
NLP Report emoji prediction for text messages
Carsten Draschner, Maren Pielka, Jonas Weinz

July 2018

Contents
1 Introduction 2

1.1 Motivation . 2

2 Naive Approach 2
2.1 Matching of Messages to Emoji Specifications 3

2.1.1 Word2Vec/WordNet and Euclidean Distance 3
2.1.2 Ranking of Matching for Prediction 4

2.2 Findings from the Naive Approach 4

3 Advanced Approach 4
3.1 Preprocessing and Feature Extraction 4

3.1.1 TFIDF vectorization . 5
3.1.2 Doc2Vec vectorization . 5

3.2 Pipeline and Classifier . 5
3.3 Emoji Representation . 6
3.4 Problem Specification and Error Function 6

4 Merged Approach 7
4.1 User Interface . 7

4.1.1 Components . 7
4.1.2 Merge Predictions . 8
4.1.3 Results from Use of User Interface 8

5 Results 9
5.1 Comparison Approaches . 9
5.2 Results of the Neural Network classifier 9
5.3 Evaluation . 9

6 Discussion 9
6.1 Outlook . 9

6.1.1 Chatbot . 10
6.1.2 Multi Language . 10
6.1.3 Reinforcement Learning 10

1

6.1.4 Irony . 11
6.2 Limitations . 11

6.2.1 Alternative evaluation with independent data 11
6.2.2 Data . 12
6.2.3 Sentiment Space . 12
6.2.4 Trolls and Irony . 14

1 Introduction
For our lab project, we were investigating methods to predict suitable emojis
for a text fragment taken from a chat conversation. We first tested a naive ap-
proach without any Machine Learning, that matches the standard descriptions
associated to the emojis to the chat messages. This approach turned out to be
effective for those emojis which are closely related to specific topics, but not for
emotionally connoted emojis. Then we tried out a more sophisticated method
which uses feature extraction to train a classifier and optimized the parameters
of the model. Finally, we merged both approaches together to get a model
which is capable of predicting any kind of emojis.
Our idea and approach were inspired by the works of [2], [3] and [4], who were
investigating a similar application, but with slightly different objectives and
techniques.

1.1 Motivation
In a chat conversation, it is sometimes hard to predict the underlying emotion
of the statement, if no emoticons are present. We want to tackle this problem
by developing an emoji prediction system, which returns a suggestion for fitting
emoticons, given a text fragment. It can be used as an auto-correct tool, to help
your conversation partners understand your feelings better, or as an automated
answering system, so that you will always have a suitable emoticon reaction to
any message.
On the other hand, it might also be interesting to see which emotions are typi-
cally aligned with which emoticons, and vice versa.

2 Naive Approach
Initially we want to see how effective a very simple approach of Emoji prediction
would be without any use of machine learning. Our first simple model uses some
different processing layers. We want to predict for each of the messages in our
dialog a set of best fitting emojis. So we want to match the text of the dialog
messages to the emojis.

2

Figure 1: Naive Approach Outline

2.1 Matching of Messages to Emoji Specifications
Because emojis aren’t text, we have to assign a corresponding text, representing
these emojis. So we use the emoji specifications from [1]. We first preprocessed

Figure 2: Examples for emoji specifications

the messages and specifications using lowercasing and stopword removal. The
text of the currently written message should then be matched to the emoji
specification.
Additionally, we removed all tweets that were retweets or duplicates, and those
which contain only names.

2.1.1 Word2Vec/WordNet and Euclidean Distance

Word2Vec is a model which is trained on a text corpus to return a feature
representation of words, based on their semantic similarity. So, if two words
have a similar meaning, they are expected to be close to each other in feature
space. It is also intended that the difference of two word vectors represents
their relationship (for example, the difference between the vectors of “man” and
“woman” should be similar to the difference between “king” and “queen”).
A similar concept is implemented by WordNet, a large lexical semantic web for
the English language. It can be used to compute a synonym similarity between
any pair of words, comparable to the Word2Vec similarity.

3

By using Word2Vec or WordNet representations we can compare the words in
the messages with the emoji specification text. The Naive approach would be to
compare each word representation of the message with each word of the emoji
specifications pairwise. So for a message with n words and a specification of m
words, you get n*m values between 0 and 1. Those values are further used to
obtain one score for each message - specification pair (see section 2.1.2).
In the final implementation of our approach, we used WordNet similarities,
because they yielded better results than Word2Vec.

2.1.2 Ranking of Matching for Prediction

In the future use of our prediction, we want to propose a small set of best fitting
emojis matching to the currently written message. So we have to decide which
are the best fitting messages. Considering the n*m vector as defined before, a
“1” represents a perfect match and a “0” means that the strings don’t correlate.
We compare different approaches to rank these vectors:

• sum of all values

• average of all values / mean

• count(values>threshold)
count(values) for a given threshold with 0 < threshold < 1

• max(value)

We compared these different ranking techniques and found that the threshold
approach yields the best results, so we used it for our evaluation.

2.2 Findings from the Naive Approach
We discovered that it would be meaningful to distinguish between topic-related
(e.g. soccer ball, card game) and emotion-related (“standard”) emojis. While
the naive approach is relatively successful in predicting topic-related emojis, it
fails in recognizing emotion-related emojis (like smileys). This is clear, since
the emoji specification usually has no textual correlation with the respective
message. So we concluded, to predict those emotions correctly, we would need
a more advanced, Machine Learning based approach.

3 Advanced Approach
For the advanced approach, we tried different methods for matching text and
emoticons.

3.1 Preprocessing and Feature Extraction
We used a publicly available dataset of 3 million Twitter messages from Novem-
ber and December 2017. In a first preprocessing step we got rid of unnecessary

4

Figure 3: An overview of our conceptual design of the advanced approach

metadata and filtered out messages that are not either written in English or
German. Also all messages without emojis were thrown away, and remaining
messages were labeled by their emojis. For performance reasons we did this
step with a combination of simple unix bash tools (e.g. sed and grep) and jq
(https://stedolan.github.io/jq/).
Then, inside Python, we preprocessed the input text and it’s labels and tried
two different approaches for a vector representation of the input text: TFIDF
and Doc2Vec.

3.1.1 TFIDF vectorization

The TFIDF vectorizer derives a vector for an input sentence, based on the
relative occurrences of the words in the sentence (term frequency), multiplied
by a function that is decaying with their overall occurrence (inverse document
frequency).

tfidf(d, t,D) = tf(t, d) ∗ idf(t,D)

In this formula t is a term, d is the document (sentence) in which t occurs, and
D is the collection of all documents.

3.1.2 Doc2Vec vectorization

Doc2Vec is a Feature Extraction model closely related to Word2Vec (see section
2.1.1). It extends the model to not only represent single words, but complete
documents (or, in case of our approach, twitter messages). For this purpose, an
additional vector is introduced for each document and trained alongside with
the word vectors. Only the document vectors are used for our model, as input
to the classifier.

3.2 Pipeline and Classifier
We are using a sklearn Pipeline consisting of one vectorizer and a keras neu-
ral network as classifier. The vectorizer can either be a TFIDF- or doc2vec-
vectorizer. We have built a jupyter notebook with an extendable interactive
section to create a classifier and adjust the pipeline’s parameters.

5

Figure 4: user interface for network creation

We can also load and save pipelines to disk. Then data files can be selected
to load twitter messages from our data pool. Since we have more messages in
our data pool than we are able to hold in our RAM, we had to train multiple
times. To achieve that we had to adjust the sklearn-pipeline such that it does
not reset its steps when calling “fit” multiple times (especially for vectorizers like
tfidf). Our solution was to override internal sklearn functions during runtime
to avoid that.

3.3 Emoji Representation
In order to be able to compare emojis and evaluate the output of a classifier
accurately, we need a representation in some feature space. We did this using an
approach by [3]. The authors propose a mapping from emojis to a 3-dimensional,
continuous vector space (see figure 5). The dimensions are “Positive”, “Nega-
tive” and “Neutral”, which refer to the relative occurrences of the emoji in the
respective context. Using this vector representation, we can calculate the Eu-
clidean distance between any pair of emoticons. This distance can be used to
implement a continuous error function, when dealing with the output of a clas-
sifier. It is likely to be more precise than a standard accuracy function, which
would be 0 for any pair of emojis that do not match exactly.

3.4 Problem Specification and Error Function
Given the continuous representation of the emojis, the classification becomes
a regression task. Regarding the error function, we measure the distance of
the predicted point in feature space to the vector representation of the correct
emoji.

6

(a) sentiment-score / neutrality (b) positive / negative plot

Figure 5: Emoji Distribution in Sentiment Space. The sentiment score is defined
by the difference of the positive and negative part

Figure 6: Examples for some emojis and their nearest neighbors in the three
dimensional feature space

4 Merged Approach
We decided to merge our Naive and our Advanced Approach to combine the
advantages of both. For Sentiment Analysis we use our advanced approach, but
for the topic related analysis we use our naive approach.

4.1 User Interface
To get in touch with the current state of our project, we designed a simple User
Interface. It is inspired from the common appearance of chat or dialog systems
on mobile devices. We decided to implement our own sketch UI because we
want to have buttons for our predictions.

4.1.1 Components

Our User Interface provides the history of inserted messages in the top. As
to the input from the user, we have a text field for messages which are online
analysed for the best fitting predictions. Those are presented on the top of the
text input field as buttons labeled with the predicted emojis.

7

Figure 7: An overview of our conceptual design of the merged approach

Figure 8: Current Message: I hate trains; Result: 3 topic related predictions
(maximum 4 allowed) showing emojis containing trains and 5 additional senti-
ment analysis predictions of emojis containing almost sad faces

4.1.2 Merge Predictions

The interactive prediction results from the parallelly started prediction of both
approaches. We’ve chosen to provide 8 predictions of best fitting emojis and a
50/50 split of these 8 possible predictions (4 sentiment, 4 topic). If there are
too few topic related predictions, we fill up these positions by more sentiment
related emojis. Also the set of emojis for prediction can be defined and is set to
the top 20 most used emojis from our training set.

4.1.3 Results from Use of User Interface

We see that a merge of both approaches makes sense and offers a wider range
with easier access to emojis compared to our usual use. But also as expected
our sentiment analysis does not always provide the optimal expected emojis.
In contrast to that, the naive approach provides meaningful emojis most of the

8

time.

5 Results
5.1 Comparison Approaches
As mentioned before, the naive approach which was almost easy to implement,
provided a good feedback for topic related emoji prediction. An improvement in
speed was possible by switching from WordNet to Word2Vec implementation.
For a sentiment analysis, this approach does not have enough capabilities be-
cause sentiments aren’t hard coded in chat messages and thus won’t be matched
to emoji specifications. We designed the advanced approach to deal with this
problem. The results were quite good for easy and kind of obvious messages but
shows that we also got many false prediction when sentences are getting longer.

5.2 Results of the Neural Network classifier
For the final training we used a Neural Network with 3 hidden layers (5000, 2500
and 1000 neurons). As vectorizer we tested TFIDF and doc2vec. In comparison
to TFIDF we had to train the doc2vec vectorizer on much more twitter samples
until we get good results, but still then a pipeline using TFIDF performs better
(see figure 9).

5.3 Evaluation
It is not easy for us to present numeric values. This is due to the fact that
we learn our sentiment as a regression problem. So we can provide loss over
time. In context of sentiments this is not so intuitive. When using the user
interface with an example input text and watching for the presented emojis we
see intuitively a quite good matching. But we have to investigate for a good
measurement of such problems.

6 Discussion
After finishing our project we have many ideas for further research where we
could improve our approaches. On the one hand we have ideas for further tools
or integration of additional software for a more efficient use of our data, on the
other hand we see some limitations and problems based on design.

6.1 Outlook
In our group we discussed many more ideas, how we can improve our approaches.
With more time it could be interesting to offer the opportunity of using different
languages as input. Also it could be interesting to use the

9

prediction distribution with red mean-error bars

Train and validadtion Error on the same network with TFIDF and doc2vec
vectorizers. Shown here is the training of 2 months of archieved twitter data

distributed over 54 data files. 52 were used for training, 2 for validation

Figure 9: Training Error Evaluation

6.1.1 Chatbot

A possible implementation of our approach would be a chatbot, which answers
an input message with an emoji (and possibly an additional reply message). We
implemented this function with a chat interface. The bot will always reply to
the input message with the top-ranked emoji from our Advanced Approach.

6.1.2 Multi Language

For an integration in Messenger services or chat bots it would be interesting to
offer the opportunity of language independence.

6.1.3 Reinforcement Learning

We could use the user input after predicting the most probable emojis. When
a user selects a specific emojis with a less higher rank we could use this as
a feedback for improving further predictions like in reinforcement learning or
generating a new training sample.

10

6.1.4 Irony

In data from twitter or other social media, irony, sarcasm and other obfuscated
sentiments are present. To analyze them and interprete the used emojis we have
to build a deeper knowledge about the messages. To detect irony, we have to
understand the messages content. Also we need to match this content to the
writers knowledge. If we also could detect that a mismatch of the content in the
written message and the authors knowledge base and in addition we expect that
the author thinks we are able to understand that his message is intentionally
wrong exposed, we could assume that it is maybe an ironic, sarcastic or trolling
message.

6.2 Limitations
Also while implementing our approaches we see many limitations in our design
and data. But we have to deal with it based on our time schedule. If we would
have much more time we would investigate many of them. We want to give a
short overview to show where we think we lost some accuracy.

6.2.1 Alternative evaluation with independent data

One of the biggest issues with the Advanced Approach is that the mean squared
error of the Neural Network is not so well interpretable. We tried to get a more
intuitive performance estimate with an independent evaluation. We wrote 120
sentences by hand (60 topic- and 60 emotion-related). The emotion related
sentences were labeled as to their basic emotion (positive or negative). Then
we ran the Merged Approach on that data and evaluated the results of the
Naive and the Advanced Approach separately. For the evaluation of the Naive

Figure 10: Results of the Naive Approach on our own data, evaluated by hand

Approach, we just counted the number of examples for which the algorithm
returns at least one meaningful topic-emoji (normalized by the number of all
examples). We also did a comparison between WordNet and Word2Vec with
and without stemming, respectively. The results can be seen in figure 10. We

11

inferred from this experiment that WordNet without stemming performs best
for our data.
To evaluate the Advanced Approach, we compared the top 4 predicted emojis to
our previously defined emotion labeling. If at least 2 of them correlated with the
”true” sentiment, the example was considered a hit, otherwise a miss. Again, we
counted the number of hits and divided it by the total number of examples. We
did this for two classifiers, one of which used the TFIDF feature representation,
and one the Doc2Vec representation. The classifier with TFIDF vectors got
an accuracy score of 0.85, and the one with Doc2Vec 0.6. We excluded the
by far most used emoji ”Face with Tears of Joy” from this evaluation, because
it was predicted by the classifier for almost every sentence and therefore not
meaningful.
It is important to note that these scores are just rough estimations, which we
obtained to get a better feeling for how well our approach performs. We did not
include them in the official evaluation, as they are not an exact performance
measure.

6.2.2 Data

Our twitter data aren’t a gold standard for text with a good sentiment label-
ing. Our prototype works with the used emojis to approximate the underlying
sentiment. We think a larger set of Whats App data would be much more in-
teresting because of a longer history of interaction with more honest writing of
sentiments and thus less noise. So a more precise prediction could be possible
based on more information about context. Also there seems to be too much
noise in the emoji usage. So you can also see in figure 11 that the predictions of
our classifier performs not so good on general twitter messages. But the same
classifier can work if there is clearly a strong sentiment in the message. As
you can see in figure 12 is is possible to separate predictions of messages with
positive and negative sentiments

6.2.3 Sentiment Space

In or research of labeled twitter data and assignments of sentiments with emojis,
we found a paper which mapped emojis occurring in a text to positive, negative
or neutral classes (see [3]). Based on this data we built a 3-dimensional sentiment
space. We evaluated this space with clustering and investigated for each emoji
the nearest neighbours. This model offers us an alternative representation for
multi-class classification (see section 6.2.3) in our Neural network, but isn’t
investigated much further. We also thought about alternative sentiment spaces
but do not have enough time to investigate them.

Emoji Clustering To analyze the data, we performed k-means clustering on
the emoji representations in the three-dimensional feature space. We found that
k = 5 yields meaningful clusters, which represent clearly distinguishable types of
emojis. A rough classification of the clusters - as to their represented emotions

12

(a) positive / negative plot of sad Emoji (b) positive / negative plot of kissing
Emoji

Figure 11: Example for bad predictions of our advanced classifier (TFIDF as
vectorizer). Here we see predictions of our twitter-data validation set, left only
with data which has a sad emoji as true label, right only data with the kissing
emoji as true label. The two clusters are not separated in the Sentiment space

Figure 12: The same classifier as in figure 11, but here we see predictions of the
sentiment data mentioned in section 6.2.1. Green are messages with a strong
positive, Red with strong negative sentiment

Figure 13: Cluster representation of the 20 most used emojis

- would be:

• Cluster 1: Joy / Fun

• Cluster 2: Anger / Desperation

13

• Cluster 3: Miscellaneous

• Cluster 4: Sadness / Rage

• Cluster 5: Love / Happiness

This representation can be helpful, when interpreting classification results. If
we want to know how good a result is, we can check if its closest representation
is in the same cluster as the correct emoji. One should keep in mind though,
that this is not an exact performance measure. Therefore we did not include it
in our evaluation.

6.2.4 Trolls and Irony

Possible misusage and misinterpretation of used twitter data based on not de-
tecting trolls or ironic statements could lead to a wrong sentiment assignment.
This problem could be a large one in context social media like Twitter or reddit
where a large community of users are trolls.

References
[1] Emoji specifications. https://unicode.org/emoji/charts/full-emoji-list.html.

[2] F Hallsmar and J Palm. Multi-class sentiment classification on twitter us-
ing an emoji training heuristic. Technical report, KTH Royal Institute of
Technology, 2016.

[3] P K Novak; J Smailovic; B Sluban and I Mozetic. Sentiment of emojis. PLoS
ONE, 2015.

[4] L Zhao and C Zeng. Using neural networks to predict emoji usage from
twitter data. Technical report, Stanford University, 2017.

14

	Introduction
	Motivation

	Naive Approach
	Matching of Messages to Emoji Specifications
	Word2Vec/WordNet and Euclidean Distance
	Ranking of Matching for Prediction

	Findings from the Naive Approach

	Advanced Approach
	Preprocessing and Feature Extraction
	TFIDF vectorization
	Doc2Vec vectorization

	Pipeline and Classifier
	Emoji Representation
	Problem Specification and Error Function

	Merged Approach
	User Interface
	Components
	Merge Predictions
	Results from Use of User Interface

	Results
	Comparison Approaches
	Results of the Neural Network classifier
	Evaluation

	Discussion
	Outlook
	Chatbot
	Multi Language
	Reinforcement Learning
	Irony

	Limitations
	Alternative evaluation with independent data
	Data
	Sentiment Space
	Trolls and Irony

