{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Exercise 1\n", "Solution by:\n", "Carsten Draschner \n", "2719095\n", "\n", "Following Instructions: \n", "https://github.com/SmartDataAnalytics/MA-INF-4222-NLP-Lab/blob/master/2018_SoSe/exercises/Task01_Instructions.ipynb" ] }, { "cell_type": "code", "execution_count": 83, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np\n", "import nltk\n", "from nltk import word_tokenize, pos_tag" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Classifiers\n", "**Decision Tree** import from skikit learn" ] }, { "cell_type": "code", "execution_count": 84, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from sklearn.tree import DecisionTreeClassifier\n", "from sklearn.feature_extraction import DictVectorizer\n", "from sklearn.pipeline import Pipeline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1. model1 = your POS tagger model (english)\n", "for a words defined by its in dex with the given sentences a feature vector fot this word will be determinded" ] }, { "cell_type": "code", "execution_count": 85, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "defined own feature model\n" ] } ], "source": [ "def features(sentence, index):\n", " return {\n", " 'word': sentence[index],\n", " 'length': len(sentence[index]),\n", " 'is_capitalized': sentence[index][0].upper() == sentence[index][0],\n", " 'prefix-1': sentence[index][0],\n", " 'suffix-1': sentence[index][-1],\n", " 'prev_word': '' if index == 0 else sentence[index - 1],\n", " 'next_word': '' if index == len(sentence) - 1 else sentence[index + 1],\n", " 'kindOfCamelCase': sentence[index][1:].lower() != sentence[index][1:],\n", " 'includesSpace': True if ((' ') in sentence[index]) else False, #depemds on tokenizer\n", " 'containsNumber': sum(str(i) in (sentence[index]) for i in range(10))>0,\n", " 'prefix-2': sentence[index][1] if len(sentence[index])>1 else \"-1\",\n", " 'suffix-2': sentence[index][-2] if len(sentence[index])>1 else \"-1\"\n", " }\n", "print(\"defined own feature model\")\n", "#print(features(\"halli hallo i bims der Programmierer\".strip().split(\" \"), 3))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2. model2 = pre-trained POS tagger model using NLTK (maxentropy english)\n" ] }, { "cell_type": "code", "execution_count": 86, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#max entropie pre trained pos tag\n", "#see Calculate performance 1.2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 3. model3.x = rule-based classifiers (x = 1 to 5)\n", "1. DefaultTagger that simply tags everything with the same tag\n", "2. RegexpTagger that applies tags according to a set of regular expressions\n", "3. N-Gram (n-gram tagger is a generalization of a unigram tagger whose context is the current word together with the part-of-speech tags of the n-1 preceding token)\n", " + UnigramTagger\n", " + BigramTagger\n", " + TrigramTagger" ] }, { "cell_type": "code", "execution_count": 87, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\"#used from description for RegexpTagger\\npatterns = [(r'.*ing$', 'VBG'), (r'.*ed$', 'VBD'), (r'.*es$', 'VBZ'), (r'.*ould$', 'MD'), (r'.*'s$', 'NN$'), \\n (r'.*s$', 'NNS'), (r'^-?[0-9]+(.[0-9]+)?$', 'CD'), (r'.*', 'NN')]\\n\\n#train taggers\\ndef_model = nltk.DefaultTagger('NN')\\nregexp_model = nltk.RegexpTagger(patterns)\\nuni_model = nltk.UnigramTagger(training_sentences_X1)\\nbi_model = nltk.BigramTagger(training_sentences_X1)\\ntri_model = nltk.TrigramTagger(training_sentences_X1)\"" ] }, "execution_count": 87, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#see Task 1.3 and 1.6\n", "\n", "'''#used from description for RegexpTagger\n", "patterns = [(r'.*ing$', 'VBG'), (r'.*ed$', 'VBD'), (r'.*es$', 'VBZ'), (r'.*ould$', 'MD'), (r'.*\\'s$', 'NN$'), \n", " (r'.*s$', 'NNS'), (r'^-?[0-9]+(.[0-9]+)?$', 'CD'), (r'.*', 'NN')]\n", "\n", "#train taggers\n", "def_model = nltk.DefaultTagger('NN')\n", "regexp_model = nltk.RegexpTagger(patterns)\n", "uni_model = nltk.UnigramTagger(training_sentences_X1)\n", "bi_model = nltk.BigramTagger(training_sentences_X1)\n", "tri_model = nltk.TrigramTagger(training_sentences_X1)'''" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 4. model4 = your POS tagger model (not english)" ] }, { "cell_type": "code", "execution_count": 88, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#see Task 2.1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 5. model5 = pre-trained POS tagger model using RDRPOSTagger 1 or TreeTagger 2 (not english)" ] }, { "cell_type": "code", "execution_count": 89, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#see Task 2.2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Corpora\n", "note: data split for training/test = 0.8/0.2 (sequencial)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 1. X1 = nltk.corpus.treebank (english)" ] }, { "cell_type": "code", "execution_count": 90, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[nltk_data] Downloading package treebank to\n", "[nltk_data] /Users/Carsten/nltk_data...\n", "[nltk_data] Package treebank is already up-to-date!\n", "downloaded treebank\n" ] } ], "source": [ "nltk.download('treebank')\n", "x1 = nltk.corpus.treebank\n", "print(\"downloaded treebank\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 2. X2 = nltk.corpus.brown (english)" ] }, { "cell_type": "code", "execution_count": 91, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[nltk_data] Downloading package brown to /Users/Carsten/nltk_data...\n", "[nltk_data] Package brown is already up-to-date!\n", "downloaded brown\n" ] } ], "source": [ "nltk.download('brown')\n", "x2 = nltk.corpus.brown\n", "print(\"downloaded brown\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 3. X3 = other language (not english)" ] }, { "cell_type": "code", "execution_count": 92, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#? nltk.corpus.ConllCorpusReader" ] }, { "cell_type": "code", "execution_count": 93, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "downloaded german tiger corpus\n" ] } ], "source": [ "# TODO: loading german corpus \n", "X3 = nltk.corpus.ConllCorpusReader(root='/Users/Carsten/GitRepos/NLP-LAB/Carsten_Solutions/sets/german/', fileids=['tiger_release_aug07.corrected.16012013.conll09'], columntypes=['ignore', 'words', 'ignore', 'ignore', 'pos'], encoding='utf-8')\n", "german_tagged_sents = X3.tagged_sents()\n", "print(\"downloaded german tiger corpus\")" ] }, { "cell_type": "code", "execution_count": 94, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'#import pandas as pd\\n#df = pd.read_table(\"/Users/Carsten/GitRepos/NLP-LAB/Carsten_Solutions/sets/croatia/set.hr.conll\")\\n#df.head()\\n\\n#x3 = other language\\n#from croatia:\\n#by ZˇeljkoAgic ́,⋆NikolaLjubesˇic ́ http://www.lrec-conf.org/proceedings/lrec2014/pdf/690_Paper.pdf\\n#licenses: https://creativecommons.org/licenses/by-sa/4.0/\\ncorp = nltk.corpus.ConllCorpusReader(root=\"/Users/Carsten/GitRepos/NLP-LAB/Carsten_Solutions/sets/croatia/\", fileids=[\"set.hr.conll\"], columntypes=(\\'ignore\\',\\'ignore\\',\\'pos\\',\\'ignore\\',\\'ignore\\',\\'ignore\\',\\'ignore\\',\\'ignore\\',\\'ignore\\',\\'ignore\\'))\\nprint(corp.tagged_sents[-100])\\n#from croatia:\\n#by ZˇeljkoAgic ́,⋆NikolaLjubesˇic ́ http://www.lrec-conf.org/proceedings/lrec2014/pdf/690_Paper.pdf\\n#licenses: https://creativecommons.org/licenses/by-sa/4.0/'" ] }, "execution_count": 94, "metadata": {}, "output_type": "execute_result" } ], "source": [ "'''#import pandas as pd\n", "#df = pd.read_table(\"/Users/Carsten/GitRepos/NLP-LAB/Carsten_Solutions/sets/croatia/set.hr.conll\")\n", "#df.head()\n", "\n", "#x3 = other language\n", "#from croatia:\n", "#by ZˇeljkoAgic ́,⋆NikolaLjubesˇic ́ http://www.lrec-conf.org/proceedings/lrec2014/pdf/690_Paper.pdf\n", "#licenses: https://creativecommons.org/licenses/by-sa/4.0/\n", "corp = nltk.corpus.ConllCorpusReader(root=\"/Users/Carsten/GitRepos/NLP-LAB/Carsten_Solutions/sets/croatia/\", fileids=[\"set.hr.conll\"], columntypes=('ignore','ignore','pos','ignore','ignore','ignore','ignore','ignore','ignore','ignore'))\n", "print(corp.tagged_sents[-100])\n", "#from croatia:\n", "#by ZˇeljkoAgic ́,⋆NikolaLjubesˇic ́ http://www.lrec-conf.org/proceedings/lrec2014/pdf/690_Paper.pdf\n", "#licenses: https://creativecommons.org/licenses/by-sa/4.0/'''\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Task 1\n", "* get results for english (plot a graph with all classifiers x results)\n", " * performance 1.1 = model1 in X1\n", " * performance 1.2 = model2 in X1\n", " * performance 1.3.x = model3.x in X1\n", " * performance 1.4 = model1 in X2\n", " * performance 1.5 = model2 in X2\n", " * performance 1.6.x = model3.x in X2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Generating Testdata" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Generate Training and Testdata for X1\n", "1. split annotaed sentences into training and testdata\n", "2. split trainingdata into input data and teacherdata\n", " *input is the feature vector of each word\n", " *output is a list of POS tags for each word and sentences" ] }, { "cell_type": "code", "execution_count": 95, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#to generate trainingsdata, ignore the assigned tags as a function\n", "def untag(tagged_sentence):\n", " return [w for w, t in tagged_sentence]" ] }, { "cell_type": "code", "execution_count": 96, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "got 3131 training sentences and 783 test sentences\n" ] } ], "source": [ "#print(type(nltk.corpus.treebank.tagged_sents()))\n", "\n", "#object including the annotated sentences\n", "annotated_sent = nltk.corpus.treebank.tagged_sents()\n", "\n", "#to split the data, calculate the borders for ratio\n", "cutoff = int(.8 * len(annotated_sent))\n", "training_sentences_X1 = annotated_sent[:cutoff]\n", "test_sentences_X1 = annotated_sent[cutoff:]\n", "\n", "#show the amount of sentences\n", "print(\"got \",len(training_sentences_X1),\" training sentences and \", len(test_sentences_X1), \" test sentences\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**transform_to_dataset** generates the input X as a list of feature dictinionaries and an output y as a list of pos tags. " ] }, { "cell_type": "code", "execution_count": 97, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#for training split sentences with its tags into y (for a sentences its resulting tags for each word) and transform sentences and x as a list of the features extracet for echt word in the sentences\n", "def transform_to_dataset(tagged_sentences):\n", " X, y = [], []\n", " for tagged_sentence in tagged_sentences:\n", " for index in range(len(tagged_sentence)):\n", " X.append(features(untag(tagged_sentence), index))\n", " y.append(tagged_sentence[index][1]) \n", " return X, y" ] }, { "cell_type": "code", "execution_count": 98, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "generated X1 (feature sets) and y1 set of teacher tags\n" ] } ], "source": [ "#trainings inputset X and training teacher set y\n", "X1, y1 = transform_to_dataset(training_sentences_X1)\n", "print(\"generated X1 (feature sets) and y1 set of teacher tags\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Generate Training and Testdata for X2\n", "1. split annotaed sentences into training and testdata\n", "2. split trainingdata into input data and teacherdata\n", " *input is the feature vector of each word\n", " *output is a list of POS tags for each word and sentences" ] }, { "cell_type": "code", "execution_count": 99, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "got 45872 training sentences and 11468 test sentences\n" ] } ], "source": [ "#object including the annotated sentences\n", "annotated_sent = nltk.corpus.brown.tagged_sents()\n", "\n", "#to split the data, calculate the borders for ratio\n", "cutoff = int(.8 * len(annotated_sent))\n", "training_sentences_X2 = annotated_sent[:cutoff]\n", "test_sentences_X2 = annotated_sent[cutoff:]\n", "\n", "#show the amount of sentences\n", "print(\"got \",len(training_sentences_X2),\" training sentences and \", len(test_sentences_X2), \" test sentences\")" ] }, { "cell_type": "code", "execution_count": 100, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "generated X2 (feature sets) and y2 set of teacher tags\n" ] } ], "source": [ "#trainings inputset X and training teacher set y\n", "X2, y2 = transform_to_dataset(training_sentences_X2)\n", "print(\"generated X2 (feature sets) and y2 set of teacher tags\")#(X3[:3], y3[:3])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Generate Training and Testdata for X3\n", "1. split annotaed sentences into training and testdata\n", "2. split trainingdata into input data and teacherdata\n", " *input is the feature vector of each word\n", " *output is a list of POS tags for each word and sentences" ] }, { "cell_type": "code", "execution_count": 101, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "got 40377 training sentences and 10095 test sentences\n" ] } ], "source": [ "#object including the annotated sentences\n", "annotated_sent = X3.tagged_sents()\n", "\n", "#print(type(annotated_sent))\n", "\n", "#to split the data, calculate the borders for ratio\n", "cutoff = int(.8 * len(annotated_sent))\n", "training_sentences_X3 = annotated_sent[:cutoff]\n", "test_sentences_X3 = annotated_sent[cutoff:]\n", "\n", "#show the amount of sentences\n", "print(\"got \",len(training_sentences_X3),\" training sentences and \", len(test_sentences_X3), \" test sentences\")" ] }, { "cell_type": "code", "execution_count": 102, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "generated X3 (feature sets) and y3 set of teacher tags\n" ] } ], "source": [ "#trainings inputset X and training teacher set y\n", "X3, y3 = transform_to_dataset(training_sentences_X3)\n", "print(\"generated X3 (feature sets) and y3 set of teacher tags\")#(X3[:3], y3[:3])" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "#### Implementing a classifier\n", "relevant imports\n", "* decision tree as the AI for classfing\n", "* dict vercorizer transforms the feature dictionary into a vector as the input for the tree" ] }, { "cell_type": "code", "execution_count": 103, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "imported sktree, DictVectorizer, Pipeline\n" ] } ], "source": [ "from sklearn.tree import DecisionTreeClassifier\n", "from sklearn.feature_extraction import DictVectorizer\n", "from sklearn.pipeline import Pipeline\n", "print(\"imported sktree, DictVectorizer, Pipeline\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Pipeline manages vectorizer and classifier" ] }, { "cell_type": "code", "execution_count": 104, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Initialized classifier\n" ] } ], "source": [ "clf = Pipeline([\n", " ('vectorizer', DictVectorizer(sparse=False)),\n", " ('classifier', DecisionTreeClassifier(criterion='entropy'))\n", "])\n", "print(\"Initialized classifier\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Calculating performances" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Calculate performance 1.1 - own POS tagger model with X1 = treebank\n", "* fit the decision tree for a limited amount (size) of training \n", "* test data and compare with score function on testdata" ] }, { "cell_type": "code", "execution_count": 105, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "training OK\n", "Accuracy: 0.883077997904\n" ] } ], "source": [ "size=10000\n", "clf.fit(X1[:size], y1[:size])\n", " \n", "print('training OK')\n", " \n", "X1_test, y1_test = transform_to_dataset(test_sentences_X1)\n", "\n", "performance1_1 = clf.score(X1_test, y1_test)\n", "\n", "print(\"Accuracy:\", performance1_1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Calculate performance 1.2 - pre-trained POS tagger model using NLTK (maxentropy english) with X1 = treebank" ] }, { "cell_type": "code", "execution_count": 106, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Accuracy: 0.8936074654423873\n" ] } ], "source": [ "#extract only the words from feature trainings set\n", "only_words_X1 = [x['word'] for x in X1_test]\n", "\n", "#train with the pos tagger by nltk\n", "pos_tags_by_pre_trained_pos_tagger = [word_tag_tuple[1] for word_tag_tuple in pos_tag(only_words_X1, lang='eng')]\n", "\n", "#calculate performance by comparing each pos tag\n", "performance1_2 = 0\n", "for index in range(len(pos_tags_by_pre_trained_pos_tagger)):\n", " if(pos_tags_by_pre_trained_pos_tagger[index]==y1_test[index]):\n", " performance1_2 += 1\n", "performance1_2 /= len(pos_tags_by_pre_trained_pos_tagger)\n", "\n", "print(\"Accuracy:\", performance1_2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Calculate performance 1.3 - rule-based classifiers with X1 = treebank\n", "1. DefaultTagger that simply tags everything with the same tag\n", "2. RegexpTagger that applies tags according to a set of regular expressions\n", "3. N-Gram (n-gram tagger is a generalization of a unigram tagger whose context is the current word together with the part-of-speech tags of the n-1 preceding token)\n", " + UnigramTagger\n", " + BigramTagger\n", " + TrigramTagger" ] }, { "cell_type": "code", "execution_count": 107, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "performance 1.3.1 is: 0.1447677029791906\n", "performance 1.3.2 is: 0.24232746145017217\n", "performance 1.3.3 is: 0.8608213982733669\n", "performance 1.3.4 is: 0.1132791057437996\n", "performance 1.3.5 is: 0.06736863116922003\n" ] } ], "source": [ "#used from description for RegexpTagger\n", "patterns = [(r'.*ing$', 'VBG'), (r'.*ed$', 'VBD'), (r'.*es$', 'VBZ'), (r'.*ould$', 'MD'), (r'.*\\'s$', 'NN$'), \n", " (r'.*s$', 'NNS'), (r'^-?[0-9]+(.[0-9]+)?$', 'CD'), (r'.*', 'NN')]\n", "\n", "#train taggers\n", "def_model = nltk.DefaultTagger('NN')\n", "regexp_model = nltk.RegexpTagger(patterns)\n", "uni_model = nltk.UnigramTagger(training_sentences_X1)\n", "bi_model = nltk.BigramTagger(training_sentences_X1)\n", "tri_model = nltk.TrigramTagger(training_sentences_X1)\n", "\n", "#evaluate taggers\n", "# performance of Default Tagger\n", "performance1_3_1 = def_model.evaluate(test_sentences_X1)\n", "print('performance 1.3.1 is: ',performance1_3_1)\n", "\n", "# performance of Regex Tagger\n", "performance1_3_2 = regexp_model.evaluate(test_sentences_X1)\n", "print('performance 1.3.2 is: ',performance1_3_2)\n", "\n", "# performance of Unigram Tagger\n", "performance1_3_3 = uni_model.evaluate(test_sentences_X1)\n", "print('performance 1.3.3 is: ',performance1_3_3)\n", "\n", "# performance of Bigram Tagger\n", "performance1_3_4 = bi_model.evaluate(test_sentences_X1)\n", "print('performance 1.3.4 is: ',performance1_3_4)\n", "\n", "# performance of Trigram Tagger\n", "performance1_3_5 = tri_model.evaluate(test_sentences_X1)\n", "print('performance 1.3.5 is: ',performance1_3_5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Calculate performance 1.4 - own POS tagger model with X2 = brown" ] }, { "cell_type": "code", "execution_count": 108, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "calculated perfomance 1.4= 0.772156918908\n" ] } ], "source": [ "size=10000\n", "clf.fit(X2[:size], y2[:size])\n", "X2_test, y2_test = transform_to_dataset(test_sentences_X2)\n", "performance1_4 = clf.score(X2_test, y2_test)\n", "print(\"calculated perfomance 1.4= \",performance1_4)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Calculate performance 1.5 - pre-trained POS tagger model using NLTK (maxentropy english) with X2 = brown" ] }, { "cell_type": "code", "execution_count": 109, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Accuracy: 0.6044583741861567\n" ] } ], "source": [ "#extract only the words from feature trainings set\n", "only_words_X2 = [x['word'] for x in X2_test]\n", "\n", "#train with the pos tagger by nltk\n", "pos_tags_by_pre_trained_pos_tagger = [word_tag_tuple[1] for word_tag_tuple in pos_tag(only_words_X2, lang='eng')]\n", "\n", "#calculate performance by comparing each pos tag\n", "performance1_5 = 0\n", "for index in range(len(pos_tags_by_pre_trained_pos_tagger)):\n", " if(pos_tags_by_pre_trained_pos_tagger[index]==y2_test[index]):\n", " performance1_5 += 1\n", "performance1_5 /= len(pos_tags_by_pre_trained_pos_tagger)\n", "\n", "print(\"Accuracy:\", performance1_5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Calculate performance 1.6 - rule-based classifiers with X2 = brown" ] }, { "cell_type": "code", "execution_count": 110, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "performance 1.6.1 is: 0.10997763652187324\n", "performance 1.6.2 is: 0.17594438874995869\n", "performance 1.6.3 is: 0.8773754310202373\n", "performance 1.6.4 is: 0.3390490564374869\n", "performance 1.6.5 is: 0.19178610379738467\n" ] } ], "source": [ "uni_model = nltk.UnigramTagger(training_sentences_X2)\n", "bi_model = nltk.BigramTagger(training_sentences_X2)\n", "tri_model = nltk.TrigramTagger(training_sentences_X2)\n", "\n", "#evaluate taggers\n", "# performance of Default Tagger\n", "performance1_6_1 = def_model.evaluate(test_sentences_X2)\n", "print('performance 1.6.1 is: ',performance1_6_1)\n", "\n", "# performance of Regex Tagger\n", "performance1_6_2 = regexp_model.evaluate(test_sentences_X2)\n", "print('performance 1.6.2 is: ',performance1_6_2)\n", "\n", "# performance of Unigram Tagger\n", "performance1_6_3 = uni_model.evaluate(test_sentences_X2)\n", "print('performance 1.6.3 is: ',performance1_6_3)\n", "\n", "# performance of Bigram Tagger\n", "performance1_6_4 = bi_model.evaluate(test_sentences_X2)\n", "print('performance 1.6.4 is: ',performance1_6_4)\n", "\n", "# performance of Trigram Tagger\n", "performance1_6_5 = tri_model.evaluate(test_sentences_X2)\n", "print('performance 1.6.5 is: ',performance1_6_5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Using the classifier\n", "for results the link of pos_tags:\n", "https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html" ] }, { "cell_type": "code", "execution_count": 111, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3.6.3\n" ] } ], "source": [ "def pos_tag(sentence):\n", " print('checking...')\n", " tagged_sentence = []\n", " tags = clf.predict([features(sentence, index) for index in range(len(sentence))])\n", " return zip(sentence, tags)\n", "\n", "import platform\n", "print(platform.python_version())\n", "\n", "#print(list(pos_tag(word_tokenize('Hello world, lets do something awesome today!'))))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Results for Task 1\n", "* get results for english (plot a graph with all classifiers x results)\n", " * performance 1.1 = model1 in X1\n", " * performance 1.2 = model2 in X1\n", " * performance 1.3.x = model3.x in X1\n", " * performance 1.4 = model1 in X2\n", " * performance 1.5 = model2 in X2\n", " * performance 1.6.x = model3.x in X2" ] }, { "cell_type": "code", "execution_count": 112, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "High five! You successfully sent some data to your account on plotly. View your plot in your browser at https://plot.ly/~carsten95/0 or inside your plot.ly account where it is named 'basic-bar'\n" ] }, { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "execution_count": 112, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import plotly\n", "plotly.tools.set_credentials_file(username='carsten95', api_key='vElf5IOxiFheQdjTxjXW')\n", "plotly.__version__\n", "import plotly.plotly as py\n", "import plotly.graph_objs as go\n", "\n", "data = [go.Bar(\n", " x=['performance 1.1', 'performance 1.2', 'performance 1.3.1', 'performance 1.3.2', 'performance 1.3.3', 'performance 1.3.4', 'performance 1.3.5', 'performance 1.4', 'performance 1.5' , 'performance 1.6.1', 'performance 1.6.2', 'performance 1.6.3', 'performance 1.6.4', 'performance 1.6.5'],\n", " y=[performance1_1, performance1_2, performance1_3_1, performance1_3_2, performance1_3_3, performance1_3_4, performance1_3_5, performance1_4, performance1_5, performance1_6_1, performance1_6_2, performance1_6_3, performance1_6_4, performance1_6_5]\n", " )]\n", "\n", "py.iplot(data, filename='basic-bar')" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "### Results for Task 2\n", "* train your model with standard features (plot a graph with all classifiers x results)\n", " * performance 2.1 = model4 in X3\n", " * model 4 your POS tagger model (not english)\n", " * performance 2.2 = model5 in X3\n", " * pre-trained POS tagger model using RDRPOSTagger 1 or TreeTagger 2 (not english)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Calculate Performance 2.1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "again building a pipeline:\n", "* first vectorizing the dictionary based on feature dict\n", "* second, initializing and training the max entropy classifier decision tree" ] }, { "cell_type": "code", "execution_count": 113, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clf = Pipeline([\n", " ('vectorizer', DictVectorizer(sparse=False)),\n", " ('classifier', DecisionTreeClassifier(criterion='entropy'))\n", "])" ] }, { "cell_type": "code", "execution_count": 114, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "training done\n", "Accuracy: 0.838839915374\n" ] } ], "source": [ "size=10000\n", "clf.fit(X3[:size], y3[:size])\n", " \n", "print('training done')\n", " \n", "X3_test, y3_test = transform_to_dataset(test_sentences_X3)\n", "\n", "performance2_1 = clf.score(X3_test, y3_test)\n", "\n", "print(\"Accuracy:\", performance2_1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Calculate Performance 2.2\n", "* using RDRPOS Taggger in a python 3 port rom https://github.com/jacopofar/RDRPOSTagger-python-3" ] }, { "cell_type": "code", "execution_count": 141, "metadata": {}, "outputs": [], "source": [ "#RDRPOSTagger port python 3 from https://github.com/jacopofar/RDRPOSTagger-python-3" ] }, { "cell_type": "code", "execution_count": 131, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "wrote file de_text.tx in cwd with each word of the sentence seperated by a space\n" ] } ], "source": [ "#generate a german txt text file:\n", "f = open(\"de_text.txt\", 'w')\n", "for sentence in test_sentences_X3:\n", " for word, tag in sentence:\n", " f.write(word + \" \")\n", " f.write(\"\\n\")\n", "f.close()\n", "\n", "print(\"wrote file de_text.tx in cwd with each word of the sentence seperated by a space\")" ] }, { "cell_type": "code", "execution_count": 132, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "stored: /Users/Carsten/GitRepos/NLP-LAB/Carsten_Solutions\n" ] } ], "source": [ "#to use RDRPOSTagger we have to store the path where we are working currently and where the donwnloaded RDRPOSTagger is stored\n", "import sys, os\n", "\n", "#current working directory to restore it later\n", "dir_path = os.getcwd()\n", "print(\"stored: \", dir_path)" ] }, { "cell_type": "code", "execution_count": 133, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "switched to path: /Users/Carsten/Downloads/RDRPOSTagger-python-3-master/pSCRDRtagger\n" ] } ], "source": [ "#set the rdrpos as path to work in lownloaded api\n", "RDRPOS_TAGGER_PATH = \"/Users/Carsten/Downloads/RDRPOSTagger-python-3-master/pSCRDRtagger\"\n", "sys.path.insert(0, RDRPOS_TAGGER_PATH)\n", "os.chdir(RDRPOS_TAGGER_PATH)\n", "print(\"switched to path:\", RDRPOS_TAGGER_PATH)" ] }, { "cell_type": "code", "execution_count": 134, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['Node', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__', 'tabStr']\n" ] } ], "source": [ "# import and rename for easier use\n", "import RDRPOSTagger\n", "r = RDRPOSTagger.RDRPOSTagger()\n", "\n", "#load files\n", "r.constructSCRDRtreeFromRDRfile(\"../Models/POS/German.RDR\")\n", "DICT = RDRPOSTagger.readDictionary(\"../Models/POS/German.DICT\")" ] }, { "cell_type": "code", "execution_count": 135, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "('\\nOutput file:', 'de_text.txt.TAGGED')\n" ] } ], "source": [ "#switch back to dir in which we worked at the start\n", "os.chdir(dir_path)\n", "\n", "# generate file with tags after each word with the delimiter /\n", "r.tagRawCorpus(DICT, \"de_text.txt\")" ] }, { "cell_type": "code", "execution_count": 142, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#from generated textfile above, seperate the word and tags\n", "tagged_words = []\n", "f = open(\"de_text.txt.TAGGED\", 'r')\n", "for line in f:\n", " for splits in line.split():\n", " cmp = splits.rsplit('/',1)\n", " if len(cmp) != 2:\n", " print(\"error parsing: \", cmp)\n", " else:\n", " w,t = cmp\n", " tagged_words.append((w,t))" ] }, { "cell_type": "code", "execution_count": 143, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[('CUPERTINO', 'NE'), ('(', '$('), ('rtr', 'NE'), ('/', '$('), ('whp', 'XY'), (')', '$('), ('.', '$.'), ('Der', 'ART'), ('Chef', 'NN'), ('des', 'ART')]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "[[('CUPERTINO', 'NE')], [('(', '$('), ('rtr', 'NE'), ('/', '$('), ('whp', 'XY'), (')', '$('), ('.', '$.')], ...]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display(tagged_words[:10])\n", "display(test_sentences_X3[:10])" ] }, { "cell_type": "code", "execution_count": 144, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Accuracy 2.2 = 0.9754407616361072\n" ] } ], "source": [ "performance2_2 = 0 # for test \n", "\n", "#counter for the words\n", "i = 0\n", "\n", "#evaluate accuracy\n", "for sent in test_sentences_X3:\n", " for tagged_w in sent:\n", " if tagged_w[1] == tagged_words[i][1]:\n", " performance2_2 += 1\n", " i += 1\n", "performance2_2 = performance2_2 / len(tagged_words)\n", "print(\"Accuracy 2.2 = \",performance2_2)" ] }, { "cell_type": "code", "execution_count": 145, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "High five! You successfully sent some data to your account on plotly. View your plot in your browser at https://plot.ly/~carsten95/0 or inside your plot.ly account where it is named 'basic-bar'\n" ] }, { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "execution_count": 145, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#visualize results with plotly\n", "data = [go.Bar(\n", " x=['performance 2.1', 'performance 2.2'],\n", " y=[performance2_1, performance2_2]\n", " )]\n", "\n", "py.iplot(data, filename='basic-bar')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 2 }