0.2... \n", "25683 [0.46813021474490496, 0.24716181096977158, 0.2... \n", "8985 [0.7040175768989329, 0.059322033898305086, 0.2... \n", "5410 [0.46813021474490496, 0.24716181096977158, 0.2... \n", "62611 [0.7040175768989329, 0.059322033898305086, 0.2... \n", "\n", " text \n", "35671 i feel like i care so much more in everi situat \n", "25683 i did not meat to add that 2 there ... hav see... \n", "8985 never… \n", "5410 lmao on me ! ! ! wtf wa he suppos to say \n", "62611 this dude alway help me get through my school ... " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Mean Squared Error: [0.13877691 0.04682433 0.02937794]\n", "Variance teacher: [0.02183094 0.02513847 0.00285735]\n", "Variance prediction: [0.00046378 0.00019441 0.00020516]\n" ] } ], "source": [ "import __main__ as main\n", "if not hasattr(main, '__file__'):\n", " pred, teacher = tr.test()\n", " \n", " display(pred)\n", " display(teacher)\n", " \n", " print('prediction variance: ', np.linalg.norm(np.var(pred, axis=0)))\n", " print('teacher variance: ', np.linalg.norm(np.var(teacher, axis=0)))\n", " \n", " # build a dataframe to visualize test results:\n", " testlist = pd.DataFrame({'text': sdm.Xt, \n", " 'teacher': sent2emoji(sdm.yt),\n", " 'teacher_sentiment': sdm.yt.tolist(),\n", " 'predict': sent2emoji(pred, custom_target_emojis=sdm.top_emojis),\n", " 'predicted_sentiment': pred.tolist()})\n", " # display:\n", " display(testlist.head())\n", " \n", " # mean squared error:\n", " teacher_sentiments = np.array([sample[1]['teacher_sentiment'] for sample in testlist.iterrows()])\n", " predicted_sentiments = np.array([sample[1]['predicted_sentiment'] for sample in testlist.iterrows()])\n", "\n", " mean_squared_error = ((teacher_sentiments - predicted_sentiments)**2).mean(axis=0)\n", " print(\"Mean Squared Error: \", mean_squared_error)\n", " print(\"Variance teacher: \", np.var(teacher_sentiments, axis=0))\n", " print(\"Variance prediction: \", np.var(predicted_sentiments, axis=0))\n", " \n", " # save to csv:\n", " testlist.to_csv('test.csv')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "----\n", "## Load classifier\n", "\n", "* loading classifier and show a test widget" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "003ae16760b04c25bdc9f2fe2193747a", "version_major": 2, "version_minor": 0 }, "text/html": [ "

Failed to display Jupyter Widget of type Text.

\n", "

\n", " If you're reading this message in the Jupyter Notebook or JupyterLab Notebook, it may mean\n", " that the widgets JavaScript is still loading. If this message persists, it\n", " likely means that the widgets JavaScript library is either not installed or\n", " not enabled. See the Jupyter\n", " Widgets Documentation for setup instructions.\n", "

\n", "

\n", " If you're reading this message in another frontend (for example, a static\n", " rendering on GitHub or NBViewer),\n", " it may mean that your frontend doesn't currently support widgets.\n", "

\n" ], "text/plain": [ "Text(value='')" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4580af82b30545f197a41e4359010556", "version_major": 2, "version_minor": 0 }, "text/html": [ "

Failed to display Jupyter Widget of type VBox.

\n", "

\n", " If you're reading this message in the Jupyter Notebook or JupyterLab Notebook, it may mean\n", " that the widgets JavaScript is still loading. If this message persists, it\n", " likely means that the widgets JavaScript library is either not installed or\n", " not enabled. See the Jupyter\n", " Widgets Documentation for setup instructions.\n", "

\n", "

\n", " If you're reading this message in another frontend (for example, a static\n", " rendering on GitHub or NBViewer),\n", " it may mean that your frontend doesn't currently support widgets.\n", "

\n" ], "text/plain": [ "VBox(children=(Button(description='get emoji', icon='check', style=ButtonStyle(), tooltip='Click me'), Output()))" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import __main__ as main\n", "if not hasattr(main, '__file__'):\n", " try:\n", " pm\n", " except NameError:\n", " pass\n", " else:\n", " del pm # delete existing pipeline manager if ther is one\n", "\n", " pm = pipeline_manager.load_pipeline_from_files( 'custom_classifier', ['keras_model'], ['vectorizer', 'keras_model'])\n", " lookup_emojis = [#'πŸ˜‚',\n", " '😭',\n", " '😍',\n", " '😩',\n", " '😊',\n", " '😘',\n", " 'πŸ™',\n", " 'πŸ™Œ',\n", " 'πŸ˜‰',\n", " '😁',\n", " 'πŸ˜…',\n", " '😎',\n", " '😒',\n", " 'πŸ˜’',\n", " '😏',\n", " '😌',\n", " 'πŸ˜”',\n", " 'πŸ˜‹',\n", " 'πŸ˜€',\n", " '😀']\n", " out = widgets.Output()\n", "\n", " t = widgets.Text()\n", " b = widgets.Button(\n", " description='get emoji',\n", " disabled=False,\n", " button_style='', # 'success', 'info', 'warning', 'danger' or ''\n", " tooltip='Click me',\n", " icon='check'\n", " )\n", "\n", "\n", "\n", " def handle_submit(sender):\n", " with out:\n", " clear_output()\n", " with out:\n", " pred = pm.predict([t.value])\n", "\n", " display(Markdown(\"# Predicted Emoji \" + str(sent2emoji(pred, lookup_emojis)[0])))\n", " display(Markdown(\"# Sentiment Vector: $$ \\pmatrix{\" + str(pred[0,0]) +\n", " \"\\\\\\\\\" + str(pred[0,1]) + \"\\\\\\\\\" + str(pred[0,2]) + \"}$$\"))\n", "\n", " b.on_click(handle_submit)\n", "\n", " display(t)\n", " display(widgets.VBox([b, out])) " ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 2 }