{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "from IPython.display import clear_output, Markdown, Math\n", "import ipywidgets as widgets\n", "import os\n", "import unicodedata as uni\n", "import numpy as np" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# emoji-table" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* importing unicode standard:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "unicode_table = pd.read_csv('UnicodeData.txt', delimiter=';', comment='#', names=['id','description','2','3','4','5','6','7','8','9','10','11','12','13','14',])" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | id | \n", "description | \n", "
---|---|---|
0 | \n", "0000 | \n", "<control> | \n", "
1 | \n", "0001 | \n", "<control> | \n", "
2 | \n", "0002 | \n", "<control> | \n", "
3 | \n", "0003 | \n", "<control> | \n", "
4 | \n", "0004 | \n", "<control> | \n", "