minor fixes

This commit is contained in:
Jonas Weinz 2018-06-26 20:47:33 +02:00
parent 480c1e8928
commit 55bd7a9b3a

View File

@ -11,9 +11,31 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 1,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using TensorFlow backend.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[nltk_data] Downloading package punkt to /home/jonas/nltk_data...\n",
"[nltk_data] Package punkt is already up-to-date!\n",
"[nltk_data] Downloading package averaged_perceptron_tagger to\n",
"[nltk_data] /home/jonas/nltk_data...\n",
"[nltk_data] Package averaged_perceptron_tagger is already up-to-\n",
"[nltk_data] date!\n",
"[nltk_data] Downloading package wordnet to /home/jonas/nltk_data...\n",
"[nltk_data] Package wordnet is already up-to-date!\n"
]
}
],
"source": [ "source": [
"import simple_twitter_learning as stl\n", "import simple_twitter_learning as stl\n",
"import glob\n", "import glob\n",
@ -37,7 +59,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 2,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -92,9 +114,48 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 3,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [
{
"data": {
"text/markdown": [
"----"
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/markdown": [
"## User Interface"
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4fd5552e6a024dcaa0f35a594c77ae99",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Tab(children=(VBox(children=(HBox(children=(Text(value='./data_en/', description='root_path'), Button(descript…"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [ "source": [
"mp(\"----\")\n", "mp(\"----\")\n",
"mp(\"## User Interface\")\n", "mp(\"## User Interface\")\n",
@ -174,6 +235,18 @@
" ]\n", " ]\n",
" ], \n", " ], \n",
" \"train\" )\n", " \"train\" )\n",
"create_area(\"playground 😎\",\n",
" [\n",
" [\n",
" (widgets.Text(),\"test_input\"),\n",
" (widgets.HTML(),\"prediction\")\n",
" ],\n",
" [\n",
" (widgets.Checkbox(),\"show_sorted_list\")\n",
" ]\n",
" ],\n",
" \"playground\")\n",
"\n",
"tab_manager" "tab_manager"
] ]
}, },
@ -187,7 +260,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 4,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -205,7 +278,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 5,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -293,7 +366,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 6,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -317,7 +390,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 7,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -381,7 +454,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 8,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -425,7 +498,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 9,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -541,6 +614,46 @@
"\n", "\n",
"\n" "\n"
] ]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## testing area"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"def test_input(b):\n",
" global sdm\n",
" global pm\n",
" global tr\n",
" with out_areas[\"playground\"]:\n",
" clear_output()\n",
" mp(\"----\")\n",
" if pm is None:\n",
" sys.stderr.write(\"ERROR: load or create classifier first\")\n",
" return\n",
" X = shown_widgets[\"test_input\"].value\n",
" pred = pm.predict([X])\n",
" shown_widgets[\"prediction\"].value = \"<h1> \" + str(stl.sent2emoji(pred)[0]) + \"</h1>\"\n",
" if shown_widgets[\"show_sorted_list\"].value:\n",
" mp(\"## \" + \"\".join(stl.edist.sentiment_vector_to_emoji(pred, only_emoticons=True, n_results=100)))\n",
"\n",
"#link\n",
"shown_widgets[\"test_input\"].observe(test_input)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
} }
], ],
"metadata": { "metadata": {