.. | ||
Emoji_Distance.ipynb | ||
Emoticon_Emoji_Assignment.ipynb | ||
fastTextVectors.kv | ||
naive_approach.ipynb | ||
naive_approach.py | ||
naiveApproachTest.ipynb | ||
README.md | ||
word2vec.model |
naive_approach
This directory contains the functions necessary to run the Naive Approach.
Prerequisites: * the file emoji_descriptions_preprocessed.csv has to be located in the specified folder ../Tools * pandas has to be installed
For testing, import naive_approach.py and execute the following commands:
-
prepareData(stem, lower)
- preprocesses the emoji descriptions and returns a dictionary with the indexed emojis
- parameters:
stem
: Apply stemming (default=True
)lower
: Apply lowercasing (default=True
)
-
predict(sentence, lookup, emojis_to_consider, criteria, lang, embeddings, n=10, t=0.9)
- evaluates an input sentence and returns a list of predicted emojis
- parameters:
sentence
: Input sentence (required parameter)lookup
: dictionary with emoji data (return value of prepareData, required parameter)emojis_to_consider
: set of emojis to include in prediction, or"all"
(default="all"
)criteria
: criteria to evaluate the values of the description - message matching.- options:
"sum"
,"mean"
,"max_val"
,"threshold"
(default:"threshold"
)
- options:
lang
: language to use (default: "eng")embeddings
: word embeddings- options:
"wordnet"
,"word2Vec"
,"fastText"
, default:"wordnet"
- options:
n
: number of top ranked emojis to return (default=10
)t
: threshold for the"threshold"
criteria (default=0.9
)