nlp-lab/Project/simple_approach/simple_twitter_learning.py
2018-07-23 20:11:24 +02:00

833 lines
31 KiB
Python

# coding: utf-8
# In[1]:
import pandas as pd
from IPython.display import clear_output, Markdown, Math
import ipywidgets as widgets
import os
import glob
import json
import numpy as np
import itertools
import sklearn.utils as sku
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer, HashingVectorizer
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MultiLabelBinarizer, LabelBinarizer
from sklearn.cluster import KMeans
import nltk
from keras.models import load_model
from sklearn.externals import joblib
import pickle
import operator
from sklearn.pipeline import Pipeline
import json
import datetime
import matplotlib.pyplot as plt
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
nltk.download('wordnet')
from keras import losses
# check whether the display function exists:
try:
display
except NameError:
print("no fancy display function found... using print instead")
display = print
# In[2]:
import sys
sys.path.append("..")
import Tools.Emoji_Distance as edist
import Tools.sklearn_doc2vec as skd2v
def emoji2sent(emoji_arr, only_emoticons=True):
return np.array([edist.emoji_to_sentiment_vector(e, only_emoticons=only_emoticons) for e in emoji_arr])
def sent2emoji(sent_arr, custom_target_emojis=None, only_emoticons=True):
return [edist.sentiment_vector_to_emoji(s, custom_target_emojis=custom_target_emojis, only_emoticons=only_emoticons) for s in sent_arr]
# In[3]:
SINGLE_LABEL = True
# top 20 emojis:
top_20 = list("😳😋😀😌😏😔😒😎😢😅😁😉🙌🙏😘😊😩😍😭😂")
top_20_sents = emoji2sent(top_20)
# plotting function to evaluate stuff:
def sentiment_score(s):
#(pos, neg, neu)^T
return s[0] - s[1]
def plot_sentiment_space(predicted_sentiment_vectors, top_sentiments, top_emojis, style='bo', additional_patches = None):
# sentiment score axis
top_X = np.array([sentiment_score(x) for x in top_sentiments])
pred_X = np.array([sentiment_score(x) for x in predicted_sentiment_vectors])
# neutral axis:
top_Y = np.array([x[2] for x in top_sentiments])
pred_Y = np.array([x[2] for x in predicted_sentiment_vectors])
fig_1, ax_1 = plt.subplots()#figsize=(15,10))
plt.title("sentiment-score-plot")
plt.xlabel("sentiment score")
plt.ylabel("neutrality")
plt.xlim([-1,1])
plt.ylim([0,1])
for i in range(len(top_X)):
plt.text(top_X[i], top_Y[i], top_emojis[i])
plt.plot(pred_X, pred_Y, style)
for p_tuple in additional_patches:
ax_1.add_artist(p_tuple[0])
p_tuple[0].set_alpha(0.4)
plt.savefig("val-error_sentiment-plot" + str(datetime.datetime.now()) + ".png", bbox_inches='tight')
# sentiment score axis
top_X = np.array([x[0] for x in top_sentiments])
pred_X = np.array([x[0] for x in predicted_sentiment_vectors])
# neutral axis:
top_Y = np.array([x[1] for x in top_sentiments])
pred_Y = np.array([x[1] for x in predicted_sentiment_vectors])
fig_2, ax_2 = plt.subplots()#figsize=(15,10))
plt.title("positive-negative-plot")
plt.xlabel("positive")
plt.ylabel("negative")
plt.xlim([0,1])
plt.ylim([0,1])
for i in range(len(top_X)):
plt.text(top_X[i], top_Y[i], top_emojis[i])
plt.plot(pred_X, pred_Y, style)
for p_tuple in additional_patches:
ax_2.add_artist(p_tuple[1])
p_tuple[1].set_alpha(0.4)
plt.savefig("val-error_positive-negative-plot" + str(datetime.datetime.now()) + ".png", bbox_inches='tight')
plt.show()
# ----
# ## classes and functions we are using later:
# ----
# * functions for selecting items from a set / list
# In[4]:
def latest(lst):
return lst[-1] if len(lst) > 0 else 'X'
def most_common(lst):
# trying to find the most common used emoji in the given lst
return max(set(lst), key=lst.count) if len(lst) > 0 else "X" # setting label to 'X' if there is an empty emoji list
# * our emoji blacklist (skin and sex modifiers)
# In[5]:
# defining blacklist for modifier emojis:
emoji_blacklist = set([
chr(0x1F3FB),
chr(0x1F3FC),
chr(0x1F3FD),
chr(0x1F3FE),
chr(0x1F3FF),
chr(0x2642),
chr(0x2640)
])
# * lemmatization helper functions
# In[6]:
from nltk.stem.snowball import SnowballStemmer
from nltk.stem import WordNetLemmatizer
from nltk import pos_tag
from nltk import word_tokenize
from nltk.corpus import wordnet
def get_wordnet_pos(treebank_tag):
if treebank_tag.startswith('J'):
return wordnet.ADJ
elif treebank_tag.startswith('V'):
return wordnet.VERB
elif treebank_tag.startswith('N'):
return wordnet.NOUN
elif treebank_tag.startswith('R'):
return wordnet.ADV
else:
return wordnet.NOUN
# global stemmer and lemmatizer function
stemmer = SnowballStemmer("english")
def stem(s):
stemmed_sent = []
for word in s.split(" "):
word_stemmed = stemmer.stem(word)
stemmed_sent.append(word_stemmed)
stemmed_sent = (" ").join(stemmed_sent)
return stemmed_sent
lemmatizer = WordNetLemmatizer()
def lemm(s):
lemmatized_sent = []
sent_pos = pos_tag(word_tokenize(s))
for word in sent_pos:
wordnet_pos = get_wordnet_pos(word[1].lower())
word_lemmatized = lemmatizer.lemmatize(word[0], pos=wordnet_pos)
lemmatized_sent.append(word_lemmatized)
lemmatized_sent = (" ").join(lemmatized_sent)
return lemmatized_sent
def batch_stem(sentences):
return [stem(s) for s in sentences]
def batch_lemm(sentences):
return [lemm(s) for s in sentences]
# ### sample data manager
# the sample data manager loads and preprocesses data
# most common way to use:
#
#
# * `sdm = sample_data_manager.generate_and_read(path:str, only_emoticons=True, apply_stemming=True, n_top_emojis=-1, file_range=None)`
#
# * Generates a sample_data_manager object and preprocess data in one step
#
# In[7]:
class sample_data_manager(object):
@staticmethod
def generate_and_read(path:str, only_emoticons=True, apply_stemming=True, n_top_emojis=-1, file_range=None, n_kmeans_cluster=-1, read_progress_callback=None, stem_progress_callback=None, emoji_mean=False, custom_target_emojis = None, min_words=0):
"""
generate, read and process train data in one step.
@param path: folder containing json files to process
@param only_emoticons: if True, only messages containing emoticons (provided by Tools.Emoji_Distance) are used
@param apply_stemming: apply stemming and lemmatization on dataset
@param n_top_emojis: only use messages containing one of <`n_top_emojis`>-top emojis. set to `-1` to prevent top emoji filtering
@param file_range: range of file's indices to read (eg `range(3)` to read the first three files). If `None`: all files are read
@param n_kmeans_cluster: generating multilabeled labels with kmeans with these number of clusters. Set to -1 to use the plain sentiment space as label
@return: sample_data_manager object
"""
sdm = sample_data_manager(path)
sdm.read_files(file_index_range=range(sdm.n_files) if file_range is None else file_range, only_emoticons=only_emoticons, progress_callback=read_progress_callback, emoji_mean=emoji_mean)
if apply_stemming:
sdm.apply_stemming_and_lemmatization(progress_callback=stem_progress_callback)
sdm.generate_emoji_count_and_weights()
if custom_target_emojis is not None:
sdm.filter_by_emoji_list(custom_target_emojis)
elif n_top_emojis > 0:
sdm.filter_by_top_emojis(n_top=n_top_emojis)
if n_kmeans_cluster > 0:
sdm.generate_kmeans_binary_label(only_emoticons=only_emoticons, n_clusters=n_kmeans_cluster)
if min_words > 0:
sdm.filter_by_sentence_length(min_words=min_words)
return sdm
def __init__(self, data_root_folder:str):
"""
constructor for manual initialization
@param data_root_folder: folder containing json files to process
"""
self.data_root_folder = data_root_folder
self.json_files = sorted(glob.glob(self.data_root_folder + "/*.json"))
self.n_files = len(self.json_files)
self.emojis = None
self.plain_text = None
self.labels = None
self.emoji_count = None
self.emoji_weights = None
self.X = None
self.y = None
self.Xt = None
self.yt = None
self.top_emojis = None
self.binary_labels = None
self.use_binary_labels = False
self.kmeans_cluster = None
self.label_binarizer = None
self.use_stemming = False
self.use_lemmatization = False
def read_files(self, file_index_range:list, only_emoticons=True, emoji_mean=False ,progress_callback=None):
"""
reading (multiple) files to one panda table.
@param file_index_range: range of file's indices to read (eg `range(3)` to read the first three files)
@param only_emoticons: if True, only messages containing emoticons (aka smileys) are used. This classification is derived from Tools.Emoji_Distance
@param emoji_mean: if True, using mean of all emojis instead of the last one
"""
assert np.min(file_index_range) >= 0 and np.max(file_index_range) < self.n_files
n = len(file_index_range)
for i in file_index_range:
print("reading file: " + self.json_files[i] + "...")
raw_data_i = pd.read_json(self.json_files[i], encoding="utf-8")
emojis_i = raw_data_i['EMOJI']
plain_text_i = raw_data_i['text']
# replacing keywords. TODO: maybe these information can be extracted and used
plain_text_i = plain_text_i.str.replace("(<EMOJI>|<USER>|<HASHTAG>)","").str.replace("[" + "".join(list(emoji_blacklist)) + "]","")
# filter empty labels
empty_labels = []
for e in emojis_i:
if len(e) < 1:
empty_labels.append(True)
else:
empty_labels.append(False)
empty_labels = np.array(empty_labels, dtype=np.bool_)
plain_text_i = plain_text_i[np.invert(empty_labels)]
emojis_i = emojis_i[np.invert(empty_labels)]
print("ignored " + str(np.sum(empty_labels)) + " empty labels")
if not emoji_mean:
# so far filtering for the latest emoji. TODO: maybe there are also better approaches
labels_i = emoji2sent([latest(e) for e in emojis_i], only_emoticons=only_emoticons )
else:
tmp = [np.nanmean(emoji2sent(e, only_emoticons=only_emoticons), axis=0, dtype=float) for e in emojis_i]
c = 0
for t in tmp:
# only to find and debug wrong formatted data
if str(type(t)) != "<class 'numpy.ndarray'>":
print(t, type(t))
print(emojis_i[c])
print(emoji2sent(emojis_i[c], only_emoticons=only_emoticons))
c += 1
labels_i = np.array(tmp, dtype=float)
# and filter out all samples we have no label for:
wrong_labels = np.isnan(np.linalg.norm(labels_i, axis=1))
labels_i = labels_i[np.invert(wrong_labels)]
plain_text_i = plain_text_i[np.invert(wrong_labels)]
emojis_i = emojis_i[np.invert(wrong_labels)]
print("imported " + str(len(labels_i)) + " samples")
if self.labels is None:
self.labels = labels_i
else:
self.labels = np.append(self.labels, labels_i, axis=0)
if self.emojis is None:
self.emojis = emojis_i
else:
self.emojis = pd.concat([self.emojis,emojis_i],ignore_index=True)
if self.plain_text is None:
self.plain_text = plain_text_i
else:
self.plain_text = pd.concat([self.plain_text,plain_text_i],ignore_index=True)
if progress_callback is not None:
progress_callback((i+1)/n)
def apply_stemming_and_lemmatization(self, progress_callback = None):
"""
apply stemming and lemmatization to plain text samples
"""
self.use_stemming = True
self.use_lemmatization = True
print("apply stemming and lemmatization...")
stemmer = SnowballStemmer("english")
n = self.plain_text.shape[0] * 2 # 2 for loops
i = 0
for key in self.plain_text.keys():
stemmed_sent = []
for word in self.plain_text[key].split(" "):
word_stemmed = stemmer.stem(word)
stemmed_sent.append(word_stemmed)
stemmed_sent = (" ").join(stemmed_sent)
self.plain_text[key] = stemmed_sent
i += 1
if progress_callback is not None and i % 1024 == 0:
progress_callback(i / n)
lemmatizer = WordNetLemmatizer()
for key in self.plain_text.keys():
lemmatized_sent = []
sent_pos = pos_tag(word_tokenize(self.plain_text[key]))
for word in sent_pos:
wordnet_pos = get_wordnet_pos(word[1].lower())
word_lemmatized = lemmatizer.lemmatize(word[0], pos=wordnet_pos)
lemmatized_sent.append(word_lemmatized)
lemmatized_sent = (" ").join(lemmatized_sent)
self.plain_text[key] = lemmatized_sent
i += 1
if progress_callback is not None and i % 1024 == 0:
progress_callback(i / n)
print("stemming and lemmatization done")
def generate_emoji_count_and_weights(self):
"""
counting occurences of emojis
"""
self.emoji_count = {}
for e_list in self.emojis:
for e in set(e_list):
if e not in self.emoji_count:
self.emoji_count[e] = 0
self.emoji_count[e] += 1
emoji_sum = sum([self.emoji_count[e] for e in self.emoji_count])
self.emoji_weights = {}
for e in self.emoji_count:
# tfidf for emojis
self.emoji_weights[e] = np.log((emoji_sum / self.emoji_count[e]))
weights_sum= sum([self.emoji_weights[x] for x in self.emoji_weights])
# normalize:
for e in self.emoji_weights:
self.emoji_weights[e] = self.emoji_weights[e] / weights_sum
self.emoji_weights['X'] = 0 # dummy values
self.emoji_count['X'] = 0
# dump count data to json:
f = open("count_from_read_progress_" + str(datetime.datetime.now()) + ".json", 'w')
f.write(json.dumps(self.emoji_count, ensure_ascii=False))
f.close()
def get_emoji_count(self):
"""
@return: descending list of tuples in form (<emoji as character>, <emoji count>)
"""
assert self.emoji_count is not None
sorted_emoji_count = list(reversed(sorted(self.emoji_count.items(), key=operator.itemgetter(1))))
#display(sorted_emoji_count)
return sorted_emoji_count
def filter_by_top_emojis(self,n_top = 20):
"""
filter out messages not containing one of the `n_top` emojis
@param n_top: number of top emojis used for filtering
"""
assert self.labels is not None # ← messages are already read in
self.top_emojis = [x[0] for x in self.get_emoji_count()[:n_top]]
in_top = [edist.sentiment_vector_to_emoji(x) in self.top_emojis for x in self.labels]
self.labels = self.labels[in_top]
self.plain_text = self.plain_text[in_top]
self.emojis = self.emojis[in_top]
print("remaining samples after top emoji filtering: ", len(self.labels))
def filter_by_emoji_list(self, custom_target_emojis):
assert self.labels is not None
in_list = [edist.sentiment_vector_to_emoji(x) in custom_target_emojis for x in self.labels]
self.labels = self.labels[in_list]
self.plain_text = self.plain_text[in_list]
self.emojis = self.emojis[in_list]
print("remaining samples after custom emoji filtering: ", len(self.labels))
def filter_by_sentence_length(self, min_words):
assert self.plain_text is not None
is_long = [True if len(x.split()) >= min_words else False for x in self.plain_text]
self.labels = self.labels[is_long]
self.plain_text = self.plain_text[is_long]
self.emojis = self.emojis[is_long]
print("remaining samples after sentence length filtering: ", len(self.labels))
def generate_kmeans_binary_label(self, only_emoticons=True, n_clusters=5):
"""
generate binary labels using kmeans.
@param only_emoticons: set whether we're using the full emoji set or only emoticons
@param n_clusters: number of cluster we're generating in emoji's sentiment space
"""
assert self.labels is not None
array_sentiment_vectors = edist.list_sentiment_emoticon_vectors if only_emoticons else edist.list_sentiment_vectors
array_sentiment_vectors = np.array(array_sentiment_vectors)
list_emojis = edist.list_emoticon_emojis if only_emoticons else edist.list_emojis
self.use_binary_labels = True
print("clustering following emojis: " + "".join(list_emojis) + "...")
self.kmeans_cluster = KMeans(n_clusters=n_clusters).fit(array_sentiment_vectors)
print("clustering done")
self.label_binarizer = LabelBinarizer()
multiclass_labels = self.kmeans_cluster.predict(self.labels)
# FIXME: we have to guarantee that in every dataset all classes occur.
# otherwise batch fitting is not possible!
# (or we have to precompute the mlb fitting process somewhere...)
self.binary_labels = self.label_binarizer.fit_transform(multiclass_labels)
def create_train_test_split(self, split = 0.1, random_state = 4222):
assert self.plain_text is not None and self.labels is not None
if self.X is not None:
sys.stderr.write("WARNING: overwriting existing train/test split \n")
labels = self.binary_labels if self.use_binary_labels else self.labels
assert labels is not None
self.X, self.Xt, self.y, self.yt = train_test_split(self.plain_text, labels, test_size=split, random_state=random_state)
# * the pipeline manager saves and stores sklearn pipelines. Keras models are handled differently, so the have to be named explicitly during save and load operations
# In[8]:
class pipeline_manager(object):
@staticmethod
def load_from_pipeline_file(pipeline_file:str):
"""
loading a json configuration file and using it's paramters to call 'load_pipeline_from_files'
"""
with open(pipeline_file, 'r') as f:
d = json.load(f)
keras_models = d['keras_models']
all_models = d['all_models']
return pipeline_manager.load_pipeline_from_files(pipeline_file.rsplit('.',1)[0], keras_models, all_models)
@staticmethod
def load_pipeline_from_files(file_prefix:str, keras_models = [], all_models = []):
"""
load a pipeline from files. A pipeline should be represented by multiple model files in the form '<file_prefix>.<model_name>'
@param file_prefix: basename of all files (without extension)
@param keras_models: list of keras models (keras model files, only extension name). Leave this list empty if this is not a keras pipeline
@param all_models: list of all models (including keras_models, only extension name).
@return a pipeline manager object
"""
pm = pipeline_manager(keras_models=keras_models)
pm.load(file_prefix, all_models)
return pm
@staticmethod
def create_keras_pipeline_with_vectorizer(vectorizer, layers, sdm:sample_data_manager, loss=None, optimizer=None, fit_vectorizer=True):
'''
creates pipeline with vectorizer and keras classifier
@param vectorizer: Vectorizer object. will be fitted with data provided by sdm
@param layers: list of keras layers. One keras layer is a tuple in form: (<#neurons:int>, <activation_func:str>)
@param sdm: sample data manager to get data for the vectorizer
@param loss: set keras loss function. Depending whether sdm use multiclass labels `categorical_crossentropy` or `mean_squared_error` is used as default
@param optimizer: set keras optimizer. Depending whether sdm use multiclass labels `sgd` or `adam` is used as default
@return: a pipeline manager object
'''
from keras.models import Sequential
from keras.layers import Dense
if fit_vectorizer:
if sdm.X is None:
sdm.create_train_test_split()
print("fit vectorizer...")
vec_train = vectorizer.fit_transform(sdm.X)
vec_test = vectorizer.transform(sdm.Xt)
print("fitting done")
# creating keras model:
model=Sequential()
keras_layers = []
first_layer = True
for layer in layers:
if first_layer:
size = None
if "size" in dir(vectorizer):
size = vectorizer.size
else:
size = vectorizer.transform([" "])[0]._shape[1]
model.add(Dense(units=layer[0], activation=layer[1], input_dim=size))
first_layer = False
else:
model.add(Dense(units=layer[0], activation=layer[1]))
if sdm.use_binary_labels:
loss_function = loss if loss is not None else 'categorical_crossentropy'
optimizer_function = optimizer if optimizer is not None else 'sgd'
model.compile(loss=loss_function,
optimizer=optimizer_function,
metrics=['accuracy'])
else:
loss_function = loss if loss is not None else 'mean_squared_error'
optimizer_function = optimizer if optimizer is not None else 'adam'
model.compile(loss=loss_function,
optimizer=optimizer_function)
pipeline = Pipeline([
('vectorizer',vectorizer),
('keras_model', model)
])
return pipeline_manager(pipeline=pipeline, keras_models=['keras_model'])
@staticmethod
def create_pipeline_with_classifier_and_vectorizer(vectorizer, classifier, sdm:sample_data_manager = None):
'''
creates pipeline with vectorizer and non-keras classifier
@param vectorizer: Vectorizer object. will be fitted with data provided by sdm
@param classifier: unfitted classifier object (should be compatible with all sklearn classifiers)
@param sdm: sample data manager to get data for the vectorizer
@return: a pipeline manager object
'''
if sdm is not None:
if sdm.X is None:
sdm.create_train_test_split()
vec_train = vectorizer.fit_transform(sdm.X)
vec_test = vectorizer.transform(sdm.Xt)
pipeline = Pipeline([
('vectorizer',vectorizer),
('classifier', classifier)
])
return pipeline_manager(pipeline=pipeline, keras_models=[])
def __init__(self, pipeline = None, keras_models = []):
"""
constructor
@param pipeline: a sklearn pipeline
@param keras_models: list of keras steps in pipeline. Neccessary because saving and loading from keras models differs from the scikit ones
"""
self.pipeline = pipeline
self.additional_objects = {}
self.keras_models = keras_models
def save(self, prefix:str):
"""
saving the pipeline. It generates one file per model in the form: '<prefix>.<model_name>'
@param prefix: file prefix for all models
"""
print(self.keras_models)
# doing this like explained here: https://stackoverflow.com/a/43415459
for step in self.pipeline.named_steps:
if step in self.keras_models:
self.pipeline.named_steps[step].model.save(prefix + "." + step)
else:
joblib.dump(self.pipeline.named_steps[step], prefix + "." + str(step))
load_command = "pipeline_manager.load_pipeline_from_files( '"
load_command += prefix + "', " + str(self.keras_models) + ", "
load_command += str(list(self.pipeline.named_steps.keys())) + ")"
with open(prefix + '.pipeline', 'w') as outfile:
json.dump({'keras_models': self.keras_models, 'all_models': [step for step in self.pipeline.named_steps]}, outfile)
import __main__ as main
if not hasattr(main, '__file__'):
display("saved pipeline. It can be loaded the following way:")
display(Markdown("> ```\n"+load_command+"\n```")) # ← if we're in jupyter, print the fancy way :)
else:
print("saved pipeline. It can be loaded the following way:")
print(load_command)
def load(self, prefix:str, models = []):
"""
load a pipeline. A pipeline should be represented by multiple model files in the form '<prefix>.<model_name>'
NOTE: keras model names (if there are some) have to be defined in self.keras_models first!
@param prefix: the prefix for all model files
@param models: model_names to load
"""
self.pipeline = None
model_list = []
for model in models:
if model in self.keras_models:
model_list.append((model, load_model(prefix + "." + model)))
else:
model_list.append((model, joblib.load(prefix+"." + model)))
self.pipeline = Pipeline(model_list)
def fit(self,X,y):
"""fitting the pipeline"""
self.pipeline.fit(X,y)
def predict(self,X, use_stemming=False, use_lemmatization=False):
"""predict"""
if use_stemming:
X = np.array(batch_stem(X))
if use_lemmatization:
X = np.array(batch_lemm(X))
return self.pipeline.predict(X)
# * the trainer class passes Data from the sample manager to the pipeline manager
# In[9]:
def to_dense_if_sparse(X):
"""
little hepler function to make data dense (if it is sparse).
is used in trainer.fit function
"""
if "todense" in dir(X):
return X.todense()
return X
class trainer(object):
def __init__(self, sdm:sample_data_manager, pm:pipeline_manager):
"""constructor"""
self.sdm = sdm
self.pm = pm
self.acc = []
self.val = []
def fit(self, max_size=1000000, disabled_fit_steps=['vectorizer'], keras_batch_fitting_layer=['keras_model'], batch_size=None, n_epochs=1, progress_callback=None):
"""
fitting data in the pipeline. Because we don't want to refit the vectorizer, the pipeline models containing the vectorizer have to be named explicitly
@param max_size: don't train more examples than that number
@param disabled_fit_steps: list of pipeline steps that we want to prevent to refit. Normally all vectorizer steps
"""
# TODO: make batch fitting available here (eg: continous waiting for data and fitting them)
if self.sdm.X is None:
self.sdm.create_train_test_split()
disabled_fits = {}
disabled_fit_transforms = {}
disabled_keras_fits = {}
named_steps = self.pm.pipeline.named_steps
for s in disabled_fit_steps:
# now it gets really dirty:
# replace fit functions we don't want to call again (e.g. for vectorizers)
disabled_fits[s] = named_steps[s].fit
disabled_fit_transforms[s] = named_steps[s].fit_transform
named_steps[s].fit = lambda self, X, y=None: self
named_steps[s].fit_transform = named_steps[s].transform
if batch_size is not None:
for k in keras_batch_fitting_layer:
# forcing batch fitting on keras
disabled_keras_fits[k]=named_steps[k].fit
named_steps[k].fit = lambda X, y: named_steps[k].train_on_batch(to_dense_if_sparse(X), y) # ← why has keras no sparse support on batch progressing!?!?!
if batch_size is None:
self.acc = []
self.val = []
for e in range(n_epochs):
print("epoch", e)
self.pm.fit(X = self.sdm.X[:max_size], y = self.sdm.y[:max_size])
pred, yt = self.test()
mean_squared_error = ((pred - yt)**2).mean(axis=0)
print("#" + str(e) + ": validation loss: ", mean_squared_error, "scalar: ", np.mean(mean_squared_error))
self.val.append(np.mean(mean_squared_error))
plot_sentiment_space(pred, top_20_sents, top_20)
plt.figure(figsize=(10,5))
plt.plot(self.val)
plt.savefig("val_error" + str(datetime.datetime.now()) + ".png", bbox_inches='tight')
plt.show()
else:
n = len(self.sdm.X) // batch_size
for i in range(n_epochs):
for j in range(n):
self.pm.fit(X = np.array(self.sdm.X[j*batch_size:(j+1)*batch_size]), y = np.array(self.sdm.y[j*batch_size:(j+1)*batch_size]))
if progress_callback is not None:
progress_callback(j / n)
pred, yt = self.test()
mean_squared_error = ((pred - yt)**2).mean(axis=0)
print("#" + str(j) + ": loss: ", mean_squared_error)
# restore replaced fit functions:
for s in disabled_fit_steps:
named_steps[s].fit = disabled_fits[s]
named_steps[s].fit_transform = disabled_fit_transforms[s]
if batch_size is not None:
for k in keras_batch_fitting_layer:
named_steps[k].fit = disabled_keras_fits[k]
def test(self, use_lemmatization=False, use_stemming=False, emoji_subset=None, only_test_on_valid_set = True):
'''
@param use_lemmatization:boolean
@param use_stemming:boolean
@param emoji_subset:list if given, only make predictions on samples containing one of these emojis as teacher value
@return: prediction:list, teacher:list
'''
if self.sdm.X is None:
self.sdm.create_train_test_split()
Xt = self.sdm.Xt
yt = self.sdm.yt
print("original validation size: " + str(len(yt)))
if emoji_subset is not None:
has_emoji = np.array([True if edist.sentiment_vector_to_emoji(y) in emoji_subset else False for y in yt])
Xt = Xt[has_emoji]
yt = yt[has_emoji]
print("filtered validation size: " + str(len(yt)))
return self.pm.predict(Xt, use_lemmatization=use_lemmatization, use_stemming=use_stemming), yt